Articles | Volume 12, issue 1
https://doi.org/10.5194/esd-12-121-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-121-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synchronized spatial shifts of Hadley and Walker circulations
Center for Climate Physics, Institute for Basic Science (IBS), Busan
46241, South Korea
Pusan National University, Busan 46241, South Korea
Axel Timmermann
Center for Climate Physics, Institute for Basic Science (IBS), Busan
46241, South Korea
Pusan National University, Busan 46241, South Korea
Malte F. Stuecker
Department of Oceanography and International Pacific Research Center,
School of Ocean and Earth Science and Technology, University of Hawai`i at
Mānoa, Honolulu, HI, USA
Related authors
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Xue Feng, Matthew J. Widlansky, Tong Lee, Ou Wang, Magdalena A. Balmaseda, Hao Zuo, Gregory Dusek, William Sweet, and Malte F. Stuecker
Ocean Sci., 21, 1663–1676, https://doi.org/10.5194/os-21-1663-2025, https://doi.org/10.5194/os-21-1663-2025, 2025
Short summary
Short summary
Forecasting sea level changes months in advance along the Gulf Coast and East Coast of the United States is challenging. Here, we present a method that uses past ocean states to forecast future sea levels, while assuming no knowledge of how the atmosphere will evolve other than its typical annual cycle near the ocean's surface. Our findings indicate that this method improves sea level outlooks for many locations along the Gulf Coast and East Coast, especially south of Cape Hatteras.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The version-2 global precipitation
climatology project (GPCP) monthly precipitation analysis (1979-present), J.
Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:Tvgpcp>2.0.Co;2, 2003.
An, S.-I. and Kim, J.-W.: ENSO Transition Asymmetry: Internal and External
Causes and Intermodel Diversity, Geophys. Res. Lett., 45,
5095–5104, https://doi.org/10.1029/2018gl078476, 2018.
Bayr, T., Dommenget, D., Martin, T., and Power, S. B.: The eastward shift of
the Walker Circulation in response to global warming and its relationship to
ENSO variability, Clim. Dyn., 43, 2747–2763,
https://doi.org/10.1007/s00382-014-2091-y, 2014.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic Aerosols and
the Weakening of the South Asian Summer Monsoon, Science, 334, 502–505,
https://doi.org/10.1126/science.1204994, 2011.
Clarke, A. J. and Lebedev, A.: Long-term changes in the equatorial Pacific
trade winds, J. Climate, 9, 1020–1029, https://doi.org/10.1175/1520-0442(1996)009<1020:Ltcite>2.0.Co;2, 1996.
Dai, A. G.: Drought under global warming: a review, Wires Clim. Change, 2, 45–65, https://doi.org/10.1002/wcc.81, 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q.
J. Roy. Meteorol. Soc., 137, 553-0597, https://doi.org/10.1002/qj.828,
2011.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the ongoing
warming hiatus, Nat. Clim. Change, 4, 222–227, https://doi.org/10.1038/nclimate2106,
2014.
ERA-CLIM: ECMWF reanalysis – Interim data, available at: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim, last access: 26 January 2021.
ESGF: WCRP Coupled Model Intercomparison Project, available at: https://esgf-node.llnl.gov/search/cmip5 for CMIP5, https://esgf-node.llnl.gov/search/cmip6 for CMIP6, last access: 26 January 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Garcia-Herrera, R., Diaz, J., Trigo, R. M., Luterbacher, J., and Fischer, E.
M.: A Review of the European Summer Heat Wave of 2003, Crit. Rev. Env. Sci. Tec., 40, 267–306, https://doi.org/10.1080/10643380802238137, 2010.
Guo, Y. P. and Tan, Z. M.: Relationship between El Nino-Southern
Oscillation and the Symmetry of the Hadley Circulation: Role of the Sea
Surface Temperature Annual Cycle, J. Climate, 31, 5319–5332,
https://doi.org/10.1175/Jcli-D-17-0788.1, 2018.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations - the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Karnauskas, K. B. and Ummenhofer, C. C.: On the dynamics of the Hadley
circulation and subtropical drying, Clim. Dyn., 42, 2259–2269,
https://doi.org/10.1007/s00382-014-2129-1, 2014.
Klein, S. A., Soden, B. J., and Lau, N.-C.: Remote Sea Surface Temperature
Variations during ENSO: Evidence for a Tropical Atmospheric Bridge, J.
Climate, 12, 917–932, https://doi.org/10.1175/1520-0442(1999)012<0917:Rsstvd>2.0.Co;2, 1999.
Kumar, K. K., Rajagopalan, B., and Cane, M. A.: On the weakening
relationship between the Indian monsoon and ENSO, Science, 284, 2156–2159,
https://doi.org/10.1126/science.284.5423.2156, 1999.
Lau, W. K. and Kim, K. M.: Robust Hadley Circulation changes and increasing
global dryness due to CO2 warming from CMIP5 model projections, P. Natl.
Acad. Sci. USA, 112, 3630–3635, https://doi.org/10.1073/pnas.1418682112, 2015.
Liu, B. and Zhou, T. J.: Atmospheric footprint of the recent warming
slowdown, Sci. Rep.-UK, 7, 40947, https://doi.org/10.1038/srep40947, 2017.
Ma, J. and Li, J. P.: The principal modes of variability of the boreal
winter Hadley cell, Geophys. Res. Lett., 35, L01808,
https://doi.org/10.1029/2007gl031883, 2008.
Ma, J., Chadwick, R., Seo, K. H., Dong, C. M., Huang, G., Foltz, G. R., and
Jiang, J. H.: Responses of the Tropical Atmospheric Circulation to Climate
Change and Connection to the Hydrological Cycle, Annu. Rev. Earth. Pl. Sc., 46, 549–580, https://doi.org/10.1146/annurev-earth-082517-010102, 2018.
Ma, S. and Zhou, T.: Robust Strengthening and Westward Shift of the
Tropical Pacific Walker Circulation during 1979–2012: A Comparison of 7
Sets of Reanalysis Data and 26 CMIP5 Models, J. Climate, 29,
3097–3118, https://doi.org/10.1175/jcli-d-15-0398.1, 2016.
McGregor, S., Timmermann, A., Schneider, N., Stuecker, M. F., and England,
M. H.: The Effect of the South Pacific Convergence Zone on the Termination
of El Niño Events and the Meridional Asymmetry of ENSO, J.
Climate, 25, 5566–5586, https://doi.org/10.1175/jcli-d-11-00332.1, 2012.
McGregor, S., Ramesh, N., Spence, P., England, M. H., McPhaden, M. J., and
Santoso, A.: Meridional movement of wind anomalies during ENSO events and
their role in event termination, Geophys. Res. Lett., 40, 749–754,
https://doi.org/10.1002/grl.50136, 2013.
McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield,
M., Jin, F.-F., and Chikamoto, Y.: Recent Walker circulation strengthening
and Pacific cooling amplified by Atlantic warming, Nat. Clim. Change, 4,
888–892, https://doi.org/10.1038/nclimate2330, 2014.
Minobe, S.: Year-to-Year Variability in the Hadley and Walker Circulations
from NCEP/NCAR Reanalysis Data, in: The Hadley Circulation: Present, Past
and Future, edited by: Diaz, H. F. and Bradley, R. S., Springer, Dordrecht,
153–171, 2004.
Mitas, C. M. and Clement, A.: Has the Hadley cell been strengthening in
recent decades?, Geophys. Res. Lett., 32, L030809,
https://doi.org/10.1029/2004gl021765, 2005.
NOAA: Extended Reconstructed Sea Surface Temperature (ERSST), version 5, available at: https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5, last access: 26 January 2021.
Ohba, M. and Watanabe, M.: Role of the Indo-Pacific Interbasin Coupling in
Predicting Asymmetric ENSO Transition and Duration, J. Climate, 25,
3321–3335, https://doi.org/10.1175/jcli-d-11-00409.1, 2012.
Oort, A. H. and Yienger, J. J.: Observed interannual variability in the
Hadley circulation and its connection to ENSO, J. Climate, 9,
2751–2767, https://doi.org/10.1175/1520-0442(1996)009<2751:Oivith>2.0.Co;2, 1996.
Physical Sciences Laboratory: GPCP version 2.3 Combined Precipitation Data Set, available at: https://psl.noaa.gov/data/gridded/data.gpcp.html, last access: 26 January 2021.
Pikovsky, A., Rosenblum, M., and Kurths, J.: Phase synchronization in
regular and chaotic systems, Int. J. Bifurcat. Chaos,
10, 2291–2305, https://doi.org/10.1142/s0218127400001481, 2000.
Rosenblum, M.: Synchronization analysis of bivariate time series and its
application to medical data, in: Medical Data Analysis, Proceedings, edited
by: Brause, R. W. and Hanisch, E., Lect. Notes Comput. Sc., 1933, 15–16, 2000.
Rosenblum, M. and Pikovsky, A.: Synchronization: from pendulum clocks to
chaotic lasers and chemical oscillators, Contemp. Phys., 44, 401–416,
https://doi.org/10.1080/00107510310001603129, 2003.
Rosenblum, M. G., Kurths, J., Pikovsky, A., Schafer, C., Tass, P., and Abel,
H. H.: Synchronization in noisy systems and cardiorespiratory interaction,
IEEE Eng. Med. Biol., 17, 46–53, https://doi.org/10.1109/51.731320, 1998.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's Historical Merged Land–Ocean Surface Temperature
Analysis (1880–2006), J. Clim., 21, 2283–2296,
https://doi.org/10.1175/2007jcli2100.1, 2008.
Sohn, B. J., Yeh, S.-W., Schmetz, J., and Song, H.-J.: Observational
evidences of Walker circulation change over the last 30 years contrasting
with GCM results, Clim. Dyn., 40, 1721–1732,
https://doi.org/10.1007/s00382-012-1484-z, 2013.
Stein, K., Timmermann, A., Schneider, N., Jin, F.-F., and Stuecker, M. F.:
ENSO Seasonal Synchronization Theory, J. Climate, 27, 5285–5310,
https://doi.org/10.1175/jcli-d-13-00525.1, 2014.
Stuecker, M. F., Timmermann, A., Jin, F.-F., McGregor, S., and Ren, H.-L.: A
combination mode of the annual cycle and the El Niño/Southern
Oscillation, Nat. Geosci., 6, 540–544, https://doi.org/10.1038/ngeo1826, 2013.
Stuecker, M. F., Jin, F.-F., Timmermann, A., and McGregor, S.: Combination
Mode Dynamics of the Anomalous Northwest Pacific Anticyclone, J. Climate, 28, 1093-1111, 10.1175/jcli-d-14-00225.1, 2015.
Tanaka, H. L., Ishizaki, N., and Nohara, D.: Intercomparison of the
Intensities and Trends of Hadley, Walker and Monsoon Circulations in the
Global Warming Projections, Sola, 1, 77–80, https://doi.org/10.2151/sola.2005.021, 2005.
Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann,
J., Schnitzler, A., and Freund, H. J.: Detection of n : m phase locking from
noisy data: Application to magnetoencephalography, Phys. Rev. Lett.,
81, 3291–3294, https://doi.org/10.1103/PhysRevLett.81.3291, 1998.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of Cmip5 and
the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/Bams-D-11-00094.1, 2012.
Timmermann, A., McGregor, S., and Jin, F. F.: Wind Effects on Past and
Future Regional Sea Level Trends in the Southern Indo-Pacific, J.
Climate, 23, 4429–4437, https://doi.org/10.1175/2010jcli3519.1, 2010.
University of East Anglia Climatic Research Unit: Harris, I. C. and Jones, P. D., CRU Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2018), https://doi.org/10.5285/10d3e3640f004c578403419aac167d82, 2021.
Vecchi, G. A. and Soden, B. J.: Global Warming and the Weakening of the
Tropical Circulation, J. Climate, 20, 4316–4340, https://doi.org/10.1175/jcli4258.1,
2007.
Wu, L., Zhang, H. J., Chen, J. M., and Feng, T.: Impact of Two Types of El
Nino on Tropical Cyclones over the Western North Pacific: Sensitivity to
Location and Intensity of Pacific Warming, J. Climate, 31,
1725–1742, https://doi.org/10.1175/Jcli-D-17-0298.1, 2018.
Yu, B. and Zwiers, F. W.: Changes in equatorial atmospheric zonal
circulations in recent decades, Geophys. Res. Lett., 37, L05701,
https://doi.org/10.1029/2009gl042071, 2010.
Zhang, W., Jin, F.-F., Stuecker, M. F., Wittenberg, A. T., Timmermann, A.,
Ren, H.-L., Kug, J.-S., Cai, W., and Cane, M.: Unraveling El Niño's
impact on the East Asian Monsoon and Yangtze River summer flooding,
Geophys. Res. Lett., 43, 11375–11382, https://doi.org/10.1002/2016gl071190,
2016.
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What...
Altmetrics
Final-revised paper
Preprint