Articles | Volume 9, issue 2
https://doi.org/10.5194/esd-9-479-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-9-479-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in crop yields and their variability at different levels of global warming
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Jacob Schewe
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Katelin Childers
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Katja Frieler
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Related authors
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Xingcai Liu, Wenfeng Liu, Hong Yang, Qiuhong Tang, Martina Flörke, Yoshimitsu Masaki, Hannes Müller Schmied, Sebastian Ostberg, Yadu Pokhrel, Yusuke Satoh, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, https://doi.org/10.5194/hess-23-1245-2019, 2019
Short summary
Short summary
Human activities associated with water resource management have significantly increased in China during the past decades. This assessment helps us understand how streamflow has been affected by climate and human activities in China. Our analyses indicate that the climate impact has dominated streamflow changes in most areas, and human activities (in terms of water withdrawals) have increasingly decreased streamflow in the northern basins of China which are vulnerable to future climate change.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
J. Heinke, S. Ostberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht
Geosci. Model Dev., 6, 1689–1703, https://doi.org/10.5194/gmd-6-1689-2013, https://doi.org/10.5194/gmd-6-1689-2013, 2013
S. Ostberg, W. Lucht, S. Schaphoff, and D. Gerten
Earth Syst. Dynam., 4, 347–357, https://doi.org/10.5194/esd-4-347-2013, https://doi.org/10.5194/esd-4-347-2013, 2013
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan C. Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
EGUsphere, https://doi.org/10.5194/egusphere-2024-2441, https://doi.org/10.5194/egusphere-2024-2441, 2024
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic-climate scenarios' largest effect on variance starting in 2030.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Matthias Mengel, Simon Treu, Stefan Lange, and Katja Frieler
Geosci. Model Dev., 14, 5269–5284, https://doi.org/10.5194/gmd-14-5269-2021, https://doi.org/10.5194/gmd-14-5269-2021, 2021
Short summary
Short summary
To identify the impacts of historical climate change it is necessary to separate the effect of the different impact drivers. To address this, one needs to compare historical impacts to a counterfactual world with impacts that would have been without climate change. We here present an approach that produces counterfactual climate data and can be used in climate impact models to simulate counterfactual impacts. We make these data available through the ISIMIP project.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Xingcai Liu, Wenfeng Liu, Hong Yang, Qiuhong Tang, Martina Flörke, Yoshimitsu Masaki, Hannes Müller Schmied, Sebastian Ostberg, Yadu Pokhrel, Yusuke Satoh, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, https://doi.org/10.5194/hess-23-1245-2019, 2019
Short summary
Short summary
Human activities associated with water resource management have significantly increased in China during the past decades. This assessment helps us understand how streamflow has been affected by climate and human activities in China. Our analyses indicate that the climate impact has dominated streamflow changes in most areas, and human activities (in terms of water withdrawals) have increasingly decreased streamflow in the northern basins of China which are vulnerable to future climate change.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Derek P. Tittensor, Tyler D. Eddy, Heike K. Lotze, Eric D. Galbraith, William Cheung, Manuel Barange, Julia L. Blanchard, Laurent Bopp, Andrea Bryndum-Buchholz, Matthias Büchner, Catherine Bulman, David A. Carozza, Villy Christensen, Marta Coll, John P. Dunne, Jose A. Fernandes, Elizabeth A. Fulton, Alistair J. Hobday, Veronika Huber, Simon Jennings, Miranda Jones, Patrick Lehodey, Jason S. Link, Steve Mackinson, Olivier Maury, Susa Niiranen, Ricardo Oliveros-Ramos, Tilla Roy, Jacob Schewe, Yunne-Jai Shin, Tiago Silva, Charles A. Stock, Jeroen Steenbeek, Philip J. Underwood, Jan Volkholz, James R. Watson, and Nicola D. Walker
Geosci. Model Dev., 11, 1421–1442, https://doi.org/10.5194/gmd-11-1421-2018, https://doi.org/10.5194/gmd-11-1421-2018, 2018
Short summary
Short summary
Model intercomparison studies in the climate and Earth sciences communities have been crucial for strengthening future projections. Given the speed and magnitude of anthropogenic change in the marine environment, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. We describe the Fisheries and Marine Ecosystem Model Intercomparison Project, which brings together the marine ecosystem modelling community to inform long-term projections of marine ecosystems.
Tobias Geiger, Katja Frieler, and David N. Bresch
Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, https://doi.org/10.5194/essd-10-185-2018, 2018
Short summary
Short summary
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on their socioeconomic impacts. Here, we apply a common wind field model to comprehensively and consistently estimate the number of people and the sum of assets exposed by all TCs between 1950 and 2015. This information is crucial to assess changes in societal vulnerabilites, to calibrate TC damage functions, and to make risk data more accessible to non-experts and stakeholders.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Jacob Schewe and Anders Levermann
Earth Syst. Dynam., 8, 495–505, https://doi.org/10.5194/esd-8-495-2017, https://doi.org/10.5194/esd-8-495-2017, 2017
Short summary
Short summary
Monsoon systems have undergone abrupt changes in past climates, and theoretical considerations show that threshold behavior can follow from the internal dynamics of monsoons. So far, however, the possibility of abrupt changes has not been explored for modern monsoon systems. We analyze state-of-the-art climate model simulations and show that some models project abrupt changes in Sahel rainfall in response to a dynamic shift in the West African monsoon under 21st century climate change.
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
Carl-Friedrich Schleussner, Tabea K. Lissner, Erich M. Fischer, Jan Wohland, Mahé Perrette, Antonius Golly, Joeri Rogelj, Katelin Childers, Jacob Schewe, Katja Frieler, Matthias Mengel, William Hare, and Michiel Schaeffer
Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, https://doi.org/10.5194/esd-7-327-2016, 2016
Short summary
Short summary
We present for the first time a comprehensive assessment of key climate impacts for the policy relevant warming levels of 1.5 °C and 2 °C above pre-industrial levels. We report substantial impact differences in intensity and frequency of extreme weather events, regional water availability and agricultural yields, sea-level rise and risk of coral reef loss. The increase in climate impacts is particularly pronounced in tropical and sub-tropical regions.
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
J. Heinke, S. Ostberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht
Geosci. Model Dev., 6, 1689–1703, https://doi.org/10.5194/gmd-6-1689-2013, https://doi.org/10.5194/gmd-6-1689-2013, 2013
S. Ostberg, W. Lucht, S. Schaphoff, and D. Gerten
Earth Syst. Dynam., 4, 347–357, https://doi.org/10.5194/esd-4-347-2013, https://doi.org/10.5194/esd-4-347-2013, 2013
S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek
Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, https://doi.org/10.5194/esd-4-219-2013, 2013
M. Perrette, F. Landerer, R. Riva, K. Frieler, and M. Meinshausen
Earth Syst. Dynam., 4, 11–29, https://doi.org/10.5194/esd-4-11-2013, https://doi.org/10.5194/esd-4-11-2013, 2013
Related subject area
Earth system interactions with the biosphere: landuse
The biogeophysical effects of idealized land cover and land management changes in Earth system models
The response of the regional longwave radiation balance and climate system in Europe to an idealized afforestation experiment
Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation
Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches
Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing
Impact of environmental changes and land management practices on wheat production in India
Impacts of future agricultural change on ecosystem service indicators
Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison
A multi-model analysis of teleconnected crop yield variability in a range of cropping systems
Different response of surface temperature and air temperature to deforestation in climate models
A global assessment of gross and net land change dynamics for current conditions and future scenarios
Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River basin, China
Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era
Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia
Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments
Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions
Continuous and consistent land use/cover change estimates using socio-ecological data
Vulnerability to climate change and adaptation strategies of local communities in Malawi: experiences of women fish-processing groups in the Lake Chilwa Basin
Deforestation in Amazonia impacts riverine carbon dynamics
Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework
Ocean–atmosphere interactions modulate irrigation's climate impacts
Impacts of land-use history on the recovery of ecosystems after agricultural abandonment
Actors and networks in resource conflict resolution under climate change in rural Kenya
Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada
The role of spatial scale and background climate in the latitudinal temperature response to deforestation
Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa
Implications of land use change in tropical northern Africa under global warming
Quantifying differences in land use emission estimates implied by definition discrepancies
Inter-annual and seasonal trends of vegetation condition in the Upper Blue Nile (Abay) Basin: dual-scale time series analysis
Local sources of global climate forcing from different categories of land use activities
Effects of climate variability on savannah fire regimes in West Africa
Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
Terminology as a key uncertainty in net land use and land cover change carbon flux estimates
Towards decision-based global land use models for improved understanding of the Earth system
Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa
The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr
A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"
Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)
Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations
Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use
The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Marcus Breil, Felix Krawczyk, and Joaquim G. Pinto
Earth Syst. Dynam., 14, 243–253, https://doi.org/10.5194/esd-14-243-2023, https://doi.org/10.5194/esd-14-243-2023, 2023
Short summary
Short summary
We provide evidence that biogeophysical effects of afforestation can counteract the favorable biogeochemical climate effect of reduced CO2 concentrations. By changing the land surface characteristics, afforestation reduces vegetation surface temperatures, resulting in a reduced outgoing longwave radiation in summer, although CO2 concentrations are reduced. Since forests additionally absorb a lot of solar radiation due to their dark surfaces, afforestation has a total warming effect.
Ana Bastos, Kerstin Hartung, Tobias B. Nützel, Julia E. M. S. Nabel, Richard A. Houghton, and Julia Pongratz
Earth Syst. Dynam., 12, 745–762, https://doi.org/10.5194/esd-12-745-2021, https://doi.org/10.5194/esd-12-745-2021, 2021
Short summary
Short summary
Fluxes from land-use change and management (FLUC) are a large source of uncertainty in global and regional carbon budgets. Here, we evaluate the impact of different model parameterisations on FLUC. We show that carbon stock densities and allocation of carbon following transitions contribute more to uncertainty in FLUC than response-curve time constants. Uncertainty in FLUC could thus, in principle, be reduced by available Earth-observation data on carbon densities at a global scale.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Shilpa Gahlot, Tzu-Shun Lin, Atul K. Jain, Somnath Baidya Roy, Vinay K. Sehgal, and Rajkumar Dhakar
Earth Syst. Dynam., 11, 641–652, https://doi.org/10.5194/esd-11-641-2020, https://doi.org/10.5194/esd-11-641-2020, 2020
Short summary
Short summary
Spring wheat, a staple for millions of people in India and the world, is vulnerable to changing environmental and management factors. Using a new spring wheat model, we find that over the 1980–2016 period elevated CO2 levels, irrigation, and nitrogen fertilizers led to an increase of 30 %, 12 %, and 15 % in countrywide production, respectively. In contrast, rising temperatures have reduced production by 18 %. These effects vary across the country, thereby affecting production at regional scales.
Sam S. Rabin, Peter Alexander, Roslyn Henry, Peter Anthoni, Thomas A. M. Pugh, Mark Rounsevell, and Almut Arneth
Earth Syst. Dynam., 11, 357–376, https://doi.org/10.5194/esd-11-357-2020, https://doi.org/10.5194/esd-11-357-2020, 2020
Short summary
Short summary
We modeled how agricultural performance and demand will shift as a result of climate change and population growth, and how the resulting adaptations will affect aspects of the Earth system upon which humanity depends. We found that the impacts of land use and management can have stronger impacts than climate change on some such
ecosystem services. The overall impacts are strongest in future scenarios with more severe climate change, high population growth, and/or resource-intensive lifestyles.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Matias Heino, Joseph H. A. Guillaume, Christoph Müller, Toshichika Iizumi, and Matti Kummu
Earth Syst. Dynam., 11, 113–128, https://doi.org/10.5194/esd-11-113-2020, https://doi.org/10.5194/esd-11-113-2020, 2020
Short summary
Short summary
In this study, we analyse the impacts of three major climate oscillations on global crop production. Our results show that maize, rice, soybean, and wheat yields are influenced by climate oscillations to a wide extent and in several important crop-producing regions. We observe larger impacts if crops are rainfed or fully fertilized, while irrigation tends to mitigate the impacts. These results can potentially help to increase the resilience of the global food system to climate-related shocks.
Johannes Winckler, Christian H. Reick, Sebastiaan Luyssaert, Alessandro Cescatti, Paul C. Stoy, Quentin Lejeune, Thomas Raddatz, Andreas Chlond, Marvin Heidkamp, and Julia Pongratz
Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, https://doi.org/10.5194/esd-10-473-2019, 2019
Short summary
Short summary
For local living conditions, it matters whether deforestation influences the surface temperature, temperature at 2 m, or the temperature higher up in the atmosphere. Here, simulations with a climate model show that at a location of deforestation, surface temperature generally changes more strongly than atmospheric temperature. Comparison across climate models shows that both for summer and winter the surface temperature response exceeds the air temperature response locally by a factor of 2.
Richard Fuchs, Reinhard Prestele, and Peter H. Verburg
Earth Syst. Dynam., 9, 441–458, https://doi.org/10.5194/esd-9-441-2018, https://doi.org/10.5194/esd-9-441-2018, 2018
Short summary
Short summary
We analysed current global land change dynamics based on high-resolution (30–100 m) remote sensing products. We integrated these empirical data into a future simulation model to assess global land change dynamics in the future (2000 to 2040). The consideration of empirically derived land change dynamics in future models led globally to ca. 50 % more land changes than currently assumed in state-of-the-art models. This impacts the results of other global change studies (e.g. climate change).
Xingran Liu and Yanjun Shen
Earth Syst. Dynam., 9, 211–225, https://doi.org/10.5194/esd-9-211-2018, https://doi.org/10.5194/esd-9-211-2018, 2018
Short summary
Short summary
The impacts of climate change and human activities on oasis water requirements in Heihe River basin were quantified with the methods of partial derivative and slope in this study. The results showed that the oasis water requirement increased sharply from 10.8 × 108 to 19.0 × 108 m3 during 1986–2013. Human activities were the dominant driving forces. Changes in climate, land scale and structure contributed to the increase in water requirement at rates of 6.9, 58.1, and 25.3 %, respectively.
Ben Parkes, Dimitri Defrance, Benjamin Sultan, Philippe Ciais, and Xuhui Wang
Earth Syst. Dynam., 9, 119–134, https://doi.org/10.5194/esd-9-119-2018, https://doi.org/10.5194/esd-9-119-2018, 2018
Short summary
Short summary
We present an analysis of three crops in West Africa and their response to short-term climate change in a world where temperatures are 1.5 °C above the preindustrial levels. We show that the number of crop failures for all crops is due to increase in the future climate. We further show the difference in yield change across several West African countries and show that the yields are not expected to increase fast enough to prevent food shortages.
Praveen Noojipady, Douglas C. Morton, Wilfrid Schroeder, Kimberly M. Carlson, Chengquan Huang, Holly K. Gibbs, David Burns, Nathalie F. Walker, and Stephen D. Prince
Earth Syst. Dynam., 8, 749–771, https://doi.org/10.5194/esd-8-749-2017, https://doi.org/10.5194/esd-8-749-2017, 2017
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Anita D. Bayer, Mats Lindeskog, Thomas A. M. Pugh, Peter M. Anthoni, Richard Fuchs, and Almut Arneth
Earth Syst. Dynam., 8, 91–111, https://doi.org/10.5194/esd-8-91-2017, https://doi.org/10.5194/esd-8-91-2017, 2017
Short summary
Short summary
We evaluate the effects of land-use and land-cover changes on carbon pools and fluxes using a dynamic global vegetation model. Different historical reconstructions yielded an uncertainty of ca. ±30 % in the mean annual land use emission over the last decades. Accounting for the parallel expansion and abandonment of croplands on a sub-grid level (tropical shifting cultivation) substantially increased the effect of land use on carbon stocks and fluxes compared to only accounting for net effects.
Michael Marshall, Michael Norton-Griffiths, Harvey Herr, Richard Lamprey, Justin Sheffield, Tor Vagen, and Joseph Okotto-Okotto
Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, https://doi.org/10.5194/esd-8-55-2017, 2017
Short summary
Short summary
The transition of land from one cover type to another can adversely affect the Earth system. A growing body of research aims to map these transitions in space and time to better understand the impacts. Here we develop a statistical model that is parameterized by socio-ecological geospatial data and extensive aerial/ground surveys to visualize and interpret these transitions on an annual basis for 30 years in Kenya. Future work will use this method to project land suitability across Africa.
Hanne Jørstad and Christian Webersik
Earth Syst. Dynam., 7, 977–989, https://doi.org/10.5194/esd-7-977-2016, https://doi.org/10.5194/esd-7-977-2016, 2016
Short summary
Short summary
This research is about climate change adaptation. It demonstrates how adaptation to climate change can avoid social tensions if done in a sustainable way. Evidence is drawn from Malawi in southern Africa.
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
Andreas Krause, Thomas A. M. Pugh, Anita D. Bayer, Mats Lindeskog, and Almut Arneth
Earth Syst. Dynam., 7, 745–766, https://doi.org/10.5194/esd-7-745-2016, https://doi.org/10.5194/esd-7-745-2016, 2016
Short summary
Short summary
We used a vegetation model to study the legacy effects of different land-use histories on ecosystem recovery in a range of environmental conditions. We found that recovery trajectories are crucially influenced by type and duration of former agricultural land use, especially for soil carbon. Spatially, we found the greatest sensitivity to land-use history in boreal forests and subtropical grasslands. These results are relevant for measurements, climate modeling and afforestation projects.
Grace W. Ngaruiya and Jürgen Scheffran
Earth Syst. Dynam., 7, 441–452, https://doi.org/10.5194/esd-7-441-2016, https://doi.org/10.5194/esd-7-441-2016, 2016
Short summary
Short summary
Climate change complicates rural conflict resolution dynamics and institutions. There is urgent need for conflict-sensitive adaptation in Africa. The study of social network data reveals three forms of fused conflict resolution arrangements in Loitoktok, Kenya. Where, extension officers, council of elders, local chiefs and private investors are potential conduits of knowledge. Efficiency of rural conflict resolution can be enhanced by diversification in conflict resolution actors and networks.
Daniel Paradis, Harold Vigneault, René Lefebvre, Martine M. Savard, Jean-Marc Ballard, and Budong Qian
Earth Syst. Dynam., 7, 183–202, https://doi.org/10.5194/esd-7-183-2016, https://doi.org/10.5194/esd-7-183-2016, 2016
Short summary
Short summary
According to groundwater flow and mass transport simulations, nitrate concentration for year 2050 would increase mainly due to the attainment of equilibrium conditions of the aquifer system related to actual nitrogen loadings, and to the increase in nitrogen loadings due to changes in agricultural practices. Impact of climate change on the groundwater recharge would contribute only slightly to that increase.
Yan Li, Nathalie De Noblet-Ducoudré, Edouard L. Davin, Safa Motesharrei, Ning Zeng, Shuangcheng Li, and Eugenia Kalnay
Earth Syst. Dynam., 7, 167–181, https://doi.org/10.5194/esd-7-167-2016, https://doi.org/10.5194/esd-7-167-2016, 2016
Short summary
Short summary
The impact of deforestation is to warm the tropics and cool the extratropics, and the magnitude of the impact depends on the spatial extent and the degree of forest loss. That also means location matters for the impact of deforestation on temperature because such an impact is largely determined by the climate condition of that region. For example, under dry and wet conditions, deforestation can have quite different climate impacts.
Kazi Farzan Ahmed, Guiling Wang, Liangzhi You, and Miao Yu
Earth Syst. Dynam., 7, 151–165, https://doi.org/10.5194/esd-7-151-2016, https://doi.org/10.5194/esd-7-151-2016, 2016
Short summary
Short summary
A prototype model LandPro was developed to study climate change impact on land use in West Africa. LandPro considers climate and socioeconomic factors in projecting anthropogenic future land use change (LULCC). The model projections reflect that relative impact of climate change on LULCC in West Africa is region dependent. Results from scenario analysis suggest that science-informed decision-making by the farmers in agricultural land use can potentially reduce crop area expansion in the region.
T. Brücher, M. Claussen, and T. Raddatz
Earth Syst. Dynam., 6, 769–780, https://doi.org/10.5194/esd-6-769-2015, https://doi.org/10.5194/esd-6-769-2015, 2015
Short summary
Short summary
A major link between climate and humans in northern Africa, and the Sahel in particular, is land use. We assess possible feedbacks between the type of land use and harvest intensity and climate by analysing a series of idealized GCM experiments using the MPI-ESM. Our study suggests marginal feedback between land use changes and climate changes triggered by strong greenhouse gas emissions.
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
E. Teferi, S. Uhlenbrook, and W. Bewket
Earth Syst. Dynam., 6, 617–636, https://doi.org/10.5194/esd-6-617-2015, https://doi.org/10.5194/esd-6-617-2015, 2015
Short summary
Short summary
This study concludes that integrated analysis of course and fine-scale, inter-annual and intra-annual trends enables a more robust identification of changes in vegetation condition. Seasonal trend analysis was found to be very useful in identifying changes in vegetation condition that could be masked if only inter-annual vegetation trend analysis were performed. The finer-scale intra-annual trend analysis revealed trends that were more linked to human activities.
D. S. Ward and N. M. Mahowald
Earth Syst. Dynam., 6, 175–194, https://doi.org/10.5194/esd-6-175-2015, https://doi.org/10.5194/esd-6-175-2015, 2015
Short summary
Short summary
The radiative forcing of land use and land cover change activities has recently been computed for a set of forcing agents including long-lived greenhouse gases, short-lived agents (ozone and aerosols), and land surface albedo change. Here we address where the global forcing comes from and what land use activities, such as deforestation or agriculture, contribute the most forcing. We find that changes in forest and crop area can be used to predict the land use radiative forcing in some regions.
E. T. N'Datchoh, A. Konaré, A. Diedhiou, A. Diawara, E. Quansah, and P. Assamoi
Earth Syst. Dynam., 6, 161–174, https://doi.org/10.5194/esd-6-161-2015, https://doi.org/10.5194/esd-6-161-2015, 2015
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015, https://doi.org/10.5194/esd-6-83-2015, 2015
J. Pongratz, C. H. Reick, R. A. Houghton, and J. I. House
Earth Syst. Dynam., 5, 177–195, https://doi.org/10.5194/esd-5-177-2014, https://doi.org/10.5194/esd-5-177-2014, 2014
M. D. A. Rounsevell, A. Arneth, P. Alexander, D. G. Brown, N. de Noblet-Ducoudré, E. Ellis, J. Finnigan, K. Galvin, N. Grigg, I. Harman, J. Lennox, N. Magliocca, D. Parker, B. C. O'Neill, P. H. Verburg, and O. Young
Earth Syst. Dynam., 5, 117–137, https://doi.org/10.5194/esd-5-117-2014, https://doi.org/10.5194/esd-5-117-2014, 2014
M. Lindeskog, A. Arneth, A. Bondeau, K. Waha, J. Seaquist, S. Olin, and B. Smith
Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, https://doi.org/10.5194/esd-4-385-2013, 2013
Q. Zhang, A. J. Pitman, Y. P. Wang, Y. J. Dai, and P. J. Lawrence
Earth Syst. Dynam., 4, 333–345, https://doi.org/10.5194/esd-4-333-2013, https://doi.org/10.5194/esd-4-333-2013, 2013
T. Gasser and P. Ciais
Earth Syst. Dynam., 4, 171–186, https://doi.org/10.5194/esd-4-171-2013, https://doi.org/10.5194/esd-4-171-2013, 2013
G. Modica, M. Vizzari, M. Pollino, C. R. Fichera, P. Zoccali, and S. Di Fazio
Earth Syst. Dynam., 3, 263–279, https://doi.org/10.5194/esd-3-263-2012, https://doi.org/10.5194/esd-3-263-2012, 2012
A. J. Pitman, N. de Noblet-Ducoudré, F. B. Avila, L. V. Alexander, J.-P. Boisier, V. Brovkin, C. Delire, F. Cruz, M. G. Donat, V. Gayler, B. van den Hurk, C. Reick, and A. Voldoire
Earth Syst. Dynam., 3, 213–231, https://doi.org/10.5194/esd-3-213-2012, https://doi.org/10.5194/esd-3-213-2012, 2012
M. Cerreta and P. De Toro
Earth Syst. Dynam., 3, 157–171, https://doi.org/10.5194/esd-3-157-2012, https://doi.org/10.5194/esd-3-157-2012, 2012
M. P. McCarthy, J. Sanjay, B. B. B. Booth, K. Krishna Kumar, and R. A. Betts
Earth Syst. Dynam., 3, 87–96, https://doi.org/10.5194/esd-3-87-2012, https://doi.org/10.5194/esd-3-87-2012, 2012
Cited articles
Blanc, É.: Statistical emulators of maize, rice, soybean and wheat yields
from global gridded crop models, Agr. Forest Meteorol., 236, 145–161,
https://doi.org/10.1016/j.agrformet.2016.12.022, 2017. a
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial carbon
balance, Global Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007. a
Brown, M. E. and Kshirsagar, V.: Weather and international price shocks on
food prices in the developing world, Global Environ. Change, 35, 31–40,
https://doi.org/10.1016/j.gloenvcha.2015.08.003, 2015. a
Challinor, A. J. and Wheeler, T. R.: Crop yield reduction in the tropics under
climate change: Processes and uncertainties, Agr. Forest Meteorol., 148, 343–356,
https://doi.org/10.1016/j.agrformet.2007.09.015, 2008. a
Darwin, R. and Kennedy, D.: Economic effects of CO2 fertilization of crops:
transforming changes in yield into changes in supply, Environ. Model. Assess.,
5, 157–168, https://doi.org/10.1023/A:1019013712133, 2000. a
Deryng, D., Sacks, W. J., Barford, C. C., and Ramankutty, N.: Simulating the
effects of climate and agricultural management practices on global crop yield,
Global Biogeochem. Cy., 25, GB2006, https://doi.org/10.1029/2009GB003765, 2011. a
Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K.,
Best, N., Wilde, M., and Foster, I.: The parallel system for integrating impact
models and sectors (pSIMS), Environ. Model. Softw., 62, 509–516, https://doi.org/10.1016/j.envsoft.2014.04.008, 2014. a
Eyshi Rezaei, E., Gaiser, T., Siebert, S., Sultan, B., and Ewert, F.: Combined
impacts of climate and nutrient fertilization on yields of pearl millet in Niger,
Eur. J. Agron., 55, 77–88, https://doi.org/10.1016/j.eja.2014.02.001, 2014. a
FAO: FertiSTAT – Fertilizer Use Statistics, Food and Agriculture Organization
of the United Nations, Rome, 2007. a
Frieler, K., Meinshausen, M., Mengel, M., Braun, N., and Hare, W.: A Scaling
Approach to Probabilistic Assessment of Regional Climate Change, J. Climate,
25, 3117–3144, https://doi.org/10.1175/JCLI-D-11-00199.1, 2012. a, b
Frieler, K., Levermann, A., Elliott, J., Heinke, J., Arneth, A., Bierkens, M.
F. P., Ciais, P., Clark, D. B., Deryng, D., Döll, P., Falloon, P., Fekete,
B., Folberth, C., Friend, A. D., Gellhorn, C., Gosling, S. N., Haddeland, I.,
Khabarov, N., Lomas, M., Masaki, Y., Nishina, K., Neumann, K., Oki, T., Pavlick,
R., Ruane, A. C., Schmid, E., Schmitz, C., Stacke, T., Stehfest, E., Tang, Q.,
Wisser, D., Huber, V., Piontek, F., Warszawski, L., Schewe, J., Lotze-Campen,
H., and Schellnhuber, H. J.: A framework for the cross-sectoral integration of
multi-model impact projections: land use decisions under climate impacts
uncertainties, Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, 2015. a
Gilbert, C. L. and Morgan, C. W.: Food price volatility, Philos. T. Roy. Soc.
Lond. B, 365, 3023–3034, https://doi.org/10.1098/rstb.2010.0139, 2010. a
Giorgi, F.: A Simple Equation for Regional Climate Change and Associated
Uncertainty, J. Climate, 21, 1589–1604, https://doi.org/10.1175/2007JCLI1763.1, 2008. a
Golyandina, N. and Korobeynikov, A.: Basic Singular Spectrum Analysis and
Forecasting with R, R package version 0.14, Comput. Stat. Data Anal., 71, 934–954, https://doi.org/10.1016/j.csda.2013.04.009, 2014. a
Golyandina, N., Korobeynikov, A., Shlemov, A., and Usevich, K.: Multivariate
and 2D Extensions of Singular Spectrum Analysis with the Rssa Package, J. Stat.
Softw., 67, 1–78, https://doi.org/10.18637/jss.v067.i02, 2015. a
Heinke, J., Ostberg, S., Schaphoff, S., Frieler, K., Müller, C., Gerten,
D., Meinshausen, M., and Lucht, W.: A new climate dataset for systematic
assessments of climate change impacts as a function of global warming, Geosci.
Model Dev., 6, 1689–1703, https://doi.org/10.5194/gmd-6-1689-2013, 2013. a
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A
trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam.,
4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a
IFA: Fertilizer Use by Crop, 5th edn, International Fertilizer Industry
Association (IFA), International Fertilizer Development Center (IFDC),
International Potash Institute (IPI), Potash and Phosphate Institute (PPI),
and Food and Agriculture Organization (FAO), Rome, 2002. a
IPCC-TGICA: General Guidelines on the Use of Scenario Data for Climate Impact
and Adaptation Assessment, Tech. rep., prepared by T. R. Carter on behalf of
the Intergovernmental Panel on Climate Change, Task Group on Data and
Scenario Support for Impact and Climate Assessment, 2007. a
Jaggard, K. W., Qi, A., and Ober, E. S.: Possible changes to arable crop yields
by 2050, Philos. T. Roy. Soc. Lon. B, 365, 2835–2851, https://doi.org/10.1098/rstb.2010.0153, 2010. a
Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L.,
Wilkens, P., Singh, U., Gijsman, A., and Ritchie, J.: The DSSAT cropping system
model, Eur. J. Agron., 18, 235–265, https://doi.org/10.1016/S1161-0301(02)00107-7, 2003. a
Kimball, B. A.: Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis
of 430 Prior Observations, Agron. J., 75, 779–788, https://doi.org/10.2134/agronj1983.00021962007500050014x, 1983. a
Korobeynikov, A.: Computation- and space-efficient implementation of SSA, Stat.
R package version 0.14, Stat. Interface, 3, 357–368, https://doi.org/10.4310/SII.2010.v3.n3.a9, 2010. a
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and
Smith, B.: Implications of accounting for land use in simulations of ecosystem
carbon cycling in Africa, Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, 2013. a
Liu, J.: A GIS-based tool for modelling large-scale crop-water relations,
Environ. Model. Softw., 24, 411–422, https://doi.org/10.1016/j.envsoft.2008.08.004, 2009. a
Liu, J., Williams, J. R., Zehnder, A. J., and Yang, H.: GEPIC – modelling
wheat yield and crop water productivity with high resolution on a global scale,
Agricult. Syst., 94, 478–493, https://doi.org/10.1016/j.agsy.2006.11.019, 2007. a
Lobell, D. B., Sibley, A., and Ivan Ortiz-Monasterio, J.: Extreme heat effects
on wheat senescence in India, Nat. Clim. Change, 2, 186–189, https://doi.org/10.1038/nclimate1356, 2012. a, b
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate
projections from the 5 CMIP5 GCMs used in ISI-MIP?, Climate Services, 1, 24–29,
https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P.: The RCP greenhouse gas
concentrations and their extensions from 1765 to 2300, Climatic Change, 109,
213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011. a
Mendelsohn, R., Basist, A., Dinar, A., Kurukulasuriya, P., and Williams, C.:
What explains agricultural performance: climate normals or climate variance?,
Climatic Change, 81, 85–99, https://doi.org/10.1007/s10584-006-9186-3, 2007. a
Mitchell, T. D.: Pattern scaling: an examination of the accuracy of the technique
for describing future climates, Climatic Change, 60, 217–242, https://doi.org/10.1023/A:1026035305597, 2003. a
Müller, C. and Robertson, R. D.: Projecting future crop productivity for
global economic modeling, Agricult. Econ., 45, 37–50, https://doi.org/10.1111/agec.12088, 2014. a, b
Müller, C., Elliott, J., and Levermann, A.: Fertilizing hidden hunger, Nat.
Clim. Change, 4, 540–541, https://doi.org/10.1038/nclimate2290, 2014. a
Nelson, G. C., van der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K.,
Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Lotze-Campen, H., von Lampe,
M., Mason d'Croz, D., van Meijl, H., Müller, C., Reilly, J., Robertson, R.,
Sands, R. D., Schmitz, C., Tabeau, A., Takahashi, K., Valin, H., and Willenbockel,
D.: Agriculture and climate change in global scenarios: why don't the models agree,
Agricult. Econ., 45, 85–101, https://doi.org/10.1111/agec.12091, 2014. a, b
Ostberg, S., Lucht, W., Schaphoff, S., and Gerten, D.: Critical impacts of
global warming on land ecosystems, Earth Syst. Dynam., 4, 347–357, https://doi.org/10.5194/esd-4-347-2013, 2013. a
Ostberg, S., Schewe, J., and Frieler, K.: Fast emulator of changes in crop yields at different levels of global
warming, https://doi.org/10.5281/zenodo.1194045, 2018. a, b
Oyebamiji, O. K., Edwards, N. R., Holden, P. B., Garthwaite, P. H., Schaphoff,
S., and Gerten, D.: Emulating global climate change impacts on crop yields,
Stat. Model., 15, 499–525, https://doi.org/10.1177/1471082X14568248, 2015. a
Parry, M., Rosenzweig, C., and Livermore, M.: Climate change, global food supply
and risk of hunger, Philos. T. Roy. Soc. Lond. B, 360, 2125–2138, https://doi.org/10.1098/rstb.2005.1751, 2005. a, b
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X.,
Centeno, G. S., Khush, G. S., and Cassman, K. G.: Rice yields decline with
higher night temperature from global warming, P. Natl. Acad. Sci. USA, 101,
9971–9975, https://doi.org/10.1073/pnas.0403720101, 2004. a
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem. Cy.,
24, GB1011, https://doi.org/10.1029/2008GB003435, 2010. a, b
Ramankutty, N., Foley, J. A., Norman, J., and McSweeney, K.: The global
distribution of cultivable lands: current patterns and sensitivity to possible
climate change, Global Ecol. Biogeogr., 11, 377–392, https://doi.org/10.1046/j.1466-822x.2002.00294.x, 2002. a, b
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth,
A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek,
F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones, J. W.: Assessing
agricultural risks of climate change in the 21st century in a global gridded
crop model intercomparison, P. Natl. Acad. Sci. USA, 111, 3268–3273,
https://doi.org/10.1073/pnas.1222463110, 2014. a, b, c, d, e, f
Santer, B. D., Wigley, T. M., Schlesinger, M. E., and Mitchell, J. F.:
Developing climate scenarios from equilibrium GCM results, Report,
Max-Planck-Institut für Meteorologie, Hamburg, available at:
https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/Report_47.pdf
(last access: 8 May 2018), report no. 47, 1–14, 1990. a
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B.,
Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., Gosling,
S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T.,
Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F.,
Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under
climate change, P. Natl. Acad. Sci., 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014. a
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate severe
damages to U.S. crop yields under climate change, P. Natl. Acad. Sci. USA, 106,
15594–15598, https://doi.org/10.1073/pnas.0906865106, 2009. a
Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P.,
Rounsevell, M., Woods, J., Stehfest, E., and Bellarby, J.: Competition for land,
Philos. T. Roy. Soc. Lond. B, 365, 2941–2957, https://doi.org/10.1098/rstb.2010.0127, 2010. a
Solomon, S., Plattner, G.-K., Knutti, R., and Friedlingstein, P.: Irreversible
climate change due to carbon dioxide emissions, P. Natl. Acad. Sci. USA, 106,
1704–1709, https://doi.org/10.1073/pnas.0812721106, 2009. a
Stehfest, E., van Vuuren, D., Bouwman, L., and Kram, T.: Integrated assessment
of global environmental change with IMAGE 3.0: Model description and policy
applications, Netherlands Environmental Assessment Agency (PBL), The Hague, 2014. a
Tadesse, G., Algieri, B., Kalkuhl, M., and von Braun, J.: Drivers and triggers
of international food price spikes and volatility, Food Policy, 47, 117–128,
https://doi.org/10.1016/j.foodpol.2013.08.014, 2014.
a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
van der Velde, M., Tubiello, F. N., Vrieling, A., and Bouraoui, F.: Impacts of
extreme weather on wheat and maize in France: evaluating regional crop simulations
against observed data, Climatic Change, 113, 751–765, https://doi.org/10.1007/s10584-011-0368-2, 2012. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen,
M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration
pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Waha, K., van Bussel, L. G. J., Müller, C., and Bondeau, A.: Climate-driven
simulation of global crop sowing dates, Global Ecol. Biogeogr., 21, 247–259,
https://doi.org/10.1111/j.1466-8238.2011.00678.x, 2012. a
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe,
J.: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project
framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014. a, b
Short summary
It has been shown that regional temperature and precipitation changes in future climate change scenarios often scale quasi-linearly with global mean temperature change (∆GMT). We show that an important consequence of these physical climate changes, namely changes in agricultural crop yields, can also be described in terms of ∆GMT to a large extent. This makes it possible to efficiently estimate future crop yield changes for different climate change scenarios without need for complex models.
It has been shown that regional temperature and precipitation changes in future climate change...
Altmetrics
Final-revised paper
Preprint