Articles | Volume 6, issue 1
Earth Syst. Dynam., 6, 175–194, 2015
https://doi.org/10.5194/esd-6-175-2015
Earth Syst. Dynam., 6, 175–194, 2015
https://doi.org/10.5194/esd-6-175-2015

Research article 15 Apr 2015

Research article | 15 Apr 2015

Local sources of global climate forcing from different categories of land use activities

D. S. Ward1,2 and N. M. Mahowald2 D. S. Ward and N. M. Mahowald
  • 1Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA
  • 2Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA

Abstract. Identifying and quantifying the sources of climate impacts from land use and land cover change (LULCC) is necessary to optimize policies regarding LULCC for climate change mitigation. These climate impacts are typically defined relative to emissions of CO2, or sometimes emissions of other long-lived greenhouse gases. Here we use previously published estimates of the radiative forcing (RF) of LULCC that include the short-lived forcing agents O3 and aerosols, in addition to long-lived greenhouse gases and land albedo change, for six projections of LULCC as a metric for quantifying climate impacts. The LULCC RF is attributed to three categories of LULCC activities: direct modifications to land cover, agriculture, and wildfire response, and sources of the forcing are ascribed to individual grid points for each sector. Results for the year 2010 show substantial positive forcings from the direct modifications and agriculture sectors, particularly from south and southeast Asia, and a smaller magnitude negative forcing response from wildfires. The spatial distribution of future sources of LULCC RF is highly scenario-dependent, but we show that future forest area change can be used as a predictor of the future RF from direct modification activities, especially in the tropics, suggesting that deforestation-prevention policies that value land based on its C-content may be particularly effective at mitigating climate forcing originating in the tropics from this sector. However, the response of wildfire RF to tropical land cover changes is not as easily scalable and yet imposes a non-trivial feedback onto the total LULCC RF.

Download
Short summary
The radiative forcing of land use and land cover change activities has recently been computed for a set of forcing agents including long-lived greenhouse gases, short-lived agents (ozone and aerosols), and land surface albedo change. Here we address where the global forcing comes from and what land use activities, such as deforestation or agriculture, contribute the most forcing. We find that changes in forest and crop area can be used to predict the land use radiative forcing in some regions.
Altmetrics
Final-revised paper
Preprint