Articles | Volume 17, issue 1
https://doi.org/10.5194/esd-17-107-2026
https://doi.org/10.5194/esd-17-107-2026
Research article
 | 
16 Jan 2026
Research article |  | 16 Jan 2026

A theoretical framework to understand sources of error in Earth System Model emulation

Christopher B. Womack, Glenn Flierl, Shahine Bouabid, Andre N. Souza, Paolo Giani, Sebastian D. Eastham, and Noelle E. Selin

Related authors

Zero-dimensional contrail models could underpredict lifetime optical depth
Caleb Akhtar Martínez, Sebastian D. Eastham, and Jerome P. Jarrett
Atmos. Chem. Phys., 25, 12875–12891, https://doi.org/10.5194/acp-25-12875-2025,https://doi.org/10.5194/acp-25-12875-2025, 2025
Short summary
Identifying regions that can constrain anthropogenic Hg emissions uncertainties through modelling
Charikleia Gournia, Noelle E. Selin, and Aryeh Feinberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4018,https://doi.org/10.5194/egusphere-2025-4018, 2025
Short summary
Climate forcing due to future ozone changes: an intercomparison of metrics and methods
William J. Collins, Fiona M. O'Connor, Rachael E. Byrom, Øivind Hodnebrog, Patrick Jöckel, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
Atmos. Chem. Phys., 25, 9031–9060, https://doi.org/10.5194/acp-25-9031-2025,https://doi.org/10.5194/acp-25-9031-2025, 2025
Short summary
An EOF-Based Emulator of Means and Covariances of Monthly Climate Fields
Gosha Geogdzhayev, Andre N. Souza, Glenn R. Flierl, and Raffaele Ferrari
EGUsphere, https://doi.org/10.5194/egusphere-2025-3768,https://doi.org/10.5194/egusphere-2025-3768, 2025
Short summary
A Geographically Weighted Gaussian Process Regression Emulator of the GCHP 13.0.0 Global Air Quality Model
Anthony Y. H. Wong, Sebastian D. Eastham, Erwan Monier, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2663,https://doi.org/10.5194/egusphere-2025-2663, 2025
Short summary

Cited articles

Addison, H., Kendon, E., Ravuri, S., Aitchison, L., and Watson, P. A.: Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model, arXiv [preprint], arXiv:2407.14158, https://doi.org/10.48550/arXiv.2407.14158, 2024. a
Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-Varying Climate Sensitivity from Regional Feedbacks, J. Climate, 26, 4518–4534, https://doi.org/10.1175/JCLI-D-12-00544.1, 2013. a, b
Bassetti, S., Hutchinson, B., Tebaldi, C., and Kravitz, B.: DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models With 3D Diffusion Models, J. Adv. Model. Earth Sy., 16, e2023MS004194, https://doi.org/10.1029/2023MS004194, 2024. a, b, c
Beusch, L., Gudmundsson, L., and Seneviratne, S. I.: Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land, Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, 2020. a, b
Blanusa, M. L., López-Zurita, C. J., and Rasp, S.: Internal variability plays a dominant role in global climate projections of temperature and precipitation extremes, Clim. Dynam., 61, 1931–1945, https://doi.org/10.1007/s00382-023-06664-3, 2023. a
Download
Short summary
Climate emulators allow for rapid projections without the computational costs associated with full-scale climate models. Here, we outline a framework to compare a variety of emulation techniques both theoretically and practically through a series of stress tests that expose common sources of emulator error. Our results help clarify which emulators are best suited for different tasks and show how future climate scenarios can be used to support emulator design.
Share
Altmetrics
Final-revised paper
Preprint