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Abstract. Full-scale Earth System Models (ESMs) are too computationally expensive to keep pace with the
growing demand for climate projections across a large range of emissions pathways. Climate emulators, reduced-
order models that reproduce the output of full-scale models, are poised to fill this niche. However, the large num-
ber of emulation techniques available and lack of a comprehensive theoretical basis to understand their relative
strengths and weaknesses compromise fundamental methodological comparisons. Here, we present a theoretical
framework that connects disparate emulation techniques and use it to understand potential sources of emulator
error focusing on memory effects, hidden variables, system noise, and nonlinearities. This framework includes
popular emulation techniques such as pattern scaling and response functions, relating them to less commonly
used methods, such as Dynamic Mode Decomposition and the Fluctuation Dissipation Theorem (FDT). To sup-
port our theoretical contributions, we provide practical implementation guidance for each technique. Using ped-
agogical examples including idealized box models and a modified Lorenz 63 model, we illustrate the expected
errors from each emulation technique considered. We find that response function-based emulators outperform
other techniques, particularly pattern scaling, across all scenarios tested. Potential benefits and trade-offs from
incorporating statistical mechanics in climate emulation through the use of the FDT are discussed, along with
the importance of designing future scenarios for ESMs with emulation in mind. We argue that large-ensemble
experiments utilizing the FDT could benefit climate modeling and impacts communities. We conclude by dis-
cussing optimal use cases for each emulator, along with implications for ESMs based on our pedagogical model
results.

1 Introduction

Earth-System Models (ESMs) are our most comprehensive
tool to simulate the climate system, yet their high compu-
tational cost limits the range and number of scenarios that
can be investigated (Flato, 2011; Miiller et al., 2018). Grow-
ing demand for high-quality climate projections which dif-
fer from the scenarios considered within the Coupled Model

Intercomparison Project (CMIP) drives a need for computa-
tionally efficient alternatives (Eyring et al., 2016). Climate
emulators — reduced-order models that reproduce the outputs
of full-scale climate models — have seen a surge in popular-
ity as they can be many orders of magnitude faster than the
parent models (Sudakow et al., 2022; Tebaldi et al., 2025).
Their low computational costs also make them an appealing
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tool to disseminate climate information to audiences beyond
the climate science community.

Chaotic sensitivity renders prediction of the climate state
infeasible beyond short time horizons (Lorenz, 2006, 1963).
Climate emulators must therefore target the statistics of cli-
mate variables, such as means, variances, or higher moments,
rather than simulating chaotic dynamics (Beusch et al., 2020;
Geogdzhayev et al., 2025; Wang et al., 2025). Many emula-
tion techniques exist to estimate the mean state and/or prob-
ability distribution of climate variables (Meinshausen et al.,
2011; Castruccio et al., 2014; Herger et al., 2015; Tebaldi
and Knutti, 2018; Leach et al., 2021; Watson-Parris et al.,
2022; Addison et al., 2024; Bassetti et al., 2024; Bouabid
et al., 2024), and in this work we explore methods that emu-
late the mean state of the system. In a recent review, Tebaldi
et al. (2025) distinguished between five main categories of
climate emulators, including linear pattern scaling, statisti-
cal approaches, and machine learning algorithms. Following
their categorization, we focus on linear pattern scaling and its
immediate extensions along with dynamical system/impulse
response theory emulators.

In the climate context, the most commonly used emula-
tion technique is pattern scaling (Santer et al., 1990), a sim-
ple linear regression of local climate variables (e.g., temper-
ature or precipitation anomaly) on the global mean tempera-
ture anomaly. Pattern scaling has been used and studied ex-
tensively since its development (Mitchell, 2003; Tebaldi and
Arblaster, 2014; Wells et al., 2023; Giani et al., 2024), with
variations that capture seasonal anomalies, different mixes of
greenhouse-gases, and spatially heterogeneous forcings such
as aerosols (Schlesinger et al., 2000; Herger et al., 2015;
Mathison et al., 2025). This approach produces accurate pro-
jections assuming exponential and fixed-pattern forcing, lin-
ear feedbacks, and linear and time-independent dynamics,
criteria that are roughly satisfied in a number of CMIP exper-
iments (Giani et al., 2024). Memory effects in overshoot sce-
narios (forcing history, rather than only instantaneous forc-
ing, affecting a future state) violate these assumptions, caus-
ing this approach to break down for many decision-relevant
scenarios.

Impulse response methods, commonly referred to as ei-
ther response or Green’s functions, fill this memory effect
gap by encoding forcing history into the emulator, rather than
relying only on the instantaneous forcing. These techniques
have been studied thoroughly in the contexts of dynamical
systems and climate science (Joos and Bruno, 1996; Hassel-
mann et al., 1997; Lucarini et al., 2017; Orbe et al., 2018;
Freese et al., 2024; Giorgini et al., 2024), and are an ac-
tive area of research (Winkler and Sierra, 2025). Response
functions are popular due to their ease of interpretability and
improvement in skill over pattern scaling in capturing real-
istic dynamics (Womack et al., 2025). Pure linear response
functions cannot account for nonlinear effects, though hy-
brid schemes that incorporate machine learning (ML) may
help resolve this issue (Winkler and Sierra, 2025).
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Pattern scaling and linear response functions are preva-
lent in climate emulation literature, yet these approaches are
only two methods among a broad spectrum of emulators,
with each technique offering trade-offs in terms of com-
plexity, data requirements, and interpretability. For exam-
ple, quasi-equilibrium emulation is closely related to pattern
scaling, though only a handful of studies explore the util-
ity of this principal beyond the traditional choice of global
mean temperature as emulator input (Huntingford and Cox,
2000; Cao et al., 2015). Other techniques, such as Dynamic
Mode Decomposition (DMD) and its variants, are generally
not classified as emulators despite their potential to identify
and predict modes of variability in the climate system (Kutz
etal., 2016; Gottwald and Gugole, 2020; Navarra et al., 2021;
Mankovich et al., 2025).

We consider climate emulators as defined in Tebaldi et al.
(2025), excluding Simple Climate Models (SCMs) and Earth
system Models of Intermediate Complexity (EMICs), though
they share similarities with emulators. We also do not exam-
ine ML emulators such as FourCastNet and Neural GCM —
while these techniques are promising for weather prediction,
they currently lack the stability required for reliable climate
prediction (Pathak et al., 2022; Kochkov et al., 2024). Sev-
eral studies have employed ML techniques to instead target
the statistics of the climate, rather than weather (Lewis et al.,
2017; Bassetti et al., 2024; Wang et al., 2025; Bouabid et al.,
2025), but these works focus on emulator implementation
rather than theoretical analysis.

In this work, we develop a framework connecting a spec-
trum of emulators through the Koopman and Fokker-Planck
operators, which govern the evolution of stochastic pro-
cesses. In doing so, we identify a gap in the Tebaldi et al.
(2025) emulator typology: operator-based emulators, an area
largely unexplored in existing climate emulator literature.
While previous work has connected operator frameworks
with the Fluctuation Dissipation Theorem and thus, linear
response theory (Cooper and Haynes, 2011; Lucarini et al.,
2017; Lembo et al., 2020; Zagli et al., 2024; Giorgini et al.,
2025b), our contribution explicitly demonstrates its utility
in the context of climate emulation. Section 2 first presents
our theoretical framework, highlighting that the goal of many
emulation techniques is to simplify complex climate dynam-
ics into a linear set of modes associated with the Fokker-
Planck and Koopman operators. We then apply this frame-
work to identify potential sources of error within six emula-
tion techniques, analyzing them from both a theoretical and
practical perspective (Sect. 2.3). In Sect. 3, we introduce a se-
ries of experiments using simplified climate models and forc-
ing scenarios designed to stress test and evaluate each emu-
lator; these experiments include box models and a modified
version of the Lorenz 63 system. Section 4 contains the re-
sults of these simplified climate model experiments, showing
that response functions consistently outperform other emula-
tors across potential high-error scenarios. We conclude by
discussing optimal use cases for each emulator, along with
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implications for ESMs based on our pedagogical model re-
sults (Sect. 5).

2 Theoretical framework for climate emulation

In this section, we outline a theoretical framework for cli-
mate emulation based on the Koopman and Fokker-Planck
operators. Section 2.1 introduces our emulation target, a gen-
eral, stochastic system, outlining potential sources of error
when emulating this system. Section 2.2 then formalizes two
complementary emulation strategies: emulating the full prob-
ability distribution, or emulating a collection of statistical
moments (e.g., mean, variance). We conclude this section
by connecting theoretical and practical (i.e., implementation)
details for the six emulators of interest (Sect. 2.3). See Fig. 2
for a conceptual roadmap of emulator theory and Table 1 for
an overview of selected methods.

Throughout this section, we denote scalars with lowercase
characters, vectors with lowercase, boldface italic characters,
matrices with uppercase, boldface characters, and operators
with script characters (e.g., A/ or £). We use x and n, to de-
note the spatial coordinate and its dimensionality, along with
t and n; to denote the temporal coordinate and its dimension-
ality. Our examples focus on climate anomalies relative to a
background state, though these techniques are applicable to
general chaotic dynamical systems.

2.1 Problem setup

A full-scale climate model is a deterministic, albeit chaotic,
system. This chaos results in extreme sensitivity to initial
conditions, requiring emulation of the system’s statistics,
rather than its dynamics (Lorenz, 1963). To understand the
statistics of the system and how they may change over time,
we follow Hasselmann (1976) in modeling the evolution of
a single climate variable using a stochastic differential equa-
tion (SDE) (Fig. 2, box 1). We assume time-scale separa-
tion between slow climate processes (e.g., ocean, cryosphere,
land vegetation) and other, faster sources of variability.

In this framework, the climate is regarded as the statistical
mean of a process that appears stochastic in individual re-
alizations. We treat variations occurring either on timescales
shorter than climate change (such as short-term weather fluc-
tuations and interannual variability) or in different realiza-
tions as stationary, stochastic noise. This allows us to param-
eterize their influence on the statistics of the chaotic system:

%_';) = N(w)+ F(1) + ££(1), M

where w is the climate variable (or set of variables) of inter-
est (e.g., temperature), F is an external forcing (e.g., CO»),
N is the operator governing the evolution of that variable
(under slow climate processes), £ is a white noise term (ag-
gregated fast effects, including weather and interannual vari-
ability), and ¢ is the noise standard deviation. We consider
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variables of interest to be anomalies relative to some base
state (e.g., temperature anomaly with respect to preindustrial
conditions). N may involve both linear and nonlinear terms
in one or several fields, and we cannot directly represent this
operator; this parameterization aggregates the effects of pro-
cesses such as heat and momentum transfers. The operator
may also be influenced by variables we observe as well as un-
observed hidden variables (e.g., aerosol forcing in a pattern
scaling emulator with only global mean temperature as an
input). The noise standard deviation can also be state depen-
dent, though we treat it as independent for this exploration.

Climate emulators approximate Eq. (1), either implicitly
(pattern scaling) or explicitly (Dynamic Mode Decomposi-
tion), rendering them vulnerable to several potential sources
of error. Figure 1 provides an overview of the sources of
error we consider across a range of scenarios: Errors can
enter from the forcing if an emulator assumes only the in-
stantaneous forcing is significant and not the forcing history
(Fig. 1a — memory effects in an overshoot scenario). The
presence of hidden variables can lead to errors in some tech-
niques (Fig. 1b — localized aerosol effects when assuming
well-mixed forcings), while other techniques are sensitive to
noise (Fig. 1c — overfitting on internal variability). Finally,
any linear emulation technique will break down in the pres-
ence of nonlinearities (Fig. 1d — ice-albedo feedbacks).

2.2 Operator framework for emulators

Our operator framework simplifies complex, possibly non-
linear climate dynamics into a linear set of modes with as-
sociated decay rates. We use the term operator to refer to an
update rule that advances the system one timestep for a quan-
tity of interest. An emulator attempts to approximate these
modes, which are physically interpretable; for temperature,
the decay rates correspond to heat-uptake timescales.

Table 1 summarizes emulation techniques discussed in
this section, providing a short conceptual description of each
method along with their key assumptions. We focus on linear
emulation techniques that target the mean state of a climate
variable: pattern scaling, the Fluctuation Dissipation The-
orem (FDT), deconvolution, modal fitting, Dynamic Mode
Decomposition (DMD), and Extended DMD (EDMD). The
FDT, deconvolution, and modal fitting emulators are all re-
sponse function-based emulators, while EDMD and DMD
are operator-based emulators.

Emulating a probability distribution. Our governing sys-
tem, Eq. (1), simulates a variable of interest, w, forward in
time under a stochastic forcing. The trajectory of the time
evolution of w is characterized by the probability distribu-
tion, p(w,t). We therefore focus our efforts on emulating
p(w,t) via the Fokker-Planck operator. This is a mathemat-
ical tool to evolve the probability distribution of a stochastic
system forward in time. As this operator is linear, emulating
it is equivalent to approximating a series of eigenvalues and
eigenfunctions.

Earth Syst. Dynam., 17, 107-139, 2026
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Scenario ESM Pattern Emulator Error Source of Error
SSP119 “;% | Memory
/“ Effects
/ \ \N i\ j \
(b) .
Hidden
SSP370 Variables
(e)
Internal
SSPS85 Variability
d a I
SSP585 Nonlinearities

Figure 1. Potential sources of emulator error by scenario. Emulator errors shown here are meant for illustrative purposes only; we introduce
experiments which reproduce these errors in simplified climate models (e.g., box models) in Sect. 3. (a) Pattern scaling emulator trained on
historical and SSP585, tested against SSP119 in 2100; error over northern North America results from memory effects. (b) Pattern scaling
emulator trained on historical, tested against SSP370 in 2050; error over India and SE Asia results from hidden variables (aerosols not
contained in training data). (¢) High-order polynomial pattern scaling emulator trained on historical, tested against SSP585 in 2020; error
results from overfitting on internal variability. (d) Pattern scaling emulator trained on historical, tested against SSP585 in 2100; error results
from nonlinear feedbacks in the Arctic. All ScenarioMIP data shown are taken from the MPI Grand Ensemble (O’Neill et al., 2016; Maher

et al., 2019).

As shown by Hasselmann (1976), the time evolution of
p(w,t) is given by the Fokker-Planck equation correspond-
ing to the governing SDE

0 0
—pw,t)=—— DN F(t
5 P ) = === [p(w, HW (W) + F1)]

82
+ Da— p(w, 1), 2

where D is a diffusion coefficient set by the noise term,
D = ¢?/2. The Fokker-Planck equation describes how the
probability density evolves in time and can be viewed as an
advection-diffusion process.

Advection, which shifts the mean of p(w,t), occurs due
to the deterministic action of the governing operator and the
external forcing. Because the advective term acts on the flux,
it both shifts the mean and reshapes the density. Diffusion,
which increases the variance in p(w,1), is driven by sys-
tem noise. Integrating Eq. (2) forward diffuses the proba-
bility distribution, initially increasing the variance of w un-
til balanced by the mean-reverting drift (N (w) + F(2)). It is
common practice to write a Fokker-Planck equation directly
from an SDE, as there exists a general relationship between
any SDE and its corresponding Fokker-Planck equation; the
full general derivation can be found in Denisov et al. (2009).

Importantly, the right hand side of Eq. (2) is linear in the
derivatives of w, allowing us to rewrite it in terms of the lin-
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ear Fokker-Planck operator, F,
0 0

F)= o [D—(-) —(OW(w)+ F(t))} , 3
w ow

where the notation F(-) means the Fokker-Planck operator
is acting on some arbitrary variable (in our case, p(w, 1) in
Eq. 2). The Fokker-Planck operator (Fig. 2, box 3a) gives us
a linear method to represent the time evolution of the prob-
ability distribution. Linearity additionally allows us to de-
compose F into eigenvalues and eigenfunctions (continuous
eigenvectors). These are the target of our emulator, and our
emulator skill is directly proportional to how well it can ap-
proximate those eigenvalues and eigenfunctions, along with
our estimate of p(w, 0). This eigendecomposition is given by

Ffr=ArfF, 4

where A r denotes an eigenvalue and fr denotes an eigen-
function of the Fokker-Planck operator. The collection of
Lr and fr fully characterizes the system’s behavior. Our
stochastic system evolves as a linear combination of prob-
ability distributions, fr, each decaying at rate A r; the real
part of the eigenvalues controls the decay rate, while any
imaginary components result in oscillations over time. In the
advection-diffusion analogy, each eigenfunction is a proba-
bility parcel that is carried and spread by the flow. The imag-
inary parts of the eigenvalues transport this parcel (shifting
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Figure 2. Conceptual flowchart for building an emulator through the joint Fokker-Planck/Koopman operator framework. Pop-outs show
specific emulation techniques, while the shaded color indicates which concept a class of emulators relates to. Dashed arrows indicate con-
ceptual/theoretical connections and solid arrows indicate a direct pathway. The overall process is as follows: (1) Select a climate variable
of interest, w, such as temperature, here parameterized as the output of a stochastic differential equation. (2) Choose an emulation target,
either the full probability distribution (option 1; 2a, 3a, 3c, 4a) or a statistical quantity such as the mean or variance (option 2; 2b, 3b, 3d, 4b).
(3) Construct an emulator by selecting an approximation for either the Fokker-Planck or Koopman operator, including their response function
representations; these options are connected through duality and are directly linked to linear response theory. (4) Given a new scenario of
interest, emulate either the probability distribution or statistical quantity. A summary of emulation techniques explored in this work (right

side of this figure) can be found in Table 1.

the mean) while the real parts act like an effective diffusivity
(increasing the variance). This tells us which physical behav-
iors dominate and on what timescales they matter for climate
prediction.

Unfortunately, in most cases we cannot obtain an explicit
representation of the Fokker-Planck operator due to A be-
ing nonlinear; see Appendix C for an analytic example of
when this is possible. Because it acts on functions, the oper-
ator is infinite dimensional with infinitely many eigenpairs.
This poses an immediate issue since computers have a finite
amount of memory. Finite dimensional matrix approxima-
tions of the Fokker-Planck operator have been studied (of-
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ten framed through the more general Perron-Frobenius op-
erator) (Klus et al., 2016, 2018; Kaiser et al., 2019; Souza,
2024b, a; Souza and Silvestri, 2024), but require a large
amount of data to reliably estimate the operator. For climate
emulation this poses an additional issue, as generating large
enough ensembles to resolve p(w, t) is prohibitively expen-
sive. Because of these difficulties, little work exists studying
the Fokker-Planck/Perron-Frobenius operator in the climate
context (Navarra et al., 2021), though methods that recon-
struct the full probability distribution of a climate variable
using statistical methods (e.g., diffusion models and Gaus-

Earth Syst. Dynam., 17, 107-139, 2026
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Table 1. Summary of emulation techniques discussed in this work including a short description and their key assumptions; a conceptual
overview of these methods can be found in Fig. 2. Fluctuation Dissipation Theorem assumptions are shared with deconvolution and modal
fitting emulation techniques. All techniques except the Fluctuation Dissipation Theorem additionally assume no hidden variables.

Technique Short Description Key Assumptions Pros Cons
Method I: Pattern Time-invariant pattern Climate is always near Computationally Structurally biased
Scaling (Pattern based on global mean equilibrium; response efficient with irreducible errors

Scaling and its
Immediate Extensions)

temperature

is instantaneous; fixed
spatial pattern

Method II: Fluctuation

Response functions

Perturbations are small;

Gives interpretable

Requires nonstandard,

Dissipation Theorem derived through data come from linear physical response computationally
(Dynamical perturbation ensemble response regime expensive scenarios
System/Impulse experiments

Response Theory)

Method III: Response functions Quasi-equilibrium Applicable to any Sensitive to noise, can
Deconvolution solved for from any initial condition; scenario give non-physical
(Dynamical general experiment influence of noise is responses
System/Impulse small

Response Theory)

Method IV: Modal Response functions fit Response is a decaying ~ Applicable to any Requires initial guess,
Fitting (Dynamical from any general exponential; few scenario can give non-physical

System/Impulse
Response Theory)

experiment

significant modes

responses

Method V: Dynamic
Mode Decomposition
(DMD)
(Operator-based
Emulation)

Approximating system
dynamics with a linear
operator

Dynamics are approx.
linear; training data
capture relevant
dynamics

Gives interpretable
spatiotemporal
information

Strong assumption of
linearity

Method VI: Extended
DMD (Operator-based
Emulation)

Approximating system
dynamics with
nonlinear basis
functions

Basis functions span
Koopman operator;
dynamics are approx.
linear in new basis

Can theoretically
reproduce any system
behavior

Requires selection of
basis functions

sian processes) implicitly represent it (Bassetti et al., 2024;
Bouabid et al., 2024; Wang et al., 2025).

Emulating a statistical quantity. In practice, it is often eas-
ier to emulate statistical quantities, such as the mean or vari-
ance of a climate variable. Many common emulation tech-
niques (e.g., pattern scaling and response functions) target
only the mean of a single variable (Herger et al., 2015; Wells
et al., 2023; Freese et al., 2024), though other work extends
this to approximate second-order moments (Beusch et al.,
2020; Wang et al., 2025). Relating these techniques requires
the use of Koopman operator theory (Fig. 2, box 3b), a linear
framework for propagating statistical quantities (usually re-
ferred to in the Koopman literature as statistical observables)
forward in time (Mezi¢, 2013; Otto and Rowley, 2021). Em-
ulator studies rarely link their methods to Koopman theory,
while literature that explicitly connects to the theory does not
use the same emulator terminology (Slawinska et al., 2017;
Navarra et al., 2021), though they accomplish similar predic-
tion tasks. The Koopman operator allows for an exact repre-
sentation of nonlinear dynamics using a linear operator, mak-
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ing it appealing when studying complex systems. We show
how it can be used to emulate climate variables, simplify-
ing nonlinear processes to the linear problem of emulating
physically-interpretable eigenvalues and eigenfunctions.

To derive the Koopman operator, we first define a general
statistical quantity, g(w), whose expectation, (-), is given by

(g(w)) = /g(w>p(w, t)dw, )

We then take the time derivative of this expression, moving
the partial derivative inside the integral to act only on p since
g(w) is independent of time. This allows us to substitute the
resulting expression into the right hand side of Eq. (2). Inte-
grating this by parts twice gives

9 ={[N F(t 9 D o2 6
E(g(w))—<[ (w) + ()]@g(w)>+ <Wg(w)>, (6)

where the diffusivity, D = g2 /2, is identical to the Fokker-
Planck case. This form allows us to define the Koopman op-
erator, /C. It is linear in its derivatives of w, and we rewrite it
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as

- 3%
K6 =N 22 4 p20, @)
ow Jw
where the notation /C(-) means the Koopman operator is act-
ing on some arbitrary variable (g(w) in Eq. 7). Substituting
this into Eq. (6) gives

0 0
g(g(wD = (Kg(w)) + F(t)<a—g(w)>, ®)
w

This expression applies to any arbitrary statistical quantity
(of which there are infinitely many), thus it can be used to
integrate every statistical quantity forward in time; it is an al-
ternate way to represent the complete probability distribution
by representing each individual statistic. A useful choice is to
select g(w) = w, giving

0

3wl = (Kw) + F(1), €))

which we will refer back to later.

Analogously to the Fokker-Planck operator, the Koopman
operator provides a linear method to represent the time evo-
lution of our entire collection of statistical quantities. As be-
fore, we can perform an eigendecomposition on the Koop-
man operator

Kfic =M fx (10)

where A denotes an eigenvalue and fjc denotes an eigen-
function. The time evolution of our statistical quantity of in-
terest is a linear combination of these eigenpairs. These can
be used to identify dominant system dynamics and on what
timescales they emerge. Training an emulator is equivalent to
approximating eigenpairs; reproducing these pairs accurately
emulates the behavior of the system.

However, approximations of the Koopman operator are
limited by the same finite memory constraint as the Fokker-
Planck case and deriving analytic solutions is dependent on
the exact form of \V; see Appendix C for an example of when
analytic approximations are possible. Matrix approximations
of the Koopman operator are nevertheless more prevalent
than their Fokker-Planck counterparts (Schmid, 2010; Mezi¢,
2013; Williams et al., 2015; Otto and Rowley, 2021). Vari-
ants of these methods have recently been implemented in
the climate context to identify dominant modes of variability
in the system (e.g., El Nifio-Southern Oscillation or Pacific
decadal oscillation) (Navarra et al., 2021, 2024; Mankovich
et al., 2025), but have not been applied for the purpose of cli-
mate emulation. We outline two of these methods explicitly
in Sect. 2.3.3.

Two sides of the same coin. The Koopman operator ad-
vances all statistical quantities of interest, and provides an
alternative to the Fokker-Planck description of a distribu-
tion’s time evolution. Knowing every statistic is equivalent to
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knowing the full distribution. Access to either operator fully
characterizes our system, allowing us to emulate it. Math-
ematically, these operators are dual (adjoint), where dual-
ity refers to two mathematical objects that contain alternate
descriptions of the same information; this property is how
we derived the Koopman operator in the previous section.
This is analogous to, but physically and mathematically dis-
tinct from adjoint methods in climate modeling. There, ad-
joints to dynamics (rather than statistics as is the case for
the Koopman/Fokker-Planck approach) are exploited to cal-
culate gradients with respect to input parameters more effi-
ciently, which can be used to tune parameters and compute
output sensitivities (Thuburn, 2005; Henze et al., 2007; Lyu
et al., 2018).

Due to internal variability in the climate system, estimat-
ing the full probability distribution of a variable requires
large initial condition ensembles, incurring significant com-
putational cost. This is exacerbated for variables such as
precipitation, where internal variability masks the forced re-
sponse to a greater degree (Blanusa et al., 2023). Reliably es-
timating the full distribution at each timestep to approximate
the Fokker-Planck operator from relatively coarse data is im-
practical. However, under additional assumptions of quasi-
ergodicity, we bolster our sampling power by assuming that
the statistics do not change sufficiently quickly over a given
time period. We thus focus on emulating lower-order statisti-
cal quantities, presenting those techniques in Sect. 2.3.

Connecting to linear response theory. Linear response the-
ory states that the climate system’s forced response (assum-
ing perturbations are small) is encoded by a response func-
tion, R(¢). The response function is generated by the Koop-
man operator, K, where each eigenpair of the operator deter-
mines the characteristic timescales of the system. Consider-
ing temperature anomaly as an example variable, fast modes
map to rapid atmospheric adjustments, while slow modes
capture deep ocean heat uptake (Caldeira and Myhrvold,
2013). Response functions have been applied to a variety of
climate problems (Joos and Bruno, 1996; Hasselmann et al.,
2003; Joos et al., 2013; Orbe et al., 2018; Cimoli et al., 2023),
including climate emulation (Freese et al., 2024; Womack
et al., 2025; Sandstad et al., 2025), though often without ad-
dressing the formal response theory underlying these tech-
niques. As was the case with the Koopman operator, more
formal applications of response theory to climate science of-
ten do not share the same language as climate emulators de-
spite the shared goal of predicting the climate’s forced re-
sponse (Lucarini et al., 2017; Lembo et al., 2020; Zagli et al.,
2024).

To make the relationship between response theory and the
Koopman operator explicit in the context of emulation, we
first consider the system’s dynamics to be governed by an
operator, K. When the system is subject to a small external
perturbation, this operator can be split into an unperturbed
component, Ko, and the perturbation itself, §/KC, such that
I =Ko+ K. The expectation value of a statistical quan-
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tity g under the perturbed dynamics can be approximated to
first-order as the sum of its unperturbed evolution, (g)¢, and
a linear correction, 6(g).

A general solution for this linear correction is provided
by Ruelle’s response theory. For systems in a statistical
steady state (i.e., at equilibrium), this framework simplifies to
the Fluctuation Dissipation Theorem (FDT) (Lucarini et al.,
2025). The FDT describes how a system (e.g., the Earth sys-
tem) responds to perturbations (anthropogenic CO; emis-
sions) relative to some baseline state (preindustrial condi-
tions). The change in the ensemble average field, §(g), is
obtained by convolving a forcing, F(¢), with the system’s re-
sponse function, R(?)

t

5(g) = / R(s)F(t — s)ds. (11)

—00

Formally, the response function is calculated by computing
the temporal autocorrelation between the statistical quantity
g and the system’s score function, s,

R(t) = (g(t" = )s(t’ = 0)), 12)

where the score function of the steady-state distribution en-
codes how a small perturbation alters the system’s statistics;
see Giorgini et al. (2024, 2025b) for more details. The con-
nection to Koopman operator theory is that temporal autocor-
relations are expressed explicitly in terms of the Koopman
operator, see Zagli et al. (2024).

Equation (11) is one way to state the Fluctuation Dissipa-
tion Theorem (FDT, Fig. 2, box 3d), a tool widely used in sta-
tistical mechanics and one of the main features of linear re-
sponse theory (Lucarini et al., 2017; Lembo et al., 2020). The
FDT predicts the first-order response of a statistical quan-
tity due to external perturbations and is defined in terms of
an ensemble average over a quantity of interest. As writ-
ten, this form does not account for state- or time-dependent
effects (i.e., one could consider the alternate formulation:
R = R(w, 1,1")), though extensions to capture these effects
and higher-order statistical moments have been proposed
(Metzler et al., 2018; Giorgini et al., 2025a, b; Winkler and
Sierra, 2025).

Response function emulators approximate the left hand
side of Eq. (12) using a variety of techniques, which we out-
line in more detail in Sect. 2.3.2. Their emulation goal is typ-
ically either to fit the eigenpairs which make up K explic-
itly (Sandstad et al., 2025), or to find a direct representation
of R(¢) (i.e., an implicit representation of ) (Lembo et al.,
2020; Freese et al., 2024; Womack et al., 2025). The former
may be more easily interpretable through analyzing the ex-
plicit eigenpairs, while the latter offers flexibility in allowing
for parametric forms other than a decaying exponential.

Response theory builds upon the operator frameworks pre-
sented in the previous sections by providing a method to il-
lustrate how a given quantity responds to small changes in
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forcing. While the Fokker-Planck and Koopman perspectives
offer complete characterizations of the statistics of the sys-
tem over time, response theory offers a practical approach to
use this information to predict how a quantity shifts under
perturbations, described by the FDT.

2.3 Connecting emulators to theory

Following the framework from the previous section, we in-
troduce several emulation techniques targeting the mean of a
climate variable (Fig. 2, pop-outs on right hand side). We use
the example of estimating the expected (or annual-average)
temperature anomaly, T (x, 7), given an external forcing, F(¢)
(e.g., CO; or other GHG emissions), though these techniques
can be applied to any climate field. Each technique relates
explicitly to the Fokker-Planck or Koopman operator and/or
the Fluctuation Dissipation Theorem (FDT). We begin with
methods that impose strong assumptions on the underlying
data and progressively lift those assumptions until we are left
with the most general emulation techniques; headings follow
the taxonomy of Tebaldi et al. (2025) when possible.

2.3.1 Pattern scaling and its immediate extensions

Method I: Pattern Scaling. Pattern scaling is arguably the
most well-known climate emulation technique (Santer et al.,
1990; Mitchell, 2003; Tebaldi and Arblaster, 2014; Kravitz
et al., 2017; Tebaldi and Knutti, 2018; Wells et al., 2023;
Giani et al., 2024); it is formally derived via the Koopman
operator, and is a specific case of a more general quasi-
equilibrium emulation framework. It assumes that, at any
given moment, the climate is in a quasi-equilibrium, rather
than a transient, state and that changes in the forcing are
small enough and/or the response of the system is fast enough
to neglect system memory. Pattern scaling also assumes that
the response does not depend on the background climate
state, only the instantaneous forcing. Despite work showing
that there are measurable differences between transient and
quasi-equilibrium climate responses depending on the tran-
sient warming rate (King et al., 2021), the success of pattern
scaling has led to its continued use.

We first restate Eq. (9) in terms of the quasi-equilibrium
assumption and our climate variable of interest as

%T(x,t)=£(x,x’)T(x’,t)+F(t)%0, (13)

where £ indicates that this is no longer the true Koopman
operator and x and x’ indicate summation over spatial inter-
actions, i.e., how one location, x, is influenced by all other
locations (including itself), x’; a more detailed description
of the transition from Eq. (9) to (13) can be found in Ap-
pendix A4. We additionally assume 7 (x, t) here refers to the
ensemble mean temperature, which has the practical advan-
tage of reducing the impact of internal variability on our em-
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ulator. Inverting this equation gives
T(x,0)=—L""x,x")F(1), (14)

which is a more general formulation of pattern scaling based
on a generic forcing, F(¢). Alternate definitions of pattern
scaling have been explored previously, with a handful of
studies developing extensions based on alternatives to global
mean temperature such as radiative forcing or a combination
of factors (Huntingford and Cox, 2000; Cao et al., 2015).
A traditional pattern scaling formulation makes the further
assumption that the forcing is the global mean temperature
anomaly, F(¢) =T(t), and replaces £~! with a low-order
polynomial, leading to

T(x,t) =aop(x)+a;(x)T(t)+ %az(x)Tz(t) +.. (15)

where ag;(x) indicates the spatially varying pattern, and we
typically keep only the first-order (a;(x)) term. Some work
has explored the utility of higher-order terms, such as the
quadratic term, but found it limited in extrapolative ability
and physical justification (Herger et al., 2015).

Although pattern scaling implicitly attempts to approxi-
mate the Koopman operator — the perfect linear representa-
tion of the system — it is limited by its assumption of time-
invariant, quasi-equilibrium dynamics. Truncating the oper-
ator with a finite dimensional approximation and using only
a single predictive field (here, annual-mean temperature) fur-
ther reduces its skill. Pattern scaling’s inability to reproduce
the pattern effect and other nonlinear/state-dependent feed-
backs illustrates these limitations (Stevens et al., 2016; Giani
et al., 2024). In Sect. 2.3.3, we explore alternative low-order
approximations of the Koopman operator to resolve these is-
sues.

Pattern scaling could be extended to the Fokker-Planck
operator by shifting and rescaling the full probability dis-
tribution based on global mean temperature, but this faces
several limitations. Reliably estimating probability distribu-
tions requires large ensembles, which are computationally
expensive. An alternate approach is to use long preindus-
trial control runs to generate the initial probability distribu-
tion and attempt to learn the linear scaling factor through the
shorter SSP experiments. However, a simple linear shift may
not capture scenario-dependent changes in the shape of the
distribution; recent emulation work with Gaussian process
regression suggests these distributional shifts may be com-
plex (Wang et al., 2025). When applying pattern scaling to
the Fokker-Planck operator, we must also ensure the process
does not violate the normalization of the distribution (i.e., the
area under the curve must equal one).

We implement pattern scaling by calculating the global
mean temperature anomaly and solving

H}ir)lllT(x,t)—a(x)T(x,t)Ilz- (16)

In Appendix Al we show that pattern scaling has two irre-
ducible sources of error when trained on a ScenarioMIP-like
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forcing: (1) an equilibrium term, where pattern scaling con-
verges to the wrong steady-state value when forcing plateaus
and (2) a memory term, where pattern scaling breaks down
when the system responds slowly compared to changes in the
forcing. The former stems from the mismatch between train-
ing pattern scaling in a transient regime and attempting to use
it to project an equilibrium condition. The latter cannot be ac-
counted for within the pattern scaling framework, motivating
the need for methods that explicitly capture memory.

2.3.2 Dynamical system/impulse response theory

Emulators that represent the climate system through response
functions connect to fundamental principles of statistical me-
chanics and the Koopman/Fokker-Planck framework (Joos
and Bruno, 1996; Hasselmann et al., 1997; Hasselmann,
2001; Lucarini et al., 2017; Orbe et al., 2018; Lembo et al.,
2020; Fredriksen et al., 2021, 2023; Cimoli et al., 2023;
Freese et al., 2024; Womack et al., 2025; Sandstad et al.,
2025; Farley et al., 2025). Response function emulators re-
lax the quasi-equilibrium assumption, assuming instead that
the current transient climate state is close to some baseline
climate state that is in statistical equilibrium (generally prein-
dustrial conditions). Perturbations to a field of interest are as-
sumed to be small relative to magnitude of that field. These
methods enable us to capture memory effects by integrat-
ing the entire forcing time history rather than only using the
instantaneous forcing. One major benefit of this is that we
can use them to represent regional shifts in surface warming
patterns over time (the pattern effect) (Bloch-Johnson et al.,
2024).

The use of different methods to derive response functions
affects their utility as an emulator. A key assumption behind
the Fluctuation Dissipation Theorem, for example, is that we
have access to the governing equation, i.e., we are free to run
large ensembles as needed. We begin this section assuming
this is true, and relax this assumption later.

Method I11: The Fluctuation Dissipation Theorem. In the
case of a fully deterministic system with a zero initial condi-
tion, simply forcing our system with a spatially explicit unit
impulse (F(x,t) =48(x,1)) is used to find the system’s re-
sponse function

T(x,x', D) pe n=s',n) = R(x,x',1), (17)

where perturbations are applied at each spatial location, x’, to
determine their influence on a location of interest, x; pulses
can also be applied at alternate times, ¢/, to determine how
different time lags impact the response (e.g., seasonality), but
we neglect these effects to simplify our analysis.

In this case, we can derive our response function directly
without the need for an ensemble of simulations, but real sys-
tems are not this simple. Utilizing an impulse forcing naively
in a chaotic system may lead to a single realization with be-
havior far from the expected forced response. For our nonlin-
ear SDE, we use the Fluctuation Dissipation Theorem (FDT),
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to calculate a response function from an ensemble. Our sys-
tem’s response to a perturbation of magnitude ¢ is given by

(Te(x, 1) — To(x,1))
lex)]

where Ty(x,?) and T¢(x,t) correspond to unperturbed and
perturbed initial condition ensembles, respectively. More de-
tail on this expression can be found in Marconi et al. (2008).

With this definition, we implement the Fluctuation Dis-
sipation Theorem by first spinning up a simulation to get a
steady state distribution from which we draw an ensemble
of initial conditions, Tp(x, ). We then create a copy of the
initial condition ensemble with an additional small perturba-
tion, ¢, applied to each member, T,(#), and simulate every
member from both ensembles for a scenario of interest. Ap-
plying Eq. (18) then gives us the response function, which
can be used to emulate a variable of interest by convolving it
with a forcing from a new scenario (Eq. 11).

Both the stochastic and deterministic approaches only
yield an accurate estimate of the true response function when
the system is perturbed from a quasi-equilibrium rather than
a transient state. For climate models, this is typically done
with step change CO, experiments after a spin-up period.
This method is common in the literature around climate re-
sponse functions and linear response theory (Lucarini et al.,
2017; Lembo et al., 2020; Freese et al., 2024), though meth-
ods from the former two citations have not been applied to
climate emulation and the latter does not reference formal
response theory. Repeating this perturbation exercise at mul-
tiple background climate states can produce state-dependent
response functions, but it is prohibitively expensive in prac-
tice.

Analogously to our discussion of using the Koopman vs.
Fokker-Planck operator, there also exists an extension of the
FDT to probability distributions. This relationship is given
by

R(x,x',t) = , (18)

R(x,x',t) = —(T(x,)s(T(x',0))), (19)

where s(w) = VIn p(w) is the score function of the steady-
state distribution and encodes how a small perturbation alters
the system’s dynamics; more details can be found in Giorgini
et al. (2024).

The score function captures the direction a distribution
shifts in response to a perturbation, and correlating it with
a climate variable explains how the expectation of that vari-
able shifts. Appendix A5 outlines the link between this ap-
proach and the Fokker-Planck operator. Analytical expres-
sions for the score function are unavailable for most systems,
necessitating machine learning techniques to learn the score
function. This approach has achieved high skill in represent-
ing the response function for several systems (Giorgini et al.,
2024), though it has not yet been applied to the full climate
system. We do not explore it further in this work because of
the machine learning infrastructure required to implement it.
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The FDT faces accessibility issues in practice. First, there
are high costs associated with this technique: a large ensem-
ble of ESM runs is often prohibitively expensive. Second,
there are also some configurations we simply cannot access:
formal response theory assumes perturbations can be applied
in a straightforward manner, which is not always the case.
Because response functions are defined as a mapping from
some perturbed input variable (e.g., CO; or radiative forcing)
to an output variable of interest (e.g., temperature or precip-
itation), applying the FDT requires the ability to manually
perturb a variable. Climate models may not be configured to
accommodate e.g., radiative forcing as an input. The FDT
therefore cannot be applied to derive radiative forcing re-
sponse functions, though this is possible through other meth-
ods (Womack et al., 2025).

Method Il1I: Deconvolution. Without access to the true
system to run specific perturbation experiments to find
R(x,x’,t), data-driven approaches can estimate it. Deconvo-
lution has been used to calculate response functions in the cli-
mate emulation context to derive spatially explicit response
functions mapping effective radiative forcing to temperature
(Womack et al., 2025). It implicitly approximates the Koop-
man operator by deriving response functions that nominally
correspond to Eq. (11). To derive the deconvolution algo-
rithm, we assume the data we have (e.g., annual temperature
anomaly) are taken from an ensemble average of a general
scenario. We begin from the FDT (Eq. 11), assuming that our
experiment begins from a quasi-equilibrium initial condition

t

T(x,t):/R(x,s)F(t—s)ds. (20)
0
Treating this expression discretely, we rewrite it as a matrix
expression and invert to solve for R(x,t) from any general
scenario
F-IT
At

R=

; ey

where F is a lower-triangular matrix with F;—¢ along the di-
agonal, F;—; on the first off-diagonal, and so on (a Toeplitz
matrix), and T is a matrix of temperature values with rows
corresponding to the time dimension and columns corre-
sponding to the spatial dimension. A more in-depth explo-
ration of this process can be found in Womack et al. (2025).
As written here, deconvolution aggregates spatial interac-
tions (i.e., does not include an x’ term), cutting down on
data requirements. Extensions of this procedure can account
for spatial interactions, though they require additional exper-
iments with varying spatial forcings.
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In practice, noisy data require us to apply regularization to
Eq. (21) to ensure matrix stability. We instead solve

ngn||RF—T||2+a||R||2, (22)

where « is the hyperparameter denoting the strength of our
ridge regression. This simple ridge regression is equivalent to
placing a Gaussian prior on the response function and assum-
ing that the simulated temperature data we collect are cor-
rupted by Gaussian noise. We discuss the rationale of Gaus-
sian noise further in Appendix B and outline our approach
to tune the hyperparameter « through maximum a posteriori
optimization.

Deconvolution can be applied to any general scenario that
begins from a quasi-equilibrium initial condition. However,
since we require an explicit matrix inverse to perform de-
convolution, it is sensitive to the frequency spectrum of the
forcing data. If the eigenvalues of the matrix F are very
small (corresponding to near-zero frequencies) or the sys-
tem is very noisy (corresponding to large differences in
magnitudes between frequencies), the matrix becomes ill-
conditioned, leading to an unstable response function. To il-
lustrate these challenges, an explicit frequency-based deriva-
tion is included in Appendix A2. In practice, we regularize
the system to avoid these issues (see Appendix B for details).

Method 1V: Modal Fitting. Modal fitting is another data-
driven technique to calculate response functions that re-
tains some physical interpretability by explicitly represent-
ing the climate’s response to a forcing as a series of decay-
ing exponentials. The decay rates then represent the various
timescales of the climate system (e.g., shallow vs. deep ocean
heat uptake) and the modes represent how those timescales
interact spatially. It has been used for tasks such as estimating
effective radiative forcing and recently for climate emulation
(Fredriksen et al., 2021, 2023; Sandstad et al., 2025).

To connect this approach to our framework, we begin from
the same set of assumptions as deconvolution, but make the
additional assumption that our response function is exactly
a decaying exponential; in this case, our response function
is exactly a Green’s function as described in Appendix A3.
We start from a restatement of Koopman response function
definition (Eq. 11)

G(x,x' 1) = FEx1 (23)
where x and x’ track spatial interactions as before. We as-
sume we can represent the Koopman operator with a finite,
linear operator, £ (Appendix A4).

We then diagonalize the matrix £ though an eigenvalue
decomposition, giving

G(x, x/’ f) = ev(x,n)A(n,n)u’l(n,x’)t, (24)

where A(n,n) and v(x,n) are matrices containing the sys-
tem’s eigenvalues and eigenvectors, respectively, and r is the
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mode number. Since the matrix exponential respects similar-
ity transformations, we rewrite this exactly as the summation

k
Gx.x'.1)="> v(x.n)e"'v (n;, x'), (25)
i=1

where k is equal to total the number of eigenvalues in the
system. In the case of a climate model, the dimension of k
is equivalent to the number of spatial dimensions. This may
be much higher than the true number of modes that are sig-
nificant in determining e.g., the temperature response of the
system. Instead of the explicit form above, we typically see
an alternate implementation, such as that in Fredriksen et al.
(2021, 2023) and Sandstad et al. (2025). These show that one
can fit an alternate form given simply by

3
G~ R(t)=) aie"’, (26)
i=1

where using just three timescales (inter-annual, inter-
decadal, and inter-centennial) is sufficient to represent the
global mean behavior of the climate system; these methods
specify a range/initial guess of timescales to initialize the op-
timization routine. As we are implementing this at a grid cell
level, we opt for a hybrid approach, given by

3
Ri(t)=") o e, 27)
j=1

where i indicates the grid cell/region of interest, and j de-
notes the contribution from each timescale in a given region.
We use the three timescales given above as the initial guess
for each lambda, along with an initial guess for o; ;Vi = j,
assuming that one mode is dominant for each box.

We thus need to solve

t

T(a j, hi) = / Ri(s)F(1 —5)ds, (28)
—0Q
min [|T — (e j, M| (29)
a,’hi,)\.l'

For climate applications, the decay rates (;) can span several
orders of magnitude, which are difficult for the optimizer to
identify, even with normalization. This is exacerbated by the
need to solve for the eigenvectors simultaneously, which are
also likely to have values that span several orders of magni-
tude; using more sophisticated optimization techniques than
we apply in our test case could potentially resolve this is-
sue. When implementing this algorithm, we follow Fredrik-
sen et al. (2021), providing an initial guess of the correct or-
der of magnitude to our optimizer.

Modal fitting has two major benefits. First, by truncating
the leading modes, we reduce the dimensionality of the prob-
lem without the need for e.g., Empirical Orthogonal Func-
tions (EOFs) or a Singular Value Decomposition (SVD). Sec-
ond, we require all 9i(};) < O (the real component of A;) to
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ensure response functions to decay to zero as t — 0o, a re-
quirement not imposed on e.g., deconvolution and DMD. Be-
cause it is a best-fit problem, it naturally damps noise, mak-
ing it well suited to systems with strong internal variability.
However, this method can also be sensitive to local minima,
requiring multiple iterations or a stochastic fitting procedure
to alleviate this issue. Fitting may also be expensive on fine
grids, since the number of eigenpairs scales with grid size,
though we may not require all eigenpairs to accurately emu-
late the system.

2.3.3 Operator-based emulation

The most general class of emulators are those that aim to
directly approximate the Koopman operator. Every previous
emulator can be thought of as a specific case of this gen-
eral operator framework. Tebaldi et al. (2025) do not include
operator-based emulators in their classification, as they are
not typically referred to explicitly as emulators. However, we
classify them as such to facilitate communication across dis-
ciplines with similar prediction goals.

The most common data-driven approximations of the
Koopman operator are Dynamic Mode Decomposition
(DMD) and Extended DMD (EDMD) (Schmid, 2010;
Williams et al., 2015). Schmid (2010) developed DMD to ex-
tract dynamic information from fluid flows, and it has since
been used to identify dominant modes of variability within
the climate system, including El Nino—Southern Oscillation,
North Atlantic Oscillation, and Pacific Decadal Oscillation
(Kutz et al., 2016; Gottwald and Gugole, 2020; Navarra et al.,
2021; Franzke et al., 2022; Navarra et al., 2024; Mankovich
et al., 2025). Under specific conditions, DMD provides a
finite-dimensional approximation of the Koopman operator
(Schmid, 2022). EDMD expands this idea to approximate
Koopman eigenvalues and eigenfunctions directly (Williams
et al., 2015). The bulk of the work surrounding EDMD is
theoretical (Haseli and Cortés, 2019; Netto et al., 2021), as
in practice it has several limitations that we outline later in
this section.

Method V: Dynamic Mode Decomposition (DMD). DMD
assumes that the climate response is linear in w with respect
to an operator. If this is the true Koopman operator, this as-
sumption holds by definition, provided it acts on the entire in-
finite space of statistical climate fields, g(w). In practice, this
leads to limitations based on how accurate the assumption of
linearity is, which depends on the choice of variables; this
approximation may hold better for a variable such as tem-
perature, rather than precipitation. To derive DMD, we begin
from Eq. (9) applied to our variable of interest

%T(x,t):lC(x,x’)T(x/,t)—l—F(x,t). (30)

DMD assumes that we separate our data in discrete snap-
shots, T(x,ty), T(x,t1), ..., T(x,t,), which we assume are
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linearly related
Tn+1 =£Tn+Fn: (31)

where we have used the subscript n as shorthand for #, and
omitted the spatial dimension for conciseness. By discretiz-
ing, we are no longer solving for the exact Koopman operator
(as in the previous case), which we now denote £. This no-
tation is standard in DMD literature. The traditional DMD
algorithm assumes autonomous dynamics, omitting the forc-
ing term. Equation (31) is referred to as DMD with control
(DMDc) (Proctor et al., 2016), and has only recently been
studied in the climate context (Mankovich et al., 2025).

To implement DMD, we collect our snapshots into matri-
ces and invert this system, solving for £
L= [Tn+l - Fn] T+

e (32)
where the superscript + denotes the Moore-Penrose pseudo-
inverse of a matrix (required as it unlikely x and ¢ will be the
same dimension, i.e., it is unlikely T is a square matrix) and
F denotes a forcing matrix with the same dimension as our
data; assuming well-mixed forcing means each row is identi-
cal in the forcing matrix. This is the simplest form of DMD,
though in practice the Singular Value Decomposition (SVD)
is often used to further reduce the dimensionality of the prob-
lem. This also increases the algorithm’s robustness relative to
real-world systems that are subject to noise (Schmid, 2010).

This approach suffers mainly from its strong assumption
of linear dynamics, which can break down for complex sys-
tems. Its success in identifying the dominant modes of vari-
ability in the climate suggests it may have utility as an ex-
plicit emulation technique (Kutz et al., 2016; Gottwald and
Gugole, 2020; Franzke et al., 2022); future work will apply
DMD to a full scale climate model to test this hypothesis.
Unfortunately, DMD only provides a reliable estimate for the
Koopman operator if it acts on a large set of statistical fields
(more than simply the temperature anomaly when consider-
ing the full climate system) and/or the dynamics governing
the evolution of that quantity (or quantities) are linear, which
is not the case in general. While the dynamics producing the
base climate state are nonlinear, the success of methods such
as pattern scaling suggest the dynamics of anomalies may be
close to linear. DMD assumes all hidden variables are ac-
counted for and the observed quantities fully describe the
(linear) dynamics of our anomaly of interest. For example,
the atmospheric temperature may be significantly influenced
by heat uptake in the deep ocean, which, if it is not explicitly
accounted for, will lead to errors when applying DMD. This
motivates the need for a better algorithm for approximating
the Koopman operator.

Method VI: Extended DMD (EDMD). As the baseline
DMD algorithm is only able to approximate the Koopman
operator in specific contexts, EDMD instead frames the prob-
lem such that we are deliberately trying to approximate
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the eigenvalues and eigenfunctions of the Koopman opera-
tor. This, ideally, leads to more reliable approximation than
DMD and thus, a better emulator.

EDMD was introduced by Williams et al. (2015) as an
explicit attempt to approximate the Koopman operator. The
EDMD procedure involves projecting variables of interest
into a higher dimensional space that has a richer represen-
tation of the system dynamics. As an example, we consider
the problem of emulating precipitation anomaly using global
mean temperature anomaly as the forcing. Precipitation may
depend on the global mean temperature, 7 (¢), but it also may
depend on higher-order or nonlinear terms, such as (T(1))%,
cos(T (1)), tanh(T(r)), etc. To implement EDMD, the user
must select a set of basis functions, ¢(-), such as these, that
provide a better representation of the system dynamics than
in the purely linear DMD case. Typical choices of basis func-
tions as described by the original EDMD manuscript are Her-
mite polynomials, radial basis functions, and discontinuous
spectral elements (Williams et al., 2015).

After choosing a set of basis functions, the EDMD prob-
lem statement is exactly the same as the original DMD algo-
rithm. Solve for K from

O(Tur1) = Ko(T) + ¥ (F), (33)

where ¥/ () is the basis chosen for the forcing, and can be the
same or different than the forcing for the quantity of interest.
We use K here as we are explicitly trying to approximate the
Koopman operator. We ensure the basis includes the physical
field of interest, e.g., p(T) = [T, T2, T3, ...], where the first
entry is the physical field. As in the case with DMD, we solve
this as

K =[¢(Tas1) — ¥ (F,)]¢"(Tn), (34)

which we can use an SVD to solve more efficiently and re-
duce the influence of noise on the system. When applying
this method, we first use Eq. (33) with an appropriate ini-
tial condition to emulate the solution in our high-order basis.
We then must project our solution back into physical space.
Since we chose our basis to include the original physical co-
ordinate, this is done by truncating the emulator output and
keeping only the entries corresponding to T.

This method has seldom been applied to climate problems
(Navarra et al., 2024), likely due to the limitations acknowl-
edged in Navarra et al. (2021), particularly the dimensional-
ity of the problem. For a full climate model, DMD requires a
matrix solve of dimension (Nia X Nion)? for a single variable,
which is extremely costly. In the case of EDMD, this dimen-
sion grows with every basis function used. To accurately rep-
resent the Koopman operator for the climate system, we po-
tentially require many more variables and many basis func-
tions, causing the problem to rapidly increase in complex-
ity, though this may be alleviated by emulating EOFs rather
than gridded data. As with DMD, EDMD implicitly assumes
no hidden variables, though the choice of basis function can
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help alleviate this issue; e.g., if the hidden variables are
higher-order terms, EDMD may be able to represent them
accurately. The selection of basis functions typically requires
some experimentation though, as it can be difficult to predict
which set of functions will be best suited for a given appli-
cation; exploiting physical relationships such as the logarith-
mic relationship between CO; concentration and temperature
may help alleviate this issue, however. More work is required
to fully characterize the utility of EDMD for the climate sys-
tem.

3 Experimental overview

Here we outline a set of experiments which reproduce the
sources of error seen in Fig. 1, using them to evaluate the
emulation techniques introduced in Sect. 2.3. We outline
a climate box model with a simple local energy balance
ODE in Sect. 3.1 and Sect. 3.2, followed by a nonlinear,
cubic Lorenz system in Sect. 3.3. Experiments using these
two simple models highlight the following potential sources
of error: (1) memory effects, Fig. 1a; (2) hidden variables,
Fig. 1b; (3) noise, Fig. 1c; (4) weak nonlinearities, Fig. 1d.
We then describe forcing scenarios applied to each system in
Sect. 3.4.

3.1 Experiments 1 and 2: Climate Box Model

A classical box model is a standard, easily-interpretable
model for temperature evolution. We use this idealized box
model as it is the simplest system that includes the pattern
effect and it is not necessarily meant to replicate CMIP ex-
periments. We assume the form of this model is given by a
simple local energy balance

0T (x,1)
ot

similar to Armour et al. (2013) and Giani et al. (2024). C(x)
is the local effective heat capacity, T'(x, t) is the local temper-
ature anomaly, A(x) is the local feedback parameter, R(x,t)
is the forcing function, and V - F(x, ¢) is the anomaly in heat
flux divergence; parameters for this model are listed in Ta-
ble 2. Furthermore, we assume that the forcing function can
be linearly decomposed as a constant-amplitude spatial pat-
tern and a variable time series: R(x,1) = r(x)R(¢).

We consider two configurations for our box model. The
first corresponds to a horizontally coupled three box sys-
tem representing atmospheric boxes over land, low-latitude
ocean, and high-latitude ocean; V-F(x,t) = —k(x)VT (x,1).
We assume a constant diffusivity and discretize as, V-
F(x,t) = —k(T;+1(t) — T;(¢)), where i refers to the index of
each box. We assume uniform forcing into each box, and use
this configuration for experiments one and three (memory ef-
fects and noise; noise details can be found in Sect. 3.2). The
second configuration corresponds to a vertically coupled two
box system representing the atmosphere and the ocean; this

C(x)

=72x)T(x,t)+ R(x,t)+V -F(x,t), (35)
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has the same form as the previous case, with the caveat that
there is no forcing applied into the oceanic box. We use this
configuration for experiment two (hidden variables). We be-
gin this system from a zero initial condition, aiming to sim-
ulate the temperature anomaly, rather than the absolute tem-
perature.

3.2 Experiment 3: Noisy Box Model

As the default configuration for our box model is purely de-
terministic, we add a stochastic noise term to the forcing to
replicate the impact of inter-annual variability on the real cli-
mate system. To ensure the impact of this variability is simi-
lar to that of the true system, we use CMIP6 piControl exper-
iments to estimate the magnitude of the variability. Namely,
we compute the standard deviations of piControl runs for
three climate models (ACCESS-ESM1-5, MIROC6, MPI-
ESM2-LR) and set the magnitude of the variability as the
multi-model average o = 0.117 K (Dix et al., 2023; Tatebe
and Watanabe, 2023; Wieners et al., 2023).

3.3 Experiment 4: Cubic Lorenz System

As the previous experiments are all defined by an operator
which is linear in the quantity of interest, we additionally
implement a weakly nonlinear, cubic Lorenz system. This
provides a representation of the atmosphere that includes
chaos, allowing us to test the limits of these emulation tech-
niques. In the standard Lorenz equations that represent a
simplified model of atmospheric convection (Lorenz, 1963),
the steady state is a linear function of p, and the mean heat
flux ((XY) = (Z)) is very nearly linear (Souza and Doering,
2015). We modify the system to the cubic form shown below
to illustrate another failure mode of simple pattern scaling:
the quasi-equilibrium value may not be a linear function of
the forcing.
The cubic Lorenz equations are defined by the system

)
X =0 =X), (36)
%Y =—(Z4+aZ>)X+p(H)X — Y, (37)
)

S Z=XY -pZ, (38)

with o = 1/1000. The steady-state mean of both X and Y are
zero, while the steady-state behavior of (Z) is determined by
p(1). Values for p(t) are chosen such that nonlinearities are
weak, as all linear methods are expected to break down in the
presence of strong nonlinearities. These vary between exper-
iments and are outlined in Table 4. We initialize this system
through an initial condition ensemble starting from p(t) = 28
with white noise applied to perturb the starting positions of
each ensemble member.
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3.4 Scenarios

We consider four scenarios of interest for both the box model
and cubic Lorenz system, focusing on scenarios which have
CMIP analogues: (1) Abrupt, an abrupt increase in forc-
ing, (2) High Emissions, an exponential increase in forcing,
(3) Plateau, an exponentially increasing in forcing that levels
off, and (4) Overshoot, a forcing that sharply increases and
decreases. Descriptions of each scenario are given in Table 3.
Figure 3 shows ODE-integrated solutions for each scenario
in each experiment, and descriptions of experimental param-
eters can be found in Tables 4 and 5.

3.5 Evaluation

To evaluate each emulation technique, we utilize Normalized
Root Mean Square Error (NRMSE, Eq. 39) given as a per-
centage, as our primary evaluation metric:

100 ,]{Vil (g(wr) — &(wy))
8(wy)

2
NRMSE = . (39)

N years

2(wy) indicates the mean of our quantity of interest over the
period error is calculated over. We calculate NRMSE with
respect to the entire time series. To compare performance
across training datasets, we train each emulator on one sce-
nario at a time, testing against the others which are held out
from the training (e.g., train on Abrupt and test on High Emis-
sions).

We implement an alternate protocol for the cubic Lorenz
system as there is no ground-truth to compare with due to
chaos. Instead, we compare the skill of each emulator when
training on only a subset of the ensemble members for that
experiment. For example, given nepgemple €nsemble members
for a given experiment, we construct a subset of n ensemble
members without replacement, where n = 1 : nepgemble — 1,
and train our emulator from that subset. We then test the em-
ulator’s skill in emulating the mean response given the en-
semble average forcing. We repeat this subsampling exercise
10 times, recording the average performance over those tri-
als. For the noisy three box model, we use the same proto-
col, additionally presenting the ground truth of emulating the
noiseless three box model.

4 Results

Section 4.1 presents a summary of results across each of
the emulation techniques outlined in Sect. 2.3 when emu-
lating the simplified climate systems presented in Sect. 3,
with subsequent sections highlighting key results from in-
dividual experiments. Section 4.2 contains the results for the
three box model with significant memory effects (Fig. 1a);
the three boxes represent atmospheric boxes over the land,
low-latitude ocean and high-latitude ocean. We then report
emulator performance on the restricted two box model in
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Table 2. Parameters for the three box model, adapted from Giani et al. (2024). The heat capacity of each box is given in terms of the effective
water depth, h(x): C(x) = pwcwh(x), where py, and ¢y are the density and specific heat capacity of water, respectively. “Land”, “Low”, and
“High” refer to atmospheric boxes over land, low-latitude ocean, and high-latitude ocean, respectively.

Parameter Symbol Land Low High
Effective Water Depth (m) h(x) 5 150 1500
Local Feedback (Wm™ 2K~ 1)  A(x) -086 —2.0 —0.67
Abrupt High Emissions Plateau Overshoot
6 = High Lat. Ocean
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Figure 3. ODE-integrated solutions for the three box model (top), two box model (middle), and cubic Lorenz system (bottom) for the (from
left to right) Abrupt, High Emissions, Plateau, and Overshoot scenarios. D = 0.55 [W m—2 K_l] for the three box experiment and D = 0.7
W m—2 K] for the two box experiment. For the cubic Lorenz problem we show the mean value of Z over 5000 ensemble members as
a line, and the shaded region indicates its standard deviation. Values shown are anomalies relative to a baseline of 7' = 0 (experiments one

through three) or p = 28 (experiment four).

Sect. 4.3. In this case we highlight the issue of hidden vari-
ables (Fig. 1b) by only giving the emulators access to the
temperature anomaly in only one of the two boxes during
training; the two boxes represent an atmospheric and oceanic
box (forcing only into the atmosphere). This is followed by
a version of the three box model with a stochastic forcing to
test the robustness of each method to noise (Fig. 1c). Finally,
we showcase results for the nonlinear, cubic Lorenz system
in Sect. 4.5 (Fig. 1d), which tests emulator performance in
the presence of chaos and weak nonlinearities. In the case
of models with multiple regions (boxes), we present only a
single evaluation score, as relative performance across boxes
was consistent for all cases analyzed.
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4.1 Overall emulator performance

Figure 4 summarizes emulator performance in terms of Nor-
malized Root Mean Square Error (NRMSE) across all four
experiments. For each experiment, there are four possible
train/test scenarios (Abrupt, High Emissions, Plateau, and
Overshoot). We train on one scenario and test against the
remaining three, showing median NRMSE over all train/test
combinations. For experiments two and four, the pattern scal-
ing emulator is trained to map forcing to quantity of interest,
as these experiments do not have a global mean tempera-
ture equivalent. Results for deconvolution are shown using
the regularization presented in Appendix B. Error values are
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Table 3. Conceptual overview of forcing scenarios considered in
this work. These scenarios are used in all experiments outlined in
Sect. 3, and lists of experiment-specific parameters for each sce-
nario can be found in Tables 4 and 5.

Scenario Short Description

Abrupt An abrupt doubling of CO,
concentration; corresponds roughly to

the Abrupt2xCO2 CMIP experiment.

High Emissions  An exponential increase of COp
concentration in time; corresponds

roughly to SSP585.

Plateau An increase in CO) concentration in
time that follows a hyperbolic tangent,
increasing exponentially and then
tapering off; corresponds roughly to

SSP245.

Overshoot An increase in CO, concentration in
time that follows a Gaussian profile,
increasing and decreasingly rapidly;
inspired by SSP119, but decreases
more quickly.

calculated with a constant 40 ensemble members for experi-
ment three and 4000 ensemble members for experiment four.

Response function based emulators (the FDT, deconvo-
lution, and modal fitting methods) generally outperform
other approaches, demonstrating consistently lower NRMSE
across most experiments. The FDT is particularly reliable
relative to all other methods, yielding consistently low er-
rors across all four test cases, indicating its robustness re-
gardless of scenario; while it has higher error in the cubic
Lorenz case, this is primarily a function of ensemble size
(see Sect. 4.5). As FDT response functions are, in principle,
equation-driven rather than data-driven, they provide the per-
fect solution given a linear system (experiments one through
three) or enough realizations (experiment four). Deconvolu-
tion similarly performs well across all experiments, while
modal fitting has high performance in experiments one, two,
and three; both of these methods exhibit higher errors in ex-
periment four. For deconvolution, this is due to its sensitivity
to noise as discussed in Sect. 2.3.2, while modal fitting suf-
fers because of an inability to reliably separate timescales
and the need for an accurate initialization for its unknown
parameters, which we discuss in Sect. 4.4.

In contrast, pattern scaling consistently underperforms, ex-
hibiting the highest error in all experiments except for the
cubic Lorenz case. This is most likely due to the presence
of strong memory effects in the box models, which pattern
scaling cannot capture by definition. DMD and EDMD out-
perform pattern scaling in experiments one and two, but ex-
hibit much more variable performance in experiments three
and four. For the first three experiments, DMD and EDMD
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produce identical results. This is because the models in these
experiments are purely linear, and the use of any higher-
order basis for EDMD leads to a drop in skill. These meth-
ods struggle with the noisy three box model, and more in-
depth results can be found in Sect. 4.4. While theory suggests
DMD/EDMD would not be well-suited for the restricted two
box problem due to the presence of hidden variables, they
outperform pattern scaling in practice. This is likely due to
the simplicity of the problem, and more complex dependen-
cies on hidden variables would likely lead to further de-
creases in skill. The main advantage of EDMD over DMD
begins to become apparent in the cubic Lorenz experiment,
where moving to a third-order Hermite polynomial basis al-
lows it to slightly outperform its linear counterpart, though
the variability in the system (Fig. 3) is a greater magnitude
than this improvement in skill.

4.2 Experiment 1: Three Box Model

The three box model experiment is meant to benchmark the
baseline performance of each technique in the presence of
strong memory effects (Fig. 1a). Figure 5 summarizes the
results of four emulation techniques (pattern scaling, decon-
volution, modal fitting, and DMD) when trained and tested
on different scenario combinations, while Fig. 6 compares
the true (ODE-integrated) solution to that obtained using the
Fluctuation Dissipation Theorem.

Pattern scaling (Method I) consistently underperforms rel-
ative to the other techniques presented in this section, ex-
hibiting the highest NRMSE values for all train/test combi-
nations. It fails across almost every scenario due to the in-
fluence of long timescales on the global mean temperature
(strong memory effects). This experiment highlights pattern
scaling’s brittleness when key assumptions, such as exponen-
tial forcing (Giani et al., 2024), are violated. These assump-
tions are consistent in most ScenarioMIP experiments how-
ever, leading to higher performance in practice relative to this
simple example (Wells et al., 2023).

Applying deconvolution (Method III) leads to much higher
performance than pattern scaling when trained on either
Abrupt, Plateau, or Overshoot, but sees a drop in perfor-
mance when trained on High Emissions. This is because the
true solution is an eigenfunction of the forcing (i.e., both the
temperature response and forcing are exponentials), so the
system is effectively characterized by a single timescale, that
of the forcing. Deconvolution loses skill due to difficulties
identifying all the timescales in the system, leading to extrap-
olation errors when training on this scenario. When trained
on either Plateau or Overshoot, we see errors in emulating
Abrupt, meaning that the emulator has not learned the true
system response despite relatively high performance in em-
ulating the other scenarios. This is due to ill-conditioning of
the F matrix in these scenarios, leading to a response function
that overfits these data; we discuss the limitations of training
deconvolution with these scenarios further in Sect. 5.
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Table 4. Forcing scenarios for each experiment, with the upper half of each row corresponding the box model and the lower half of each row
corresponding to the cubic Lorenz system. Parameters for the box model experiments are based on Giani et al. (2024) and (Armour et al.,
2013) and parameters for the cubic Lorenz system are chosen such that the system exhibits weakly nonlinear behavior. H(¢) is the Heaviside
step function, and parameters for these scenarios are listed in Table 5.

Scenario Functional Form

F(t) = Fape H(1)

Abrupt

o) = £0, abr T P1, abr tanh(z — napr)

High Emissions

F(t) = Fhigh eXp(?/Thigh)
P(t) = po, high + A1, high €XP(7/ Mhigh)

F(1) = Fplat + Fplat tanh(wpjat(f — Tplat))

Plateau
p(t) = po, plat + P1, plat tanh(@plar (t — Tplat))
F(t) = Foverexp(—(t — 7 2/(202
Overshoot () over €xp(—( over)”/( ) 5 s
P(t) = po, over T P1, over €XP(—( — Nover)”/(207))
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Figure 4. Summary of emulator performance over all experiments considered in this work. For each experiment, there are four scenarios.
We show the median NRMSE value across all scenario train and test combinations, excluding the trivial case of training and testing on the
same dataset. Error values are calculated with 40 ensemble members for experiment three and 4000 ensemble members for experiment four.
Emulator abbreviations are as follows: PS: Pattern Scaling, FDT: Fluctuation Dissipation Theorem, Deconv.: Deconvolution, Modal: Modal
Fitting, DMD: Dynamic Mode Decomposition, EDMD: Extended DMD. Diagonal hatching indicates response function emulators, while

cross hatching indicates operator-based emulators.

Modal fitting (Method IV) exhibits two interesting proper-
ties: (1) training on High Emissions leads to poor extrapola-
tive capability and (2) training on Abrupt leads to the highest
performance overall. The first is also caused by the solution
being an eigenfunction of the forcing. It is difficult for the op-
timization routine to determine the correct timescales, even
when initialized near the true values. This is true to a lesser
degree in Plateau and Overshoot, which also do not display
clean separation of time scales like Abrupt.

DMD (Method V) is able to capture all relevant timescales
and interactions regardless of the scenario, with a maximum
of 5.8 % NRMSE across all train/test combinations; this level
of error results from training on High Emissions and testing
on Abrupt, as was the case with the modal fitting emulator.
The method’s high skill here is due to the governing dynam-
ics being purely linear and there being no hidden variables,
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meaning all assumptions for applying DMD are accurate. Re-
sults for EDMD (Method VI) are omitted from this section
as they are identical to DMD.

The Fluctuation Dissipation Theorem (Method II) has con-
sistently high performance across all scenarios considered,
with NRMSE values of 0.80 %, 0.50 %, 0.75 %, and 1.29 %
for the four scenarios shown in Fig. 6 (NRMSE values
given by scenario from left to right). These values are lower
than any other technique on average. These errors are due
to the integration scheme with which we derive the FDT
response function, as we only use a first-order integrator.
Since it requires us to simulate two scenarios (one perturbed
and one unperturbed), error can accumulate between these
simulations; decreasing the integrator time step or using a
higher-order integrator (not shown) increases accuracy for
this method. Despite this, the FDT gives us, up to the pre-
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Figure 5. NRMSE heatmaps for pattern scaling (a), deconvolution (b), modal fitting (¢), and DMD (d) emulators trained and tested against
the three box model. Results are shown in percentages, where lighter values correspond to lower error (higher performance) and darker
values correspond to higher error (lower performance). Scenarios used for training are shown on the x axis, while scenarios used for testing
are shown on the y axis. We do not include results for training and testing on the same dataset.
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Figure 6. Fluctuation Dissipation Theorem emulator performance for three box model scenarios. The solid, lighter line shows ground truth
(ODE-integrated) solution, while the dotted, darker line shows emulated solution. The high performance of the FDT results in the emulated
and ground-truth curves overlapping closely.

cision of our integrator, the system’s true response function, runs, but for a more even comparison to the other techniques,
which is a major advantage compared to the other techniques we only consider the well-mixed case here.

which may or may not provide a physically-interpretable

solution. The full implementation of the FDT requires a 4.3 Experiment 2: Restricted Two Box Model

spatially explicit response matrix with multiple perturbation
The restricted two box model investigates the impact of hid-

den variables (Fig. 1b). This experiment is meant to test if
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Table 5. Scenario parameters used for the experiments in this
study. Values for pq are listed in the order Abrupt, High Emissions,
Plateau, and Overshoot. Box-model parameters have physical units
to output temperature; the cubic-Lorenz parameters are dimension-
less.

Box Model ‘ Cubic Lorenz System
Parameter  Value ‘ Parameter  Value
- - | po [45, 28, 40, 28]
— TNabr 10

F, 3.7 Wm™?2

abr P1, abr 17
- 8.5 Wm—2 30

high S P1, high S

' exp(Tf/ Thigh) ® exp(nf/Nhigh)
TF 250 years nf 250
Thigh 50 years Thigh 50
F 2.25 Wm—2 12
. m ,

0, plat P1, plat tanh(5)

F 2.25 Wm™2 150
— | T

L, plat tanh(wplat Tplat) plat
@plat 1/50 yr~! Oplat 1/50
Fover 4 Wm_2 P1, over 30
Tover 200 years Nover 200
Oover 42.47 o 50

an emulator can learn the true system response if not all in-
formation is included in the training data. Figure 7 summa-
rizes the results of four emulation techniques (pattern scal-
ing, deconvolution, modal fitting, and DMD) when trained
and tested on different scenario combinations. Restricting the
data means there is only one temperature series, rather than
the three in the previous case. We therefore cannot calcu-
late a global mean, and use a modified definition of pattern
scaling in this section, mapping from forcing to temperature
anomaly. As the FDT (Method II) has roughly equivalent per-
formance to the previous section and is not impacted by the
introduction of hidden variables, we omit it from this section.

For all methods except deconvolution (Method III), we see
a sharp drop in performance when introducing a hidden vari-
able into the system. Deconvolution exhibits the same fail-
ure mode when training on High Emissions as before but
to a greater degree, along with the ill-conditioning failure
mode when training on Plateau and Overshoot. Because this
method treats each region as independent, it is more robust
to the addition of hidden variables. It is able to capture the
aggregate response of the atmospheric box that includes the
influence of the ocean, but would not be able to separate
those effects; i.e., the response function we derive is some-
what non-physical, though it can emulate the system effec-
tively.

For the modal fitting emulator (Method IV), we initial-
ize the optimization routine with guesses for both dominant
modes (the fast atmospheric response and slower oceanic re-
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sponse). It is largely unsuccessful in identifying these modes,
except in the case of training with Abrupt. This scenario is
unique in that both modes are visible in the atmospheric box
alone (see the leftmost plot in the middle row of Fig. 3).
Training on either High Emissions or Overshoot appears
promising at first, but neither can extrapolate to Abrupt,
meaning it effectively overfits on these scenarios and loses
extrapolative capabilities. As before, we see that training on
High Emissions leads to the worst performance overall, as
this scenario is characterized by only one effective timescale.

DMD (Method V) and by extension, EDMD (Method VI),
experiences the sharpest decline in performance, with errors
increasing by several orders of magnitude in some cases.
Both methods see lower error in emulating scenarios simi-
lar to the training data (e.g., High Emissions vs. Plateau),
but rapidly increasing error outside that regime. In addition
to learning timescales like the previous two methods, DMD
and EDMD are attempting to learning spatial interactions
as well, meaning they are disproportionately affected by the
hidden variable. We can also frame this issue theoretically by
stating that hidden variables violate one of the fundamental
assumptions of EDMD and DMD: the quantities we emulate
are representative of all relevant system dynamics. By hiding
the oceanic box, neither algorithm can learn the true physi-
cal behavior of the system. With EDMD, increases in poly-
nomial order lead to further decreases in performance (not
shown).

4.4 Experiment 3: Noisy Three Box Model

Results of the noisy three box model show how noise af-
fects each emulator (Fig. 1c). Figure 8 summarizes the re-
sults of four emulation techniques (pattern scaling, deconvo-
lution, modal fitting, and DMD) when trained only on Abrupt
and tested against the other three scenarios; we choose to
train only on Abrupt as it yielded high performance across
all methods (except pattern scaling), and we want to iso-
late the impact of noise. See Fig. 4 in Sect. 4.1 for perfor-
mance metrics across all train/test combinations with a con-
stant ensemble size. Since the noise is added linearly, taking
the difference between the perturbed and unperturbed en-
sembles effectively removes the noise when using the FDT
(Method II). This leads to constant performance regardless
of ensemble size, which is shown in Fig. 4. We additionally
omit EDMD (Method VI) as it gives no improvements over
DMD (Method V) in this linear case.

For these results, we evaluate performance relative to their
noiseless baseline, rather than the absolute value of NRMSE;
although Abrupt led to high performance for most meth-
ods, each method has a different baseline and some methods
(e.g., pattern scaling) performed poorly when trained on this
scenario. All methods exhibit decreased performance in the
noisy case relative to the noiseless baseline.

Pattern scaling (Method I) experiences no change in per-
formance as the number of ensemble members is increased,
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as the linear regression smooths the data, reducing the impact
of noise regardless of the ensemble size. With both deconvo-
lution (Method III) and modal fitting (Method IV), there is
an almost random change in performance depending on the
number of ensemble members. This is because both methods
regularize the data. Deconvolution requires extra regulariza-
tion when the system is noisy, or else the algorithm overfits
on the noise, leading to extremely high error (> 0O(10'9y).
The regularization has a similar effect to pattern scaling in
making the expected performance of these algorithms more
robust to noise. The variation in performance is due to the
random sampling of ensemble members, with combinations
that exhibit high error skewing the overall results. The error
in DMD (Method V) is monotonically decreasing with en-
semble size, though the presence of noise leads to a drop in
performance relative to the noiseless baseline.

4.5 Experiment 4: Cubic Lorenz System

The cubic Lorenz system allows us to jointly investigate the
impact of chaos/noise and weak nonlinear effects on our em-
ulators (Fig. 1c and d). We run a 5000 member ensemble as
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the variation in this experiment is much higher than the pre-
vious noisy case. As in experiment two, we use a slightly
modified definition of pattern scaling, mapping from forcing
to quantity of interest (the ensemble mean of Z). Figure 9
summarizes emulator performance against the number of en-
semble members, while Fig. 10 shows the response function
derived using the FDT.

Similar to the previous noisy experiment (Sect. 4.4), pat-
tern scaling (Method I) exhibits a constant level of perfor-
mance independent of the number of ensemble members.
The linear fitting process creates a strong artificial smoothing
effect on the data, diminishing the potential impact of noise.
This is also the case with both deconvolution (Method III)
and the modal fitting (Method IV) approach, both of which
have little variability based on the number of ensemble mem-
bers. The modal fitting approach additionally requires an
imaginary component to enforce oscillations in the response
function similar to those in the FDT result (Fig. 10). All ap-
proaches except DMD additionally show increased skill for
smaller perturbations, i.e., higher skill in predicting Plateau
than Abrupt. This is likely because smaller forcings lead to
smaller deviations from the theoretical limit of response the-
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Figure 8. NRMSE vs. number of ensemble members for pattern scaling (a), deconvolution (b), modal fitting (c), and DMD (d) emulators
trained on Abrupt and tested against the three remaining scenarios. Solid lines indicate the error in training/testing with noisy data, while the

dashed lines indicate error in training/testing with noiseless data.

ory, which assumes small perturbations from the background
state.

The performance of the FDT (Method II) is strongly de-
pendent on the number of ensemble members. Figure 10 il-
lustrates this point by showing how the response function de-
rived using the FDT changes based on ensemble size. We
treat the 50 000 member ensemble as our point of compari-
son, as further increases in ensemble size did not result in no-
table performance improvements. Key features, such as the
initial magnitude of the response along with the time to reach
that magnitude are consistent across all ensemble sizes, but
the three cases deviate after this initial peak. All three cases
exhibit a similar frequency of oscillation over the time period
tested, with noise in the 500 member ensemble influencing
the longer-term behavior of that response (between years 3—
5). There are deviations from the 50 000 member response in
the 5000 member case as well, though it is generally more
in-phase than the 500 member ensemble. The NRMSE be-
tween the 50 000 and 5000 member ensembles is 166.22 %,
while the NRMSE between the 50 000 and 500 member en-
sembles is 546.06 %. Both responses are far from the ground
truth, but the 5000 member ensemble is much closer than the
500 member ensemble. Because the 5000 member ensemble
has such high error relative to the 50 000 member ensemble,
the predictive skill shown in Figs. 4 and 9 does not tell the
full story. By further increasing ensemble size, we expect to
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see commensurate increases in accuracy when emulating this
system with the FDT.

Despite the fact that this experiment violates the linearity
assumption of DMD (Method V), it has relatively stable per-
formance of a similar order to the other methods tested. Pre-
dictive skill on High Emissions and Plateau increases with
the number of ensemble members, as one would expect as
noise is averaged out, but skill on Abrupt decreases, which
seems to be counterintuitive. In this case, we may not be in-
troducing any further information about the coherent, under-
lying dynamics, which is supported by other methods show-
ing consistent performance in these regimes. Increasing the
ensemble size is leading to further refinement of the emula-
tor’s its parameters for Overshoot and its more closely related
scenarios (High Emissions and Plateau). A deeper investiga-
tion is required to assess DMD’s suitability for Lorenz-like
systems. EDMD (Method VI) does not exhibit this behavior,
instead performing with consistent skill across all combina-
tions. This is likely because the third-order Hermite polyno-
mial used as the basis is well-suited to train on this scenario,
illustrating the need for careful selection of basis functions.

5 Discussion and conclusions

While emulators of Earth System Models (ESMs) have re-
cently surged in popularity, uncertainty regarding their per-

Earth Syst. Dynam., 17, 107-139, 2026




128 C. B. Womack et al.: A theoretical framework to understand sources of error in ESM emulation

NRMSE vs. Ensemble size by method
Training scenario: Quershoot

(a) Method I: Pattern Scaling (b) Method II: FDT
—— Abrupt
High Emissions

1024 = Plateau E

101_
__ (9 Method I1I: Deconvolution (d) Method IV: Modal Fitting
2,
LUIJ) 1021
= ~
2 w0l o

(e) Method V: DMD (f) Method VI: EDMD

102.

104 7

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

No. Ensemble Members

Figure 9. NRMSE vs. number of ensemble members for all emulators trained on Overshoot and tested against the three remaining scenarios.
Emulators are shown as pattern scaling (a), FDT (b), deconvolution (c), modal fitting (d), and DMD (e), and EDMD (f). The FDT is trained
on separate perturbation scenarios, and is therefore tested against all four scenarios. Unlike experiment three, there is no baseline/noiseless
skill to compare against.

Cubic Lorenz Response Function

L = 50 000 Members
< 5000 Members
8 2 II - 500 Members
13} \ N\

g /\ l \ I

8. /7 \ \

N i M ~~ —. .
g0 N (”\u
—~ '
N

—2- .
0 1 2 3 4 5
Year
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members: 500, 5000, and 50 000. We use At = 0.01 and § = 50 At applied to the Y component of the system.

formance under a variety of scenarios and the lack of a com- fects, hidden variables, noise, and nonlinearities. Response
prehensive theoretical framework for analysis have posed function emulators consistently outperform other techniques,
problems for efforts at fundamental methodological compar- and the Fluctuation Dissipation Theorem (FDT) provides a
isons. Our framework for emulator design and analysis builds robust method to derive them, though it also requires its own
on ideas from statistical mechanics and stochastic calculus, experimental ensemble. Section 5.1 describes emulator per-
facilitating analysis of several emulation techniques from a formance and key findings from our pedagogical examples,
theoretical and practical perspective. Our experiments based while Sect. 5.2 discusses the implications of our findings
on simplified representations of the climate stress test a suite for ESMs. Table 6 additionally summarizes our experimental
of emulators, including pattern scaling, response functions, findings, focusing on the robustness of different emulators to
and operator-based emulators, in the presence of memory ef- different sources of error.
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Table 6. Summary of emulator capability by technique based on the results from Sect. 4. An “X” indicates a technique possess the listed
capability, while a “~” indicates may meet this requirement if other conditions are met; we discuss these capabilities explicitly in Sect. 5.
Memory refers to an emulator’s ability to capture memory effects (Fig. 1a, experiment one), Hidden refers to an emulator’s skill in the
presence of hidden variables (Fig. 1b, experiment two), Noise refers to an emulator’s robustness to simulation noise (Fig. 1c, experiment
three), and Nonlin. refers to an emulator’s ability to capture weak nonlinear effects (Fig. 1d, experiment four).

Technique

Memory Hidden Noise Nonlin.

Method I: Pattern Scaling

Method II: Fluctuation Dissipation Theorem
Method III: Deconvolution

Method I'V: Modal Fitting

Method V: Dynamic Mode Decomposition (DMD)

Method VI: Extended DMD

X

X
X

2
2

8

XK XX
2
>
2

5.1 Emulator performance and trade-offs

Each emulation technique considered in this work be-
longs to a spectrum of methods as defined by the joint
Fokker-Planck/Koopman operator framework. Some emu-
lators on this spectrum demand strict assumptions (quasi-
equilibrium/pattern scaling), while others are much more
general (EDMD). There is a trade-off between the strictness
of assumptions and emulator complexity, and relaxing these
assumptions can shift the emulator’s optimal use case. More
general techniques may require specifically designed experi-
ments, and decreasing structural emulator error may come at
the price of increased computational costs (e.g., the Fluctu-
ation Dissipation Theorem). Using this framework addition-
ally identifies a gap in the current emulator typology as de-
fined by Tebaldi et al. (2025), as we need to consider the po-
tential role operator-based emulators can play in this ecosys-
tem; e.g., characterizing physical behavior in the system in
addition to emulating it, as in Navarra et al. (2024).

Pattern scaling is a popular emulation technique because
it is easy to implement, fast to apply, and its limits are
well understood empirically (Mitchell, 2003; Tebaldi and Ar-
blaster, 2014; Wells et al., 2023). Its efficiency makes it the
method of choice particularly for assessments of mean an-
nual temperature in monotonic forcing scenarios (e.g., SSP5-
8.5, SSP3-7.0, or SSP2-4.5) and for understanding first-order
trends of climate signals, even in the presence of internal
variability. Previous work has shown this approach is valid
only when the forcing is exponential and has a fixed spa-
tial pattern, along with linear dynamics and feedbacks (Giani
et al., 2024). Our results additionally show that pattern scal-
ing exhibits two sources of irreducible error: a mismatch be-
tween the true and predicted patterns at equilibrium and the
assumption that the climate must respond instantaneously to
external forcings. If forcing history is important, such as in
centennial-scale or strong overshoot experiments, the single-
pattern approximation breaks down, misrepresenting shifts in
regional warming over time. This is also the case with highly
variable fields such as precipitation, where the first-order ap-
proximation may not capture significant trends. More general
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quasi-equilibrium approaches show promise (e.g., mapping
from forcing to temperature in experiments two and four),
but have yet to be widely explored in the context of full-scale
ESMs. Pattern scaling’s limitations push us towards emula-
tion techniques that can capture more complex dynamics.

Response functions are increasing in popularity as they
can capture many processes of interest that are missed by pat-
tern scaling, such as the pattern and memory effects (Freese
et al., 2024; Sandstad et al., 2025; Winkler and Sierra, 2025;
Womack et al., 2025). This makes them ideal for represent-
ing decision-relevant, non-monotonic forcing scenarios, such
as temperature overshoots. Response function approaches as-
sume a linear relationship between the input forcing and out-
put variable interest and that perturbations to the system are
small (Lucarini et al., 2017). As a result, they are able to cap-
ture weakly nonlinear effects, so long as perturbations remain
within the linear response regime. They must be used with
caution when nonlinear effects are dominant or (depending
on the technique) when internal variability is significant.

Despite its computational costs, deriving response func-
tions with the Fluctuation Dissipation Theorem (FDT) of-
fers a benefit over other response function techniques: it
generates the system’s exact linear response. Deconvolution
and modal-fitting, by contrast, can produce non-physical out-
put. As the FDT states, the response to small perturbations
can be captured by R(z) if the system statistics are approx-
imately stationary and the dynamics drive the weakly per-
turbed system back to the unperturbed state. The concept of
climate is predicated on assuming the latter is true, further
cementing the FDT’s utility in this context. Because FDT-
based response functions are physically interpretable, they
support linear analyses of Earth system processes and serve
as a reliable foundation for climate emulators (Lucarini and
Chekroun, 2024).

Emulators that seek an explicit representation of the Koop-
man operator are potentially powerful tools as they are
founded on rigorous theory and are interpretable (Tu et al.,
2014; Williams et al., 2015; Schmid, 2022). They can, in
principle, reproduce any behavior the climate system might
exhibit. In practice, however, their utility is constrained by
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several factors. Both Dynamic Mode Decomposition (DMD)
and Extended DMD (EDMD) require the input and output
variables of interest (e.g., radiative forcing and temperature)
to completely characterize the dynamics of the system, ren-
dering them sensitive to hidden variables. DMD additionally
requires linearity between inputs and outputs, which is of-
ten violated in practice (Schmid, 2010). EDMD relaxes this
assumption by using a higher-dimensional space at the cost
of selecting an appropriate (and often problem-specific) set
of basis functions (Williams et al., 2015). The choice of ba-
sis functions is a major consideration with this method, and
we may have been able to improve our implementation of
EDMD further with a different choice. Solving the resulting
large eigenvalue problems with either algorithm can be com-
putationally demanding, and EDMD and DMD can be sen-
sitive to noise, potentially overfitting to data. Despite these
challenges, operator methods allow us to identify dominant
modes of variability in the climate system. They can also, in
theory, be used to capture state-dependent and non-stationary
processes, though this again requires a careful selection of
basis functions and a large amount of training data. While
EDMD and DMD attempt to approximate the Koopman op-
erator, they are simplified representations and in many cases
do not closely approximate the true operator. Despite this, the
Koopman and Fokker-Planck operators provide the most use-
ful theoretical basis as they offer a way to directly link dis-
parate forms of emulators. These techniques have the poten-
tial to be highly generalizable to scenarios beyond the train-
ing data as they can reproduce the system’s true dynamics,
but further research is required to determine the potential of
using operator-based methods directly for climate emulation.

Emulator performance varies depending on the experi-
mental setup, highlighting that emulators are often designed
to be application specific and not completely general. Fig-
ure 4 provides an overview of these results, but each emula-
tor had the potential for high performance depending on the
application. For example, pattern scaling performs poorly on
all experiments, but shows high skill regardless of the experi-
ment when trained and tested against High Emissions; this is
not shown, as the case where the training and testing datasets
are the same is trivial (near zero error) for all emulation tech-
niques. However, this illustrates that pattern scaling has util-
ity if used on scenarios with exponential forcing, more akin
to ScenarioMIP (O’Neill et al., 2016); see (Giani et al., 2024)
for further discussion. Future work will further examine the
role training data plays in emulator development.

Whether emulators learn physically interpretable repre-
sentations of the system they are emulating remains an open
question, though our process of testing an emulator’s extrap-
olative capability suggests that some techniques do learn the
system’s true behavior. The clearest example of this is the
FDT, which performed consistently well across all scenarios.
This is to be expected as the theory behind the FDT shows
that it calculates the physical impulse response of the system
(Lucarini et al., 2017; Giorgini et al., 2024). Pattern scaling
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on the other hand, by definition, does not learn realistic be-
havior unless the system is fully determined by the pattern
scaling coefficients. For other techniques, the results are less
clear. For example, the modal fitting approach is able to ex-
trapolate successfully in any of the first three experiments
when trained on Abrupt, but not when trained on High Emis-
sions, further supporting the need for an effort focused on
quantifying the impact of training data on climate emula-
tors. Deconvolution and DMD also exhibit mixed levels of
extrapolative skill, leading to difficulties in making a consis-
tent argument about interpretability from our results. This is
especially the case for DMD, as the £ matrix we derive is not
easily mappable to the true underlying parameters of e.g., the
coupled three box model, as this problem is effectively un-
derdetermined; we are solving for twelve DMD parameters,
whereas the full system is determined by three heat capaci-
ties, three feedback parameters, and one diffusion coefficient.
Future work will investigate the possibility of learning true
system parameters from these emulated representations.

5.2 Implications for ESMs

While the lack of a common conceptual baseline has histor-
ically hindered comparisons between emulator classes, our
framework takes an important step towards resolving this.
Efforts such as ClimateBench, which provide a common
training and evaluation benchmark, have been useful to that
end (Watson-Parris et al., 2022), but emulator structural dif-
ferences prevent it from being applied to all existing emula-
tion techniques. Additionally, the high computational burden
of running scenarios beyond those in the CMIP archive (for
training or evaluation), prevents rigorous assessment of emu-
lator capability (e.g., emulating the impact of individual forc-
ings) and generalizability (accuracy beyond ScenarioMIP).
Results from experiments such as the Detection and Attribu-
tion MIP (DAMIP) and Regional Aerosol MIP (RAMIP) can
help fill these gaps (Gillett et al., 2016; Wilcox et al., 2023),
but the field of ESM emulation is currently data-constrained.
Our theoretical framework and pedagogical experiments pro-
vide value in this data-limited setting, as they allow us to
evaluate the assumptions present in many common emula-
tors. Our results illustrate the potential sources of error dif-
ferent emulator structural assumptions invite, giving us tools
to assess and improve emulation techniques independently
of ESM results. As ESMs improve, this framework can help
ensure emulators are prepared to train on those new results.
Our pedagogical experiments provide a useful tool to iso-
late and examine individual sources of error relevant to emu-
lating ESMs (Fig. 1). Though our simplified models are lim-
ited in that they lack much of the complexity of full-scale
ESMs, our experiments highlight that emulator errors can
be proactively resolved through structural changes in emula-
tion, regardless of the parent model. For example, our results
further support the growing body of literature on the utility
of response functions (Freese et al., 2024; Womack et al.,
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2025; Winkler and Sierra, 2025). Response functions offer
improvements over pattern scaling, particularly when con-
sidering memory effects in decision-relevant scenarios. They
may also better emulate longer (post-2100) scenarios by ac-
counting for regional pattern shifts, though longer ESM runs,
such as the extensions proposed in ScenarioMIP for CMIP7,
are required to test this (Van Vuuren et al., 2025). Existing
emulators of ESMs may also benefit from incorporating re-
sponse functions. For example, recent work into hybrid emu-
lation using a generative model conditioned on pattern scal-
ing could be extended by conditioning on response functions
instead (Bouabid et al., 2025).

Several promising emulation techniques explored here, in-
cluding the Fluctuation Dissipation Theorem (FDT), Dy-
namic Mode Decomposition (DMD), and Extended DMD
(EDMD), have seen uses in climate science but have yet to be
applied directly as emulators of ESM outputs as defined by
Tebaldi et al. (2025). An intermediate step for either the FDT
or EDMD may be to first emulate an EMIC, helping deter-
mine useful training scenarios without the cost of a full ESM.
Our results suggest further research into these techniques is
warranted, as they may represent more complex dynamics
than other methods. In this context, the FDT stands apart as
the most promising technique for emulating general dynam-
ical systems, as evidenced by its skill in this and other recent
work (Giorgini et al., 2025b). However, using the FDT to de-
rive response functions through perturbations requires a full
initial condition ensemble for every perturbed grid cell/re-
gion (Lucarini et al., 2017; Lembo et al., 2020), similar to
the Green’s Function MIP (Bloch-Johnson et al., 2024), and
is likely prohibitively expensive for full ESMs. The score-
based FDT (Sect. 2.3) provides a remedy, using statistical
learning methods to learn the score function and thus the
system response (Giorgini et al., 2025b). Regardless of the
derivation method, our results suggest response functions are
the dominant emulation technique both in terms of accuracy
and interpretability.

Most work studying climate emulation focuses on devel-
oping and implementing new approaches in an application-
specific manner. Our results show the utility of an operator-
based framework for systematic analysis and comparison
of climate emulation techniques. The main benefit of this
framework is providing a toolkit for understanding trade-
offs between emulator complexity and performance while
connecting emulation techniques to fundamental principles
of statistical mechanics and stochastic systems. We find
that memory effects, internal variability, hidden variables,
and nonlinearities are potential error sources, and that re-
sponse function-based emulators consistently outperform
other methods, such as pattern scaling and DMD, across
all experiments. Emulator performance varies by experimen-
tal setup, particularly through the choice of training data,
and further work is required to fully characterize these ef-
fects. This framework currently relies on simple experiments,
and further work is needed to determine if operator-based
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methods like EDMD can be practically realized to emulate
nonlinear processes in full-scale climate models. Our anal-
ysis also highlights the FDT’s potential for deriving robust,
physically-interpretable response functions, though its com-
putational cost is a potential barrier. As interpretability is an
ongoing discussion in the emulator community, investing re-
sources in physically-grounded methods like the FDT may
go a long way towards increasing the utility of emulators not
just for emulation, but for linear system analysis.

Appendix A: Additional derivations

A1 Pattern scaling errors

To understand the potential sources of error in pattern scal-
ing, we start from the linear equation for temperature evolu-
tion

%T(x,l) =K(x,x"T(x',1)+ P(x)F (1), (Al)

where T (x, 1) is the spatially explicit temperature, C(x, x”) is
the Koopman operator that governs the autonomous system
dynamics, P(x) is the spatial forcing pattern, and F'(¢) is the
time series of the forcing.

We can examine errors in pattern scaling by considering
the case in which the pattern scaled temperature, Tps(x,?),
is trained using an exponential forcing, F(r) = ¢'/, where
T indicates the growth rate of the exponential. Forcing our
governing equation with this yields

—1
Tps(x,t) = [%S(x —x')— IC(x,x’)] P(x))e!/". (A2)

Here §(x —x) is the Dirac delta, so %8 — K plays the role
of %I — K in discretized form; we assume 7 lies outside the
spectrum of K so the inverse exists. Factoring out the expo-
nential from this expression leaves us with

~1
ar(x) = [%8(x —x) - K(x, x/)i| P(x)). (A3)

ai(x) is therefore the spatial scaling pattern used as our emu-
lator. Inserting 7'(x,t) = a1 (x)F(¢) into the governing equa-
tion with the same exponential forcing, leaving us with

1
;al(x) =K(x,xNa(x") + P(x). (A4)

This identity expresses how the pattern, aj(x), balances in-
ternal dynamics with an external forcing.

We now consider an alternate scenario with an arbitrary
forcing, Fyy, that is not the exponential forcing used for train-
ing. We denote the error between the true solution and our
emulator as

T'(x, 1) = Tan(x, 1) — a1 (x) Fa(0). (A5)
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We then recognize that Toy(x,7) = T'(x, 1) +a1(x) Fau(2). In-
serting this into our governing equation and using the identity
from Eq. (A4) gives an equation describing the evolution of
errors over time

d ., INT (! 1
ET (e, 1) =K(x,x)T"(x", 1) + ;al(x)Falt(t)
d
—ai (X)E Fa(?) (A6)

From this expression, we see that there are two distinct
sources of error in pattern scaling when trained on an ex-
ponential (ScenarioMIP-like forcing). The first corresponds
to an equilibrium-offset. If Fy(¢) asymptotes to a constant
F, the time derivative in Eq. (A6) vanishes, leaving us with

1
lim 7/(x,1) = —— K~ '(x', x)a; (x) Fr. (A7)
t—00 T

Since we assume ! exists, there does not exist a non-zero
vector such that = !(x’, x)a; (x) = 0. Therefore the temper-
ature produced by pattern scaling does not perfectly match
the true equilibrium pattern.

The second source of error occurs in the transient case.
When Fjy(t) varies in time, the final term in Eq. (A6) does
not go to zero. If Fy(¢) changes more quickly than the train-
ing growth rate (i.e., % > %Falt(t)), then pattern scaling
under-predicts the true temperature change. Conversely, very
slow changes in Fy(¢) lead to an over-prediction of the true
temperature change. A non-negligible rate of change term
signals that system memory will be significant in that sce-
nario.

Physically, the first error arises because the system’s equi-
librium pattern depends on its slow internal modes, whereas
the second arises because those modes cannot keep pace with
forcing that accelerates faster (or slower) than the training
rate T.

A2 Deconvolution instabilities

Deconvolution can amplify noise or in the worst case, cause
the response function to blow up entirely. Here we identify
where those instabilities arise. While issues with deconvo-
lution are apparent in the time domain, they are easier to
diagnose in frequency space. We use the Fourier transform
(denoted by F) to rewrite convolution as multiplication:

Flgw)]=F /dt R(x,T)F(t — 1) (A8)
§(wy) = R(x, »)F (w), (A9)

where g(w;) is our statistical quantity of interest, R(x,¢) is
the response function, F(t) is the forcing, the hat denotes
the (continuous-time) Fourier transform, and w is the angu-
lar frequency. Recovering the response function therefore be-
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comes division:

R(w) = ”(’;Ffl:)w)), (A10)
w
Rt)y=F"! [%} (A11)

where F~! denotes the inverse Fourier transform. In discrete
space, we use the fast Fourier transform.

If F(w) has any near-zero frequencies, dividing by it
causes Ié(a)) — oo at those frequencies. The correspond-
ing time-domain process requires an explicit matrix inverse,
where small eigenvalues translate into an ill-conditioned ma-
trix. Additionally, if |F(w)| spans several orders of magni-
tude, the ratio g(wy)/ F(w) amplifies high-frequency mea-
surement noise and round-off error. The condition number
of the corresponding matrix becomes very large, yielding an
unstable of estimate of R(x,?).

These issues are also encountered in signal processing,
where a system is said to lack a spectral inverse (i.e., zeros
in the frequency domain) if it exhibits the above issues (Ye-
ung and Kong, 1986; Zazula and Gyergyek, 1993). Even in
the absence of noise, the relatively flat spectrum of a true im-
pulse response makes it difficult to recover directly. A domi-
nant eigenvalue can obscure the weaker ones.

A3 Distinction between Green’s and response functions

A scalar field, w(t), governed by the linear time-invariant
equation

0

5 w0 = Lw(r)+ F(), (Al12)

has a corresponding Green’s function, G(¢), that solves

K]

EG(I) =LG{@)+8(), Gt <0)=0. (A13)
For a linear operator, £, the solution is

G(t) = H(t)e™, (A14)

where H(t) is the Heaviside step function and €L is a ma-
trix exponential. From this, any general forcing produces a
response given by

t

w(t)=/G(r)F(t—r)dr.

0

(A15)

A response function, on the other hand, is either an empiral
or equation-driven function that reproduces the system’s lin-
earized output but is not required to satisfy Eq. (A13). When
the underlying dynamics are nonlinear, as is the case in cli-
mate models, a true Green’s function does not exist. In prac-
tice however, the success of techniques such as pattern scal-
ing illustrates that temperature response is very nearly linear
for most of the globe, suggesting that data-derived response
functions may closely approximate Green’s functions for cer-
tain variables.
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A4 Transitioning from IC to £

We begin from a vector form of Eq. (6), the expectation of
a statistical field g(w), where bold symbols are used to ex-
plicitly denote vectors. The vector w represents a set of state
variables, w;, at discrete points in space. The evolution of

(g(w)) is

9 9
% (g(w)) = <[Ni(w, 1)+ Fi(1)] —g(W)>
t ow;

32

+ D<—2 g(w)>. (A16)
owy

We consider the case where g(w) = w; to find the evolution

of the mean of the state variables themselves. Substituting

this gives

0

5(“11') = (Nij(w, 1)+ F;(1). (A17)
We then define a steady baseline state, w, as

N, 1) =—F;, (A13)

where F; is constant in time. Deviations from the baseline

satisfy
%(w§) =N@+w',0)—N;w,0) + F (1),

where F/(t) is the time-varying component of the forcing.
We then use a first-order Taylor expansion around w to write

a ON;

(A19)

E(wi) -~ M W(w}) + F/(t)= Eij(w}) + F/(t), (A20)
where the derivative term, 3—Qf’, can be pulled out of the ex-

pectation because the baseline state is not stochastic. To con-
clude, we rewrite this with (wlf) = T(x;,t) and drop the dis-
crete notation for space

%T(x,t):L(x,x’)T(x,tH—F(x,t). (A21)

A5 FDT relationship to Fokker-Planck and Koopman

Here we show how the Fluctuation Dissipation Theorem
(FDT) relates to the Fokker-Planck operator. The result
shows that a linear response function can be computed di-
rectly from the forward operator of the unperturbed system.
Let w represent our full system state. Consider an equation
of the form
Jw
EZfo(w,t)+f1(w,t)+€$(t), (A22)

where fy governs the unperturbed system dynamics and f
governs the perturbed system dynamics. The Fokker-Planck
equation corresponding to this is

2
dp+V- [(fo+f1)p— %Vp] =0. (A23)
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Without loss of generality, we decompose p = po+ pi,
where p satisfies

2
e
dpo+V- (fopo - ?Vpo) =0. (A24)
Then p; must exactly satisfy,
2
atP1+V'(f0P1+f1po+f1P1—EVm)=0 (A25)

The perturbation variables (f; and pp) form a higher-order
term that we neglect, giving

2
£
op1+V- (fom - ?Vpl) ~ =V -(f1po). (A26)
The solution to this is
pr(w, 1) = —e 70V . (fi po), (A27)

assuming that pj(w,0) =0, i.e., there is no perturbation at
t =0, and Fy is the unperturbed (time-independent) Fokker-
Planck operator. Multiplying through by an arbitrary statisti-
cal quantity of the state, g(w), and integrating with respect to
w then yields the first-order perturbation in g(w)

/g(w)pl(w,t)dw =fg(w)e_f°’V-(f1po)dw- (A28)

The quantity on the left hand side is the expected value of the
perturbed statistical quantity as a function of time. The right
hand side is the cross correlation of the statistical quantity,
g, with h =V - (f1po)/po with respect to the unperturbed
system. Noting the Koopman operator is the adjoint of the
Fokker-Planck operator gives

(e—fof)* — ¢ Kot (A29)

where * indicates the adjoint (conjuate transpose in finite
dimensions) and F* = I, giving an expression for the re-
sponse function in terms of the Koopman operator.
Alternatively, we can connect the Fokker-Planck operator
to the FDT through the score function. Consider the score

function of the state given by
s(w) = Vy In po(w). (A30)

For a small, instantaneous perturbation applied at ¢ = 0, the
linear response of the mean field at a lag 7 is given by
R(t) = —(g(w;)s(wo)) py» (A31)

where the angle brackets denote an average over the station-
ary ensemble. We express this correlation with a joint proba-
bility density as

R(t) = —//p(wo,wz)g(wz)s(WO)dwtdwo, (A32)
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Using Bayes’ theorem, we factor the joint probability density
as

p(wo, w,) = po(wo) p(w;|wo), (A33)

where p(w;|wop) is the conditional probability from wq to
w;. For dynamics governed by the Fokker-Planck operator,
F, we have

p(w,|wo) = e” ' 8(wo — wy). (A34)

We then insert this expression into Eq. (A32) and integrate
over w;:

R(t) = —/Po(wo)eﬂg(wo)S(wo)dwo. (A35)
Therefore, the linear response function can be obtained by

propagating the unperturbed field with ¢/ and correlating
the result with the stationary score function.

Appendix B: Regularization for response functions

Estimating a response function from noisy data requires us-
ing deconvolution to invert an often ill-conditioned matrix.
We choose to model the noise in our field of interest, g(W),
with a Gaussian noise term: &€ ~ A(0, o2I). Rather than ap-
plying an ad-hoc smoothing algorithm, we cast the problem
in a Bayesian framework, placing a Gaussian prior on the
response matrix: R ~ NV(0, A2I). Our measurement model is
therefore

gW)=FR+e. (B1)

We have dropped At and the spatial pattern for conciseness,
but this analysis can easily be repeated including those terms.

Under this probabilistic model, we frame the task of esti-
mating R as finding the vector that maximizes the response
function probability given the observable data we have col-
lected, i.e., p(R|g(W)). This term is called the maximum a
posteriori (MAP). As it is more convenient to work with log
probabilities, we recast this problem as

max log p(R|g(W). (B2)
Using Bayes theorem, maximizing the log-posterior,
1
log p(R|g(W)) = — > [|g(W) — FR|?
L IRI? + const (B3)
- const,
202

is equivalent to solving

min|| (W) —FR|? +a|R|?, a =0?/2% (B4)

Thus ridge regression is equivalent to placing a Gaussian
prior on the response function and assuming that the data we
collect are corrupted by Gaussian noise.
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To avoid making an arbitrary choice for our noise and prior
variance hyperparameters parameters, o> and A%, we propose
to compute their maximum likelihood estimates under the
distribution of the field of interest. We maximize the marginal
likelihood evidence,

p(g(W)lo?,2%) = f p(g(W)IR, %) p(R,1*)dR (B5)
=N (g(W[0, %), (B6)

with covariance ¥ = o021+ A2FF’. Maximizing the log-
evidence,

—1(10 T+ gW) Z  g(W B7
5 (log =1+ g(W)" =" g(W)) +const (B7)

has no closed-form solution for a general F, so we determine
o2 and A% numerically.

Appendix C: Analytic examples

In this appendix, we use a 1D Ornstein-Uhlenbeck (OU) pro-
cess to analytically derive the Fokker-Planck operator, the
Koopman operator, the eigenpairs of both operators, and the
linear response function for the system obtained in two ways:
(1) by directly solving the forced stochastic differential equa-
tion (SDE) and (2) by correlation with the score function.

C1 Fokker-Planck and Koopman operator derivation

We define the OU SDE as
dw; = —w,;dr 4+ +/2dW,, (C1)

where wy is the statistical field of interest and W, is a Wiener
process. The drift coefficient, —wy, relaxes the state toward
zero, while the diffusion coefficient, ﬁ, gives a unit vari-
ance.

We write the Fokker-Planck equation corresponding to this
OU process directly:

D pw )= 2 (wp) ©2)
—p(w,1) = — (wp)+ —p,
atp ow P 8w2p

where p(w, t) is the probability density function of the field.
The stationary solution of this expression is the standard nor-
mal probability density:

w

e 7. (C3)

1
po(w) =
V2
From the previous result, we explicitly write the Fokker-
Planck operator governing the evolution of the probability
density as

9 9
FO) = " [w(-) + —(~)} . (C4)
w Jow
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To find the eigenfunctions, ¢(w), with Fo(w) = Ap(w), we
2

introduce the ansatz ¢(w) = h(w)e’%, giving
h (w) — wh'(w) — Ah(w) =0, (C5)

whose solutions are Hermite polynomials, H,(w), with
eigenvalues A = —n forn =0, 1, 2, ....

C2 Response function via direct diagnosis

Adding a deterministic forcing, F(z), to our OU process
gives

dy, = (—y; + F(£))dt ++/2dW,. (C6)

Taking the expected value of this and assuming (y(0)) =0
gives

d
EM =—(y)+F@), (€7

whose solution is given by

t

(y()) = /e_fF(t —1)dr, (C8)

0

where the response function is R(¢) = e~ for ¢ > 0.

C3 Response function via correlation with score
function

The stationary score function is given by
s(w) = Vy Inpo(w) = —w, (€9

where we can make this simplification since the stationary
probability distribution is given by a standard normal.
The Fluctuation Dissipation Theorem predicts

R(1) = —(w(®)s(w(0))) = e, (C10)

which agrees exactly with the direct solution above.
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