Articles | Volume 16, issue 4
https://doi.org/10.5194/esd-16-1153-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-1153-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty quantification for overshoots of tipping thresholds
Kerstin Lux-Gottschalk
CORRESPONDING AUTHOR
Department of Mathematics and Computer Science, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, the Netherlands
Paul D. L. Ritchie
CORRESPONDING AUTHOR
Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, EX4 4QE, UK
Global Systems Institute, Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, EX4 4QE, UK
Related authors
No articles found.
Paul David Longden Ritchie, Chris Huntingford, and Peter Cox
EGUsphere, https://doi.org/10.5194/egusphere-2024-3023, https://doi.org/10.5194/egusphere-2024-3023, 2024
Short summary
Short summary
Climate Tipping Points are not instantaneous upon crossing critical thresholds in global warming, as is often assumed. Instead, it is possible to temporarily overshoot a threshold without causing tipping, provided the duration of the overshoot is short. In this Idea, we demonstrate that restricting the time over 1.5 °C would considerably reduce tipping point risks.
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Short summary
Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems.
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023, https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Short summary
Emergent constraints (ECs) reduce the spread of projections between climate models. ECs estimate changes to climate features impacting adaptation policy, and with this high profile, the method is under scrutiny. Asking
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
Isobel M. Parry, Paul D. L. Ritchie, and Peter M. Cox
Earth Syst. Dynam., 13, 1667–1675, https://doi.org/10.5194/esd-13-1667-2022, https://doi.org/10.5194/esd-13-1667-2022, 2022
Short summary
Short summary
Despite little evidence of regional Amazon rainforest dieback, many localised abrupt dieback events are observed in the latest state-of-the-art global climate models under anthropogenic climate change. The detected dieback events would still cause severe consequences for local communities and ecosystems. This study suggests that 7 ± 5 % of the northern South America region would experience abrupt downward shifts in vegetation carbon for every degree of global warming past 1.5 °C.
Cited articles
Alkhayuon, H., Ashwin, P., Jackson, L. C., Quinn, C., and Wood, R. A.: Basin bifurcations, oscillatory instability and rate-induced thresholds for Atlantic meridional overturning circulation in a global oceanic box model, P. R. Soc. A, 475, 20190051, https://doi.org/10.1098/rspa.2019.0051, 2019. a
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 °C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. a, b, c, d
Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system, Philos. T. R. Soc. A, 370, 1166–1184, https://doi.org/10.1098/rsta.2011.0306, 2012. a, b
Ben-Yami, M., Skiba, V., Bathiany, S., and Boers, N.: Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation, Nat. Commun., 14, 8344, https://doi.org/10.1038/s41467-023-44046-9, 2023. a
Bochow, N., Poltronieri, A., Robinson, A., Rypdal, M., and Boers, N.: Overshooting the critical threshold for the Greenland ice sheet, Nature, 622, 528–536, https://doi.org/10.1038/s41586-023-06503-9, 2023. a, b
Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (Eds.): Handbook of Markov chain Monte Carlo, Chapman & Hall/CRC Handbooks of Modern Statistical Methods, CRC Press, Boca Raton, FL, ISBN 978-1-4200-7941-8, https://doi.org/10.1201/b10905, 2011. a
Cessi, P.: A Simple Box Model of Stochastically Forced Thermohaline Flow, J. Phys. Oceanogr., 24, 1911–1920, https://doi.org/10.1175/1520-0485(1994)024<1911:ASBMOS>2.0.CO;2, 1994. a, b, c, d
Enache, E., Kozak, O., Wunderling, N., and Vollmer, J.: Constraining safe and unsafe overshoots in saddle-node bifurcations, Chaos, 35, 013157, https://doi.org/10.1063/5.0197940, 2025. a
Huntingford, C., Yang, H., Harper, A., Cox, P. M., Gedney, N., Burke, E. J., Lowe, J. A., Hayman, G., Collins, W. J., Smith, S. M., and Comyn-Platt, E.: Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0 °C, Earth Syst. Dynam., 8, 617–626, https://doi.org/10.5194/esd-8-617-2017, 2017. a, b
Jackson, L., Kahana, R., Graham, T., Ringer, M., Woollings, T., Mecking, J., and Wood, R.: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM, Clim. Dynam., 25, 3299–3316, https://doi.org/10.1007/s00382-015-2540-2, 2015. a
Jackson, L. C. and Wood, R. A.: Hysteresis and Resilience of the AMOC in an Eddy-Permitting GCM, Geophys. Res. Lett., 45, 8547–8556, https://doi.org/10.1029/2018GL078104, 2018a. a
Jackson, L. C. and Wood, R. A.: Timescales of AMOC decline in response to fresh water forcing, Clim. Dynam., 51, 1333–1350, https://doi.org/10.1007/s00382-017-3957-6, 2018b. a
Jackson, L. C., Alastrué de Asenjo, E., Bellomo, K., Danabasoglu, G., Haak, H., Hu, A., Jungclaus, J., Lee, W., Meccia, V. L., Saenko, O., Shao, A., and Swingedouw, D.: Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project, Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, 2023. a, b
Kikstra, J. S., Nicholls, Z. R. J., Smith, C. J., Lewis, J., Lamboll, R. D., Byers, E., Sandstad, M., Meinshausen, M., Gidden, M. J., Rogelj, J., Kriegler, E., Peters, G. P., Fuglestvedt, J. S., Skeie, R. B., Samset, B. H., Wienpahl, L., van Vuuren, D. P., van der Wijst, K.-I., Al Khourdajie, A., Forster, P. M., Reisinger, A., Schaeffer, R., and Riahi, K.: The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures, Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, 2022. a
Kuehn, C.: A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications, J. Nonlinear Sci., 23, 457–510, https://doi.org/10.1007/s00332-012-9158-x, 2013. a
Kuehn, C. and Bick, C.: A universal route to explosive phenomena, Science Advances, 7, eabe3824, https://doi.org/10.1126/sciadv.abe3824, 2021. a
Kuznetsov, Y. A.: Elements of applied bifurcation theory, vol. 112 of Applied Mathematical Sciences, Springer-Verlag, New York, third edn., ISBN 0-387-21906-4, https://doi.org/10.1007/978-1-4757-3978-7, 2004. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a, b
Ma, J., Xu, Y., Li, Y., Tian, R., and Kurths, J.: Predicting noise-induced critical transitions in bistable systems, Chaos: An Interdisciplinary J. Nonlinear Sci., 29, 081102, https://doi.org/10.1063/1.5115348, 2019. a
Marelli, S. and Sudret, B.: UQLab: A Framework for Uncertainty Quantification in MATLAB, in: The 2nd International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2014), American Society of Civil Engineers, University of Liverpool, United Kingdom, 13–16 July, 2554–2563, https://doi.org/10.1061/9780784413609.257, 2014. a
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Climate change 2021: the physical science basis, Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, https://doi.org/10.1017/9781009157896, 2021. a, b
Meyer, A. L. S., Bentley, J., Odoulami, R. C., Pigot, A. L., and Trisos, C. H.: Risks to biodiversity from temperature overshoot pathways, Philos. T. R. Soc. B, 377, 20210394, https://doi.org/10.1098/rstb.2021.0394, 2022. a
O'Keeffe, P. E. and Wieczorek, S.: Tipping phenomena and points of no return in ecosystems: beyond classical bifurcations, SIAM J. Appl. Dyn. Syst., 19, 2371–2402, https://doi.org/10.1137/19M1242884, 2020. a, b
Ritchie, P. and Lux-Gottschalk, K.: Uncertainty quantification for overshoots of tipping thresholds, Zenodo [code] and [data set], https://doi.org/10.5281/zenodo.15348821, 2025. a
Ritchie, P. and Sieber, J.: Probability of noise- and rate-induced tipping, Phys. Rev. E, 95, 052209, https://doi.org/10.1103/PhysRevE.95.052209, 2017. a
Ritchie, P. D. L., Smith, G. S., Davis, K. J., Fezzi, C., Halleck-Vega, S., Harper, A. B., Boulton, C. A., Binner, A. R., Day, B. H., Gallego-Sala, A. V., Mecking, J. V., Sitch, S. A., Lenton, T. M., and Bateman, I. J.: Shifts in national land use and food production in Great Britain after a climate tipping point, Nature Food, 1, 76–83, https://doi.org/10.1038/s43016-019-0011-3, 2020. a
Ritchie, P. D., Clarke, J. J., Cox, P. M., and Huntingford, C.: Overshooting tipping point thresholds in a changing climate, Nature, 592, 517–523, https://doi.org/10.1038/s41586-021-03263-2, 2021. a, b
Ritchie, P. D. L., Alkhayuon, H., Cox, P. M., and Wieczorek, S.: Rate-induced tipping in natural and human systems, Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, 2023. a, b
Ritchie, P. D. L., Huntingford, C., and Cox, P.: ESD Ideas: Climate tipping is not instantaneous – the duration of an overshoot matters, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3023, 2024. a
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., Van de Koppel, J., Van de Leemput, I. A., Levin, S. A., Van Nes, E. H., Pascual, M., and Vandermeer, J.: Anticipating critical transitions, Science, 338, 344–348, https://doi.org/10.1126/science.1225244, 2012. a
Slyman, K. and Jones, C. K.: Rate and noise-induced tipping working in concert, Chaos, 33, 013119, https://doi.org/10.1063/5.0129341, 2023. a
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961. a
Stuart, A. M.: Inverse problems: A Bayesian perspective, Acta Numer., 19, 451–559, https://doi.org/10.1017/S0962492910000061, 2010. a
van Nes, E. H., Arani, B. M., Staal, A., van der Bolt, B., Flores, B. M., Bathiany, S., and Scheffer, M.: What Do You Mean, “Tipping Point”?, Trends Ecol. Evol., 31, 902–904, https://doi.org/10.1016/j.tree.2016.09.011, 2016. a
Wagner, P.-R., Nagel, J., Marelli, S., and Sudret, B.: UQLab user manual – Bayesian inference for model calibration and inverse problems, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, Report UQLab-V2.0-113, 2022. a
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis, J. Geophys. Res.-Oceans, 124, 5336–5375, https://doi.org/10.1029/2019JC015083, 2019. a
Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos, vol. 2 of Texts in Applied Mathematics, Springer-Verlag, New York, second edn., ISBN 0-387-00177-8, https://doi.org/10.1007/b97481, 2003. a
Wood, R. A., Rodríguez, J. M., Smith, R. S., Jackson, L. C., and Hawkins, E.: Observable, low-order dynamical controls on thresholds of the Atlantic Meridional Overturning Circulation, Clim. Dynam., 53, 6815–6834, https://doi.org/10.1007/s00382-019-04956-1, 2019. a, b, c, d
Wunderling, N., Winkelmann, R., Rockström, J., Loriani, S., Armstrong McKay, D. I., Ritchie, P. D., Sakschewski, B., and Donges, J. F.: Global warming overshoots increase risks of climate tipping cascades in a network model, Nat. Clim. Change, 13, 75–82, https://doi.org/10.1038/s41558-022-01545-9, 2023. a
Short summary
For tipping points at low levels of global warming, overshoots of the threshold are becoming increasingly likely. Importantly, for some systems, tipping can still be avoided provided the forcing is reversed sufficiently quickly. Conditions for a mitigation window, which would avoid tipping, depend on system uncertainties. We highlight the need to account for uncertainty in the threshold location and other system features when designing climate mitigation strategies that avoid tipping.
For tipping points at low levels of global warming, overshoots of the threshold are becoming...
Altmetrics
Final-revised paper
Preprint