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Abstract. Many subsystems of the Earth system, which are currently closely following a stable state, are at
risk of undergoing abrupt transitions to a drastically different, and often less desired, state due to anthropogenic
climate change. These so-called tipping events often present severe consequences for ecosystems and human
livelihood that are difficult to reverse. Forcing a nonlinear system beyond a critical threshold that signifies the
onset of self-amplifying feedbacks constitutes a possible mechanism for tipping. However, previous work has
shown that it could be possible to briefly overshoot a critical threshold without tipping. For some cases, the
peak overshoot distance and the time a system can spend beyond a threshold are governed by an inverse-square
law relationship (Ritchie et al., 2019). However, in the real world or in complex models, critical thresholds and
other system features, such as inherent timescales and the system’s linear restoring force after perturbations, are
highly uncertain. In this work, we explore how such uncertainties propagate to uncertainties in the probability
of tipping in response to a temporary overshoot from the perspective of uncertainty quantification. We show the
importance of constraining uncertainty in the location of the tipping threshold and the linear restoring force to
the system’s stable state to better constrain the uncertainty in the tipping behaviour for overshoot trajectories.
We first prototypically analyse effects of an uncertain critical threshold location separately from effects due to an
uncertain linear restoring force. We then perform an analysis of joint effects of uncertain system characteristics
within a conceptual model for the Atlantic Meridional Overturning Circulation (AMOC). The simple box model
for the AMOC shows that these uncertainties have the potential to reverse conclusions for mitigation pathways.
A pathway previously associated with a low risk of tipping may become highly dangerous if the tipping threshold
were to be closer than previously assumed. In this conceptual model, we illustrate how constraining the highly
uncertain diffusive timescale (representative of wind-driven fluxes) within this box model reduces the tipping
uncertainty of the AMOC in response to overshoot scenarios.
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1 Introduction

Recently, climate tipping points have gained increasing at-
tention from scientists, policymakers, and the public (Lenton
et al., 2023), building on the previous scientific literature on
the topic; see e.g. Lenton et al. (2008), van Nes et al. (2016).
Tipping events are abrupt transitions that may occur if some
external forcing crosses a critical threshold (Scheffer et al.,
2012). Systems that are closely tracking a stable state may
find their current state ceasing to exist beyond the threshold
and therefore cause the system to transition (potentially irre-
versibly) to a drastically different state (Lenton et al., 2008).
In the latter study, the authors identified tipping elements
of the climate system. A recent assessment can be found in
Armstrong McKay et al. (2022), where the authors elaborate
on the most important tipping elements and corresponding
tipping points. These tipping points pose severe threats to
ecosystems and human habitat (Lenton et al., 2023). One ex-
ample for a part of the Earth system suggested to exhibit tip-
ping behaviour is the Atlantic Meridional Overturning Circu-
lation (AMOC) (Weijer et al., 2019). A tipping of the AMOC
would be likely to cause a significant cooling over northern
Europe, substantially change patterns in tropical rainfall, and
lead to regional sea level rise (Jackson et al., 2015). Gain-
ing a better understanding of the tipping behaviour of the
AMOC is crucial for deriving efficient climate change miti-
gation strategies.

Awareness of the need for action is prevalent, since the
impacts are likely to be far-reaching if a system tips; see
e.g. Ritchie et al. (2020). To increase the efficiency of mitiga-
tion measures, a better understanding of these tipping events
and under which circumstances tipping can be prevented is
crucial. For example, tipping is not instantaneous upon cross-
ing a tipping threshold (Ritchie et al., 2024); thus a suffi-
cient fast reversal in the forcing can return the system to its
original state without tipping (Ritchie et al., 2019). To un-
derstand these overshoots of tipping thresholds, it is impor-
tant to understand which mechanisms can cause a system to
tip. We distinguish between noise-induced, rate-induced, and
bifurcation-induced tipping (Ashwin et al., 2012). So-called
noise-induced tipping can occur when fluctuations from fast
processes become particularly pronounced and might cause
the system to tip without a change in external forcing; see
e.g. Ashwin et al. (2012), Ma et al. (2019). Alternatively,
changing the external forcing too quickly can lead to a dif-
ferent tipping mechanism known as rate-induced tipping; see
e.g. Ritchie et al. (2023) The mechanism of crossing critical
thresholds that leads to tipping by (slowly) changing an ex-
ternal forcing is referred to as bifurcation-induced tipping.
In Kuehn (2013), the author provides a mathematical frame-
work for critical transitions in terms of bifurcation theory;
see also Kuznetsov (2004) and Wiggins (2003) for further
mathematical details. More recently, the universal nature of
the emergence of critical transitions in physical systems was
analysed in Kuehn and Bick (2021).

All three mechanisms can contribute to the uncertainty
in mitigation windows, that is, how far and for how long a
system may overshoot tipping thresholds and still return to
the system’s original equilibrium state (Ritchie et al., 2019).
Since we would like to understand overshoots of tipping
thresholds of global warming, which can be characterized as
bifurcation thresholds, our primary focus is on better con-
straining the mitigation window for bifurcation-induced tip-
ping. For some subsystems of the Earth, critical thresholds
have been suggested to be at low levels of global warming
(Armstrong McKay et al., 2022), such that overshoots of the
threshold are becoming increasingly likely. It is important to
note that, for some elements, climate model simulations have
suggested that tipping might not occur, despite an overshoot,
if the reversal of the forcing is sufficiently fast (Jackson and
Wood, 2018a; Jackson et al., 2023). Since, for some systems,
we are already very close to a level of global warming that
might trigger tipping (see Fig. 2 of Armstrong McKay et al.,
2022), it is crucial to quantify which exceedance level of a
possible threshold might allow us to return to the original
state if forcing is reversed sufficiently quickly. This over-
shoot mechanism has already been subject to thorough in-
vestigations (Ritchie et al., 2021; O’Keeffe and Wieczorek,
2020; Wunderling et al., 2023; Bochow et al., 2023).

However, much less is known about the impact of uncer-
tainties on overshooting tipping thresholds. In particular, the
IPCC 2021 report (Masson-Delmotte et al., 2021) empha-
sizes that high-impact, low-likelihood climate outcomes, to
which some tipping events belong, should be part of climate
risk assessments. To assess risks of tipping, a thorough han-
dling of uncertainties is needed. One type of uncertainty re-
lated to a possible tipping of the AMOC is uncertainty in
datasets, such as those for sea-surface temperature and salin-
ity. In the context of early warning signals for tipping, an
uncertainty propagation procedure to quantify the effects of
dataset uncertainties on indicators of critical slowing down
was recently proposed in Ben-Yami et al. (2023). Here, we
focus on uncertainties in a conceptual model for the AMOC
regarding choices of model parameter values (Lux et al.,
2022). These uncertainties might significantly affect the mit-
igation window. Better constraining the mitigation window is
a crucial task to gain a better understanding of overshoots in
real-world climate systems. For the AMOC, the uncertainty
in the critical global warming threshold is particularly pro-
nounced (Armstrong McKay et al., 2022). There is a need
for further research on overshoots of tipping thresholds (of
the AMOC) under uncertainty in model parameters to quan-
tify the mitigation window more narrowly.

Therefore, in this work, we focus on the quantification of
uncertainty in overshooting tipping thresholds resulting from
uncertainty in system characteristics for a given forcing pro-
file. In particular, we illustrate our methodology for AMOC
overshoot scenarios with the aim of gaining a conceptual un-
derstanding of the mechanisms involved and, in particular,
how uncertainty affects the mitigation window. This is not
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only important for the AMOC, but for many other systems as
well (Ritchie et al., 2021; Meyer et al., 2022; Bochow et al.,
2023).

The remainder of the paper is structured as follows. Sec-
tion 2 details the problem setup, including introducing the
mitigation window for overshoots without tipping. In Sect. 3,
we present how uncertainty in system parameters affects the
mitigation window in the prototypical fold bifurcation set-
ting inherent to many conceptual climate models. Thereby,
we distinguish between uncertainty in (i) the location of the
tipping threshold pb and (ii) the linear restoring force pro-
portionality constant κ . Section 4 provides results on the un-
certainty in the mitigation window for a conceptual AMOC
model, the Stommel–Cessi box model (Cessi, 1994), which
exhibits two of these fold bifurcations. The uncertain diffu-
sive timescale in this model entails uncertainty in both pb and
κ , thus exhibiting effects showcased in the previous section.
In Sect. 5, we expand on how the results on the probability
of tipping for the presented scenarios might inform decisions
about alternative mitigation pathways.

2 Problem setup

Here, we consider various profiles for the change in an ex-
ternal forcing that have different characteristics with respect
to the overshoot of the critical threshold/bifurcation value.
Most importantly, we analyse these overshoots in the pres-
ence of uncertainties in model parameters of a conceptual
AMOC model. These uncertainties introduce uncertainties
in the time and peak overshoot distance that would still fa-
cilitate a return to the original state. More precisely, we use
the Stommel–Cessi model (Cessi, 1994) to conceptually il-
lustrate the far-reaching effect of uncertainty in wind-driven
gyres and eddies, represented by the diffusive timescale pa-
rameter, on mitigation windows without tipping. This model
exhibits a double-fold bifurcation; thus there exists a range
of external forcing levels where the AMOC is characterized
by multistability.

The aim is to develop a probabilistic extension of the
work of Ritchie et al. (2019). Therein, the authors derived
an inverse-square law between peak overshoot distance and
exceedance time over the threshold represented by the fold
bifurcation. The size of the mitigation window depends on
system characteristics, such as its timescale. Here, we focus
on the one-dimensional case and refer the reader to Ritchie
et al. (2019) for the multi-dimensional case. Consider an or-
dinary differential equation that takes the form

ẋ = f (x,p)

and exhibits a fold bifurcation at the point (xb,pb). We define

a0 :=
∂f

∂p
(xb,pb) and κ :=

1
2a0

∂2f

∂x2 (xb,pb),

where a0 is related to the inverse of the system’s timescale
and κ is proportional to the linear restoring force, which is a

measure of the recovery rate back to the equilibrium after a
perturbation of the system. The mitigation window can then
be described with

(ppeak−pb)t2over <
4
a2

0κ
. (1)

The condition provided in Eq. (1) specifies the mitigation
window in terms of the exceedance time over the thresh-
old tover and the peak external forcing ppeak over the critical
threshold pb.

Hence, to be within the mitigation window, the product
of the squared time spent over the threshold and the peak
overshoot distance needs to be smaller than a quantity that
depends on system-specific parameters, which can be highly
uncertain in real-world applications.

3 Prototypical fold bifurcation model

We begin by considering a simple conceptual model for tip-
ping via the prototypical fold bifurcation given by

τ ẋ = pb−p(rt)− κ(x− xb)2. (2)

Utilizing such a simple model allows us to isolate how un-
certainty in either the location of the tipping threshold (fold
bifurcation), pb, or the linear restoring force of the starting
state (proportional to κ) affects the uncertainty in the tip-
ping behaviour. The height of the fold bifurcation is cho-
sen to be at xb = x0−

√
pb/κ such that the system is ini-

tialized at the same starting position, x0 = 2.5, regardless of
the threshold location or linear restoring force. For simplic-
ity, the timescale parameter, τ , is set to unity and is inversely
proportional to a0 (τ =−1/a0 = 1). The forcing profile used
for all results based on the prototypical fold bifurcation is a
symmetric overshoot given by

p(rt)=1p sech2(r(t − tpeak)), (3)

which starts and finishes at zero and has an amplitude 1p;
the rate of change is controlled by r .

3.1 Uncertain location of tipping threshold

Firstly, we will use the prototypical fold model Eq. (2) and
only consider different realizations of the parameter for the
tipping threshold location, pb, which we consider uncertain
here. Note that the linear restoring force (and the distance
to the basin boundary) will be different at the same forcing
level for two different threshold locations. Importantly, how-
ever, the linear restoring force and the distance to the basin
boundary are the same when the systems are the same dis-
tance to their respective thresholds.

We now illustrate and elaborate on this idea further (see
Fig. 1). Let us consider a single forcing profile in the form
of Eq. (3), which starts at some initial level of forcing and
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smoothly increases to a peak level before returning back to
the initial level at a mirrored rate as shown in Fig. 1a. Note
again that the location of the tipping threshold will deter-
mine how far (if any) and how long the system will be be-
yond the tipping threshold for this single forcing profile. If
the threshold is low (dotted red line), then the overshoot will
be large and long, whereas a higher threshold (dotted orange
line) means that the overshoot will be smaller and of shorter
duration.

The contrasting consequences of a system having either a
low or high threshold are demonstrated in Fig. 1b: the thick
translucent curves correspond to a system with a low thresh-
old (pb = 2), which causes the system to tip due to the large
and long overshoot; for a high threshold (pb = 2.3), the thin
and opaque curves show that tipping does not occur for the
same forcing profile, since the overshoot is now compara-
tively small and for a short duration.

In Fig. 1a, b, we see that, for a given overshoot forcing
profile, tipping can either occur or not depending on the lo-
cation of the tipping threshold. If we now extend this to a
continuous range between these tipping threshold locations
(initially, all locations are assumed to be equally likely), then
a tipping probability can be determined based on this arbi-
trarily chosen uniform distribution, pb ∼ U[2.0,2.3].

For any given overshoot profile, there will be a threshold
location that separates tipping (lower thresholds) from not
tipping (higher thresholds). Therefore, the cumulative prob-
ability density function at this threshold gives the probabil-
ity of tipping. This threshold location that separates tipping
from not tipping can be calculated either numerically (us-
ing a bisection method) or via a modification to the inverse-
square law. However, since we now consider a range of tip-
ping threshold locations, we adjust the relationship to con-
sider the time over (tover,thr) a prescribed threshold, pthr = 2
(here defined to be the lowest tipping threshold of the uni-
form distribution), resulting in

t2over,thr <
4(ppeak−pthr)

a2
0κ(ppeak−pb)2

. (4)

A full derivation from Eqs. (1) to (4) can be found in Ap-
pendix A1.

The probability of tipping is plotted in Fig. 1c for a contin-
uum of overshoot forcing profiles characterized by the time
spent over the lowest threshold (pthr = 2) and the peak in ex-
ternal forcing, as indicated by the green shaded region and
black arrow respectively in Fig. 1a. Note, however, that not
all of these forcing profiles will result in an overshoot of the
tipping threshold, particularly if the threshold is far away.

The black curves provide contours of constant probabili-
ties of tipping as calculated by numerical simulations. The
dotted black contour corresponds to a 1 % probability of tip-
ping (exceptionally unlikely in IPCC terminology; Masson-
Delmotte et al., 2021), the dot-dashed contour corresponds
to a 10 % probability of tipping (very unlikely), the dotted
contour corresponds to a 25 % probability of tipping, and the

solid contour corresponds to a 50 % probability of tipping
(tipping becomes more likely than not). The purple shaded
regions correspond to the same probability intervals but cal-
culated by the inverse-square law theory, Eq. (4). The numer-
ically calculated curves display a very good agreement to the
theory.

The distance (along cross-sections of either the peak forc-
ing or the time over threshold) between the tipping proba-
bility contours provides an indication of the uncertainty in
the tipping behaviour. A large distance between the probabil-
ity contours reflects a high uncertainty in tipping behaviour.
Therefore, the performance of reducing uncertainty in the
tipping behaviour will be determined by the ability to re-
duce the distance between the probability contours upon con-
straining uncertainty in the system characteristics.

For small peak levels in the external forcing, there is a
large uncertainty in the tipping behaviour. This is due in some
cases to the peak forcing not even exceeding the threshold.
Therefore, if the threshold is high, regardless of the time
taken for the forcing to return, tipping will not occur. For
lower thresholds, however, an overshoot of the threshold will
occur; therefore the reversal in the forcing needs to be suf-
ficiently quick to ensure tipping does not happen. For larger
peaks in the external forcing, there will be an overshoot in
most cases; therefore the uncertainty in tipping behaviour
is reduced, as there is a maximum time that the system can
spend beyond the threshold before tipping would ensue.

The blue cross corresponds to the overshoot profile given
in panel (a), where the probability of tipping is close to the
1 % boundary level for the range of tipping threshold lo-
cations considered. As discussed previously, the thick and
translucent curves correspond to the lowest threshold, which
is therefore one of the few thresholds considered that results
in the system tipping. Hence, if the threshold were slightly
higher, tipping would be prevented, as is the case for the
highest threshold (thin opaque curves).

Reducing the uncertainty in the tipping threshold would
constrain the uncertainty in the tipping behaviour, as shown
in Fig. 2. We introduce a knowledge-based distribution of the
tipping threshold location, which is more constrained (for
example, through expert judgement or information inferred
from data) than the initial, uninformed, uniform distribution.
Figure 2a provides the comparison between the initial distri-
bution in purple and the knowledge-based distribution, cen-
tred on a threshold location of 2.1, in green. The tipping
probabilities (calculated theoretically using Eq. (4)) for the
two different threshold distributions are given in Fig. 2b. No-
ticeably, the knowledge-based distribution corresponds to a
much more constrained uncertainty in the tipping behaviour.
For example, forcing profiles that were very unlikely to result
in tipping (10 % probability of tipping) for the initial distri-
bution are now exceptionally unlikely (< 1%) to give rise to
a critical transition given the knowledge-based distribution.
Concurrently, the boundary for when tipping becomes more
likely than not (50% level, right edge of darkest shaded re-
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Figure 1. Probabilistic overshoots given uncertainty in the location of the tipping threshold. (a) Time profile of an exemplar external forcing
given by Eq. (3) (parameters: 1p = 2.35, r = 0.24, tpeak = 25). Red and orange dotted lines indicate low (pb = 2) and high (pb = 2.3)
tipping threshold locations respectively. (b) System responses (blue) subjected to the external forcing profile given in panel (a) for the model
given by Eq. (2) with fixed κ = 1 but with either a low threshold, pb = 2 (thick and translucent curves), or a high threshold, pb = 2.3 (thin
and opaque curves). Steady states indicated by black curves are either stable (solid) or unstable (dashed). Orange and red dots indicate the
threshold location (fold bifurcation) of the respective systems. (c) Tipping probability contours for overshoots characterized by the time over
the lowest threshold (pthr = 2) and peak forcing amplitude, given a uniform distribution in the threshold location, pb ∼ U[2.0,2.3]. The
purple colour gradient shows different probability boundary levels derived from the theory, Eq. (4). Black curves provide the probability
levels calculated numerically. The blue cross corresponds to the time profile of external forcing given in panel (a), with the time over the
lowest threshold represented by the green shading and the peak in external forcing represented by the black arrow and dashed line.

gion) shifts closer to the exceptionally unlikely (1% level,
left edge of lightest shaded region) boundary and therefore
signifies a reduction in the overall tipping uncertainty.

3.2 Uncertain linear restoring force

The previous section highlights how uncertainty in the lo-
cation of the tipping threshold can affect the probability of
tipping. Another important system characteristic for deter-
mining the mitigation window for overshoots is the strength
of the linear restoring force. In this section, we again use the
prototypical fold model Eq. (2) but keep the tipping threshold
location fixed (pb = 2) and instead consider different linear
restoring force proportionality factors κ .

Figure 3a provides an exemplary overshoot trajectory, as
given by Eq. (3), which starts below the tipping threshold
(indicated by the dotted red line) and then increases such
that there is a brief overshoot before reversing the forcing
back to its original level. Similarly to before, we can observe
contrasting tipping behaviours for systems that differ only
by the strength of the linear restoring force proportionality
factor; see Fig. 3b. Namely, if the system has a weak linear
restoring force (κ = 1), the system does not undergo tipping
(thin and opaque blue curve), whereas, if the restoring force
is too strong, tipping cannot be prevented. The example given
by the thick and translucent curves nearly recovers but does

not cross the unstable branch (representing the boundary of
the basin of attraction) when reducing the external forcing
and so ultimately tips due to the restoring force being too
strong (κ = 2). The system with the weaker linear restor-
ing force has a weaker “pull” towards the stable branch at
which the system starts and therefore lags further behind the
equilibrium of the static system than that of the system with
the stronger restoring force. Consequently, when the system
is forced beyond the critical threshold, the system with the
weak restoring force will be slower to react once beyond
the threshold and take longer to run away to an alternative
state. In addition, for a weaker restoring force proportion-
ality factor, the boundary of the basin of attraction (dashed
black curve) is further away from the stable state (solid black
curve in Fig. 3b). Therefore, the system with weak restor-
ing force (thin and opaque dashed black curve) can cross the
basin boundary at lower system state values compared to the
system with a strong restoring force (thick and translucent
dashed black curve). All these factors culminate in the sys-
tem with strong restoring force tipping and the system with
weak restoring force not tipping for the same forcing over-
shoot profile.

Following a similar approach to before, we can consider a
range of restoring force proportionality parameter values that
are uniformly distributed, κ ∼ U[0.25,3.25]. For any given
overshoot profile, according to Eq. (3), the critical κ can be
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Figure 2. Constraining uncertainty in threshold location minimizes uncertainty in tipping behaviour for overshoot scenarios. (a) Probability
distribution functions for threshold location, pb. A uniform distribution, pb ∼ U[2.0,2.3], is used as the initial distribution (purple), whereas
the knowledge-based distribution is assumed to take the form of a normal distribution, pb ∼N (2.1,0.022) (green). (b) Theoretical tipping
probability contours for overshoots characterized by the time over the lowest threshold (pthr = 2) and peak external forcing are given in
colours corresponding to the distributions given in panel (a).

Figure 3. Probabilistic overshoots given uncertainty in the strength of the linear restoring force. (a) Time profile of an exemplary external
forcing given by Eq. (3) (parameters: 1p = 2.1, r = 0.1, tpeak = 40). The dotted red line indicates the tipping threshold location (pb = 2).
(b) System responses (blue) subjected to the external forcing profile given in panel (a) for the model given by Eq. (2) with fixed pb = 2
but either with weak restoring force, κ = 1 (thin and opaque), or strong restoring force, κ = 2 (thick and translucent curves). Steady states
indicated by black curves are either stable (solid) or unstable (dashed). Red opaque and translucent dots indicate the threshold location (fold
bifurcation) of the respective systems. (c) Tipping probability contours for overshoots characterized by the time over the threshold (pb = 2)
and peak forcing amplitude, given a uniform distribution in the restoring force proportionality factor, κ ∼ U[0.25,3.25]. The purple colour
gradient shows different probability boundary levels derived from the theory, Eq. (1). Black curves provide the probability levels calculated
numerically. The blue cross corresponds to the time profile of external forcing given in panel (a), with the time over the threshold represented
by the green shading and the peak in external forcing represented by the black arrow and dashed line.

determined, and, with this, the probability of tipping equates
to the proportion of the parameter distribution that is above
this critical value. Figure 3c shows the probability of tip-
ping for a range of overshoot profiles, characterized by the
time over the threshold (which is now fixed, in contrast to
Sect. 3.1) and the peak external forcing. The numerically cal-
culated curves again display a very good agreement with the
theory, especially for small and long overshoots. The blue

cross corresponds to the particular overshoot profile given in
panel (a), where the time over the threshold is indicated by
the green shading and the peak external forcing is indicated
by the black arrow and dashed lines.

Recall that, for small peak external forcing levels, the un-
certainty in the tipping probability was large for uncertain
tipping thresholds. In comparison, for uncertain restoring
forces, the tipping uncertainty is substantially smaller (com-
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pare Figs. 1c and 3c). For a given trajectory, if the threshold
is uncertain, then there may be no overshoot of the threshold,
meaning the time to reverse the forcing is irrelevant given tip-
ping is not possible (without noise). In contrast, if only the
restoring force is uncertain, then it is known if the trajectory
overshoots the threshold. Therefore, if it does overshoot, only
a limited time can be spent over the threshold before tipping
ensues.

Figure 4 shows how changing the uncertainty in the restor-
ing force affects the tipping probability contours and there-
fore the uncertainty in tipping behaviour.

In Fig. 4a, we again start with an initial uniform dis-
tribution for the restoring proportionality factor, i.e. κ ∼
U[0.25,3.25] (purple), and assume that the knowledge-based
distribution narrows down this uncertainty. We assume a nor-
mal distribution with a mean of 1 and a standard deviation of
0.25; i.e. κ ∼N (1,0.252) (green).

The curves for the different probability levels of tipping
shift substantially; see Fig. 4b. An overshoot trajectory that
sits on the 50 % probability of tipping curve based on the ini-
tial distribution would be considered to be exceptionally un-
likely (< 1%) to cause tipping, given the knowledge-based
distribution.

However, unlike for the threshold location, the distance
(both horizontally and vertically) between the 1 % and 50 %
tipping probability curves for the initial and knowledge-
based distributions of the restoring force proportionality fac-
tor has barely changed. This seemingly counter-intuitive re-
sult can be explained by the change in the mean of the
restoring force proportionality factor distribution counter-
acting the decrease in parameter uncertainty. To illustrate
this, we consider an alternative uniform distribution, κ ∼
U[3.5,6.5] (blue), which is of the same width but has a much
higher mean for the restoring force proportionality factor;
see Fig. 4a. The distance between the 1 % and 50 % prob-
ability levels in Fig. 4b is much smaller for this alterna-
tive uniform distribution than for the initial uniform distribu-
tion. This illustrates that an uncertainty in the restoring force
for large values is less critical than at lower values. Thus,
when transitioning from the initial uniform distribution to
the knowledge-based distribution, the reduction in parame-
ter uncertainty would narrow the distance between the 1 %
and 50 % probability contours but, by decreasing the mean,
would simultaneously also widen the distance. So, for this
example, little change in the distance between the 1 % and
50 % probability contours is observed. Importantly, though,
the uncertainty of the location of the critical boundary (sepa-
rating tipping from not tipping) does still decrease. This can
be seen when plotting the 99 % probability of the tipping
boundary and noticing that the separation between the 1 %
and 99 % boundaries does indeed reduce.

So far, we have illustrated the effects of uncertainty in
the tipping threshold location and the linear restoring force
separately. We now come to a joint analysis of uncertainty
by considering uncertainty in a model parameter for a sim-

ple conceptual model of the Atlantic Meridional Overturning
Circulation (AMOC). The uncertainty stems from the diffu-
sive timescale parameter that jointly influences the location
of the tipping threshold and the linear restoring force.

4 Uncertain diffusive timescale in the
Stommel–Cessi model

In this section, we consider how diffusive timescale uncer-
tainties in a low-dimensional box model for the AMOC af-
fect the uncertainty in tipping behaviour (i.e. if the AMOC
collapses or not) for overshoot profiles of the freshwater flux
into the North Atlantic.

The model, introduced by Cessi (1994), is a modification
of the two-box Stommel model (Stommel, 1961) and de-
scribes the change in the non-dimensional meridional salinity
gradient, x, which is a proxy for the strength of the AMOC:

dx
ds
= p(s)− x(1+ η2(1− x)2), (5)

where the parameter, η2
= td/ta, defines the ratio of the dif-

fusive (td) to advective (ta) timescales and s is a time pa-
rameter. If the freshwater flux, p(s), added to the North At-
lantic becomes too large, it is possible to exceed a critical
threshold, represented by a fold bifurcation in the model.
This would cause the AMOC to tip from its current “on
state” to a collapsed state, if exceeded for too long. Previ-
ously, Lux et al. (2022) showed how the location of this criti-
cal non-dimensional freshwater flux (along with the restoring
force) changes upon varying the ratio of the diffusive (mix-
ing by wind-driven gyres and eddies) to advective timescales.
Specifically, the freshwater flux tipping threshold for AMOC
collapse moves to lower values for smaller η2. However, the
scaling from the non-dimensional, p, to dimensional, F̃ (in
m yr−1), freshwater flux depends on the diffusive timescale:

F̃ =
αT θH

αSS0td
p =

ξ

td
p, (6)

where a description of the parameters and their values can be
found in the Appendix in Table A1. Therefore, how the ra-
tio, η2, is changed (i.e. by changing the diffusive and/or the
advective timescale) will affect how the tipping threshold in
the dimensional freshwater flux changes. In the next subsec-
tion, we present numerical investigations for the interplay be-
tween changing td versus ta, which will motivate our choice
for considering uncertainties in the diffusive timescale.

4.1 Joint influence of uncertain tipping threshold and
uncertain linear restoring force

Figure 5 shows how the location of the dimensional criti-
cal freshwater fluxes (i.e. both the threshold indicating the
transition to the collapsed off state and the threshold repre-
senting recovery back to the on state) and the width of the
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Figure 4. Constraining uncertainty in the linear restoring force reduces uncertainty in tipping behaviour for overshoot scenarios. (a) Prob-
ability distribution functions for the restoring force proportionality factor, κ . A uniform distribution, κ ∼ U[0.25,3.25], is used as the ini-
tial distribution (purple), whereas the knowledge-based distribution is assumed to take the form of a normal distribution, κ ∼N (1,0.252)
(green). An alternative initial uniform distribution, κ ∼ U[3.5,6.5] (blue), is also considered for same range of restoring force values but
larger. (b) Theoretical tipping probability contours for overshoots characterized by the time over the threshold (pb = 2) and the peak external
forcing are given in colours corresponding to the distributions given in panel (a).

corresponding region of bistability (all denoted by colour)
change with varying the advective and diffusive timescales.
The black lines provide contours of constant ratio between
the diffusive and advective timescales. A sufficiently large
ratio between the diffusive and advective timescales is re-
quired for the AMOC to possess tipping behaviour (presence
of critical thresholds for AMOC collapse, AMOC recovery,
and a corresponding region of bistability). Hence, below this
critical ratio (η2

= 3), the region is coloured white.
Figure 5a shows the critical level of freshwater flux (de-

noted by colour) at which the AMOC on state terminates
at a fold. Previously, it was shown that the critical non-
dimensional freshwater flux only depends on the ratio of
timescales and that decreasing this ratio (either by decreasing
the diffusive timescale or increasing the advective timescale)
moves the threshold to lower values (Lux et al., 2022). How-
ever, the scaling from a dimensional to a non-dimensional
freshwater flux, introduced by Cessi (1994) and given in
Eq. (6), depends on the diffusive timescale. Hence, the tip-
ping threshold for the dimensional freshwater flux no longer
remains constant along the contours of constant ratio. In-
stead, the tipping threshold in the dimensional freshwater
flux moves to lower values for increasing either the advec-
tive timescale or the diffusive timescale.

Similarly, the scaling dependency, Eq. (6), affects the lo-
cation of the other fold bifurcation/threshold corresponding
to the termination of the off state; see Fig. 5b. Lux et al.
(2022) found that the freshwater flux threshold representing
the transition from AMOC off to AMOC on was largely con-
stant and independent of the ratio of timescales. Hence, for
dimensional quantities, this translates to the AMOC recovery
threshold being independent of the advective timescale (i.e.
for a fixed diffusive timescale, the threshold changes very lit-
tle). On the other hand, the threshold decreases for increasing

diffusive timescales, making it harder to restore the AMOC
if it were to collapse.

The final panel, Fig. 5c, combines the first two panels by
plotting in colour the difference between the two thresholds
corresponding to the width of the region of bistability. De-
creasing the diffusive timescale but keeping the advective
timescale fixed decreases the width of bistability. Concur-
rently, both critical thresholds move to higher values, so these
factors alone will make tipping less likely for any given over-
shoot. Additionally, the freshwater flux can be stabilized at a
higher level, such that only the AMOC on state exists (since
the threshold for AMOC recovery moves higher).

The chosen ranges of the advective and diffusive
timescales correspond to the plausible ranges for the two dif-
ferent timescales, as determined by Wood et al. (2019). The
advective timescale is relatively well constrained, whereas
the uncertainty in the diffusive timescale is much larger. Con-
sequently, we choose to fix the advective timescale (70 years,
indicated by the dashed red line) within the physical range
given in Lux et al. (2022), and instead we will now focus on
the uncertainty in the diffusive timescale. Note that the scal-
ing between the dimensional and non-dimensional freshwa-
ter flux in Eq. (6) (and the scaling of time) depends on the dif-
fusive timescale. Therefore, the same non-dimensional fresh-
water flux time profile will translate into different dimen-
sional time profiles for different diffusive timescales. This
is the reason why we instead rescale time with respect to the
advective timescale only, which changes Eq. (5) to

ẋ = p(t)−
x

td
(ta+ td(1− x)2), (7)

where the scalings to the dimensional quantities, salinity dif-
ference (1S [psu]), time (t ′ [years]), and freshwater flux (F
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Figure 5. Critical freshwater fluxes and width of bistability region depending on advective and diffusive timescales. Colour plots for the
location of the critical freshwater fluxes and the bistability region depending on the advective and diffusive timescales. (a) Location of
the critical freshwater flux that triggers an AMOC collapse from the AMOC on state to the AMOC off state. (b) Location of the critical
freshwater flux that triggers AMOC recovery from the off to the on state. (c) Width of bistability region, defined by the difference between
the two critical freshwater fluxes. The region plotted corresponds to plausible advective and diffusive timescales as identified by Wood et al.
(2019). Black lines are contours of the constant ratio between advective and diffusive timescales. The dashed red line denotes the value at
which the advective timescale is fixed for analysis of an uncertain diffusive timescale.

now measured in Sverdrups [Sv]), are now given by

1S =
αT θ

αS
x, t ′ = ta t, F =

αT θV0γ

αSS0βta
p, (8)

where, again, a description of the parameters and their values
can be found in the Appendix in Table A1. The dimensional
AMOC flow strength, Q(x, td,V ), with units [Sv], is given
by

Q(x, td,V )=
γV

βta td
(ta+ td(1− x)2), (9)

where the ocean volume, V, is chosen such that the initial
AMOC strength is equal to Q0 =Q(0,525,V0). The refer-
ence volume V0, given in Table A1, is an approximate value
for the ocean volume based on general circulation models
(Wood et al., 2019).

4.2 Uncertain diffusive timescale

We continue with analysing the AMOC tipping behaviour
in the style of Figs. 1 and 3. Rather than using symmetric
freshwater overshoot profiles (as before), in Fig. 6, we use
more realistic profiles, first introduced by Huntingford et al.
(2017), which take the form

p(t)= p0+γ t− (1− exp(−µ(t)t))(γ t− (pstab−p0)). (10)

Equation (10) allows the flexibility to start and finish at dif-
ferent levels (p0 = 0, pstab = ta/ξ , which equates to stabiliz-
ing at just below 0.25 Sv). The stabilization level (pstab) is
chosen such that the freshwater always stabilizes below the
critical threshold for AMOC collapse but above the threshold
for AMOC recovery in most cases. The transition between
the initial level and the stabilization level is determined by
µ(t)= µ0+µ1t , where µ0 and µ1 determine the maximum

amplitude and time to converge to the stabilization level. The
parameter γ = r−µ0(pstab−p0) is chosen to ensure that all
profiles have the same initial rate of increase, determined by
r = 0.01.

Following a similar approach to before, we investigate the
effect of uncertainty in the diffusive timescale on the over-
shoots and the mitigation window. For the exemplary over-
shoot trajectory given in Fig. 6a, the system’s response is
shown for both a small (td = 455 years, thin and opaque
curves) and a large (td = 700 years, thick and translucent
curves) diffusive timescale but for a fixed advective timescale
(ta = 70 years) in Fig. 6b. In the case of a small diffusive
timescale, the tipping threshold would be far away (dotted
orange lines), so the overshoot would be small and for a
short duration of time. Note also that the bistability region
is small for small diffusive timescales; therefore, in this ex-
ample (td = 455), the AMOC would recover (regardless of
the overshoot time) if the freshwater flux was reduced back
to below the lower fold at approximately 0.22 Sv.

In contrast, if the diffusive timescale is large, then the
AMOC would collapse and not recover. This is by virtue of
the threshold being a lot lower (dotted red lines) causing the
overshoot of the tipping threshold to be much larger and for a
longer period of time. These combined factors, coupled with
a larger bistability region (stabilizing within the bistability
region), mean that the AMOC tips to its off state.

In Fig. 6c, we consider all plausible diffusive timescales
(that also provide a region of bistability) with equal likeli-
hood (td ∼ U[210,700]) and plot the probability of tipping
for overshoot profiles of the form given by Eq. (10). The
overshoots are again characterized by the duration of time
that the freshwater flux is above the lowest threshold (cor-
responding to a diffusive timescale of 700 years) and by the
peak freshwater flux indicated by the green shaded region
and black arrow respectively in Fig. 6a. For sufficiently small
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Figure 6. Probabilistic overshoots given uncertainty in the diffusive timescale of the AMOC Stommel–Cessi model. (a) Time profile of
an exemplary freshwater flux given by Eq. (10) (parameters: p0 = 0, plim = 1/ξ , µ0 =−0.05, µ1 = 0.0057, r = 0.01). The red and dotted
lines indicate thresholds corresponding to large (td = 700) and small (td = 455) diffusive timescales respectively. (b) System responses (blue)
subjected to the freshwater flux profile given in panel (a) for the model given by Eq. (7) and the AMOC strength expressed by Eq. (9) for
either a small diffusive timescale, td = 455 (thin and opaque curves), or a large diffusive timescale, td = 700 (thick and translucent curves).
Further system parameter values can be found in Table A1. Steady states, indicated by black curves, are either stable (solid) or unstable
(dashed). Orange and red dots indicate threshold locations (fold bifurcations) of the respective systems. (c) Tipping probability contours
for overshoots characterized by the time over the lowest threshold (corresponding to a diffusive timescale of 700 years) and peak forcing
amplitude, given a uniform distribution in the diffusive timescale, td ∼ U[210,700]. The purple colour gradient shows different probability
mass levels derived from the theory, Eq. (4). The blue cross corresponds to the time profile of freshwater flux given in panel (a), with the
time over the lowest threshold represented by the green shading and the peak in external forcing represented by the black arrow and dashed
line.

diffusive timescales, recovery to the AMOC on state is guar-
anteed even if the AMOC temporarily collapses. This is a
result of the freshwater flux stabilizing below the bistability
region, where the on state is the only stable equilibrium. For
the uniform prior distribution, there is just under a 40 % prob-
ability that the freshwater flux stabilizes below the bistabil-
ity region (but never above, which would guarantee tipping).
Hence, we cannot rule out the possibility of AMOC recovery
even for very large and long overshoots.

A good correlation is once again found between the
inverse-square law theory, Eq. (4), and the numerically calcu-
lated probability boundaries, particularly for the smaller peak
freshwater overshoots. However, for larger overshoots, dis-
crepancies arise between the numerics and theory. At the 1 %
level, the theory overestimates the critical boundary, caused
by the asymmetry of the forcing profile. However, at the 50 %
level, the theory underestimates the critical boundary. The
shrinking region of bistability (i.e. due to the presence of an-
other fold bifurcation) and the initializing of simulations in
equilibrium provide additional sources of error. Specifically,
strongly forced systems are not in equilibrium. Therefore,
making the assumption that the AMOC is in equilibrium at
the start of the simulation will cause an overestimation of

the numerical probability of tipping, particularly for tipping
thresholds that are close.

The large uncertainty in the system parameter, here in
terms of the diffusive timescale, again causes large uncer-
tainties in the tipping behaviour. Therefore, it is necessary to
constrain the uncertainty in the diffusive timescale to reduce
the uncertainty in the tipping behaviour. The approach we
use to constrain the uncertainty in the diffusive timescale is
through Bayesian inference (Stuart, 2010). The procedure is
analogous to the one used in Lux et al. (2022), especially in
terms of the discrepancy model, the likelihood function, and
the generation of the synthetic time series. Note that we use
synthetically generated data due to the absence of real-world
data for the AMOC to be matched to the Stommel–Cessi box
model. We assume a true value for the diffusive timescale pa-
rameter td = 525 years, and the underlying ODE is given by
Eq. (7). We use a Markov chain Monte Carlo (MCMC) ap-
proach (Brooks et al., 2011), where the idea is to obtain the
desired data-informed (posterior) distribution as the invariant
distribution of the Markov chain over the prior support. We
obtain the posterior distribution by running an MCMC algo-
rithm provided in the MATLAB-based software framework
UQLab (Marelli and Sudret, 2014), version 1.3.0, using the
affine invariant ensemble sampler with 100 Markov chains
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with 400 steps (see the manual (Wagner et al., 2022) for a
detailed documentation).

Performing Bayesian inference starting with the uniform
prior distribution (purple), we are able to create a tightly con-
strained posterior distribution (green) centred close to the as-
sumed diffusive timescale of 525 years; see Fig. 7a.

The tightly constrained posterior distribution of the dif-
fusive timescale results in a strong reduction in the uncer-
tainty of the mitigation window; see comparison of purple to
green in Fig. 7b. An overshoot that has a 25 % probability
of tipping, based on the prior distribution, would be classi-
fied as exceptionally unlikely with less than 1 % probability
of tipping given the posterior distribution. Furthermore, as
can be inferred from Fig. 5b, the stabilization level is within
the bistability region (more than 99 % confidence). Note that
the critical freshwater flux threshold for AMOC recovery
is only below the stabilization level for diffusive timescales
greater than 400 years. Thus, for the posterior distribution,
the time taken to reverse the freshwater flux is critical to de-
termine whether tipping occurs or not, whereas, previously,
the prior distribution included timescale values that yielded
critical thresholds for AMOC recovery higher than the stabi-
lization level of the freshwater flux. Therefore, the probabil-
ity for AMOC recovery would be non-zero regardless of the
time taken to reverse the freshwater flux.

While the analysis in Fig. 7b covers a whole spectrum of
different overshoot trajectories, Fig. 8 performs a more in-
depth analysis of how the probability of tipping for a sin-
gle overshoot trajectory changes based on the distribution
of the diffusive timescale. A zoomed-in view of the over-
shoot trajectory is given in Fig. 8a. For any overshoot, there
exists a critical diffusive timescale such that smaller dif-
fusive timescales will prevent the AMOC from collapsing.
The tipping threshold that corresponds to this critical diffu-
sive timescale (for the particular overshoot given) is plot-
ted in black. If the diffusive timescale is smaller, the tip-
ping threshold will be higher, meaning that the overshoot
of the threshold will be smaller and for a shorter duration
(compare orange line with black line). Let us now consider
some uncertainty on the diffusive timescale, centred around
a reference value t ref

d = 450 years that corresponds to the or-
ange threshold pref

b = 0.308 Sv. The orange banding repre-
sents the threshold locations pb that arise from a nonlinear
transformation of td within 1 standard deviation (125 years)
of t ref

d . Note that the nonlinear relation between the diffusive
timescale parameter and the threshold location makes the or-
ange band not symmetrically distributed around the orange
line. Despite an assumed normal distribution on the diffu-
sive timescale, the distribution of thresholds is not normally
distributed. Visibly, within 1 standard deviation of the mean
includes both timescales above the critical level that would
cause the AMOC to tip and timescales that would avoid the
system crossing the threshold altogether for the same over-
shoot trajectory.

In Fig. 8b, the probability of tipping is plotted based on the
mean and standard deviation of the normally distributed dif-
fusive timescale. The orange cross corresponds to the mean
and standard deviation given in Fig. 8a. If the standard de-
viation of the distribution is 0 (i.e. the diffusive timescale
is known), then, without stochastic variability in the system,
the probability of tipping is either zero or 100 %. Increasing
the standard deviation a little will create some tipping un-
certainty close to the critical diffusive timescale for the spe-
cific trajectory, but still, for most of the cross-section, the
probability of tipping will be close to zero or 100 %. As
the standard deviation increases further, more distributions
will include the critical diffusive timescale with some non-
small probability and therefore create greater tipping uncer-
tainty. Thus, the region of tipping uncertainty spreads out for
increasing standard deviation as shown numerically by the
colouring.

Figure 8b shows that, if the standard deviation is reduced
but the mean of the diffusive timescale kept fixed (i.e. fol-
low the green arrow), then the uncertainty in the tipping be-
haviour reduces (probability of tipping moves further away
from 50 %). However, generally, when reducing parameter
uncertainty (standard deviation), the mean will also likely
change. In some scenarios, it is possible for the uncertainty
in the tipping behaviour to increase despite a reduced uncer-
tainty in the timescale. For example, if we instead follow the
red arrow, then the probability of tipping changes from ap-
proximately 25 % to 50 %. However, here the orange line is
moving down towards the black line, and, at the same time,
the banding is shrinking around the orange line. Therefore,
we are instead establishing that this particular overshoot is
close to the critical overshoot that separates tipping from not
tipping, but, importantly, if all possible overshoot trajectories
are considered, then the overall uncertainty in the tipping be-
haviour will still reduce.

The theoretical contours are added to Fig. 8b as black lines
of different line styles and show a good agreement to the nu-
merically calculated probability given by the colour plot. The
discrepancy arises from determining the value of the critical
diffusive timescale. This is best identified on the x axis for
0 standard deviation, where the black contours converge at a
diffusive timescale that is roughly 10 years longer than where
the colours converge.

5 Conclusions

In this paper, we studied how uncertainty in model parame-
ters can propagate to uncertainty in the tipping behaviour for
systems subjected to overshoot trajectories. The location of
the threshold and the linear restoring force are two key char-
acteristics that were identified and in turn isolated to exam-
ine their importance for the possibility of avoiding tipping.
Specifically, we have found that the tipping behaviour from
a single overshoot scenario can completely change based
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Figure 7. Constraining uncertainty in the diffusive timescale minimizes uncertainty in tipping behaviour for overshoot scenarios. (a) Prob-
ability distribution functions for diffusive timescale, td. A uniform distribution, td ∼ U[210,700], is used as a prior distribution (purple),
whereas the posterior distribution has been calculated by performing Bayesian inference on synthetic data generated for an assumed diffu-
sive timescale of 525 years (green). (b) Theoretical tipping probability contours for overshoots characterized by the time over the lowest
possible threshold (given the prior distribution) and peak freshwater flux amplitude are given in colours corresponding to the distributions
given in panel (a).

solely on either the location of the tipping threshold or the
strength of the linear restoring force.

Uncertainty in the location of the tipping threshold was
the characteristic found to have the most influence on the
uncertainty in the tipping behaviour. For a given overshoot
trajectory, the threshold location will simply determine if an
overshoot of the threshold occurs. Assuming an overshoot of
the threshold does occur, both the peak overshoot distance
and the time spent over the threshold would be smaller for
a high threshold compared to a low threshold. These prop-
erties of the overshoot feature in the left-hand side of the
inverse-square law, Eq. (1), while the right-hand side, inter-
preted as an upper bound for the mitigation window, remains
fixed given a fixed linear restoring force. Constraining the
uncertainty in the location of the tipping threshold will con-
strain the uncertainty in both the peak overshoot distance and
duration of an overshoot and therefore considerably reduce
the uncertainty in the tipping behaviour.

Another source of uncertainty can be in the strength of
the linear restoring force to the stable equilibrium, which
propagates into uncertainty in the upper bound for the mit-
igation window (the right-hand side of Eq. (1)). The linear
restoring force features in the denominator of the right-hand
side; therefore a weaker restoring force will help prevent tip-
ping by increasing the upper bound for the mitigation win-
dow. This can be intuitively understood by a weaker restor-
ing force causing a system to further lag its stable equilib-
rium (of the static system) under a change in external forc-
ing. Therefore, reducing the uncertainty in the restoring force
will reduce the uncertainty in the tipping delay from a system
crossing its threshold and therefore how quickly the forcing
needs to be reversed to prevent tipping.

We utilized a simple model for the Atlantic Meridional
Overturning Circulation (AMOC) to demonstrate how uncer-

tainty in the diffusive timescale parameter propagates simul-
taneously to uncertainty in the location of the threshold and
the linear restoring force. Although the advective timescale
is well constrained across climate models, a large uncertainty
remains in the diffusive timescale. This ultimately results in
uncertainty in the tipping behaviour for overshoot scenarios.
For the AMOC, this translates to a large uncertainty in the
probability of the AMOC collapsing.

Constraining parameter uncertainty, for instance, by per-
forming Bayesian inference on observational data, can
greatly reduce the uncertainty in the tipping behaviour. For a
parameter distribution with a known cumulative distribution
function, the probability of tipping can be efficiently calcu-
lated in terms of computational costs by using the inverse-
square law relationship. This avoids a sampling-based ap-
proach. Techniques presented in this paper might carry over
to overshoots in more complex AMOC models, such as
the five-box AMOC model from Wood et al. (2019). For
this AMOC model, instead of using synthetic data for the
Bayesian inference procedure, it is possible to use box-
averaged time series data of general circulation model runs,
which puts the parameter inference on a more realistic base.
Note, however, that a remaining challenge is to account for
the presence of a Hopf bifurcation for some model parame-
ter configurations, where tipping via the Hopf bifurcation (or
rate-induced tipping) can occur before the system actually
undergoes a fold bifurcation. An extension of the inverse-
square law theory would be required, since it is currently
designed to only consider overshoots of a fold bifurcation.
Moreover, further research is required to understand how the
theory can be applied to multiple uncertain parameters in
more complex models.

Considering the added possibilities of tipping via other
mechanisms can further change the conclusions. Note that
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Figure 8. Probability of avoiding tipping for a single overshoot tra-
jectory based on diffusive timescale distribution. (a) Time profile of
an exemplary overshoot trajectory (zoomed in) given by Eq. (10)
(parameters: p0 = 0, plim = 1/ξ , µ0 = 0.005, µ1 = 0.0009, r =
0.01) (Huntingford et al., 2017). The black horizontal line pro-
vides the location of the tipping threshold at the critical diffu-
sive timescale separating tipping from not tipping. The orange line
(mean) and banding (mean±1 standard deviation) show the loca-
tion of the critical threshold for a diffusive timescale parameter dis-
tribution that is normally distributed with a mean of 450 years and
a standard deviation of 125 years (denoted by orange cross in panel
(b)). (b) Plot of the probability of tipping for the overshoot given
in panel (a) depending on the characteristics of a normally dis-
tributed diffusive timescale parameter. Colours give the sampling-
based, numerically calculated probability of tipping, and black con-
tours give the theoretical probability of tipping derived from the
inverse-square law relationship given by Eq. (4).

the different mechanisms of tipping may also interact with
each other: see the studies of Ritchie and Sieber (2017) and
Slyman and Jones (2023) for the interplay between rate- and
noise-induced tipping and of O’Keeffe and Wieczorek (2020)
and Alkhayuon et al. (2019), for example, for the combina-
tion of rate- and bifurcation-induced tipping. For instance,
if variability is considered (i.e. with the added possibility of
noise-induced tipping), the longer a system spends close to
or beyond the threshold, the easier it is for a system to be
triggered into tipping (Ritchie et al., 2019). This further em-
phasizes that minimizing the duration of any overshoot of
a tipping threshold is paramount to preventing tipping. Fur-
thermore, if rate-induced tipping were possible, then multiple
critical rates could arise for the same peak external forcing

(Ritchie et al., 2023); therefore constraining system uncer-
tainties becomes even more critical when considering over-
shoot scenarios.

Alternative profile shapes may also reduce the distinc-
tion between large but short and small but long overshoots
(Enache et al., 2025). Moreover, uncertainties in the over-
shoot profile characteristics also need to be considered. For
example, the precise peak overshoot distance and time spent
over the tipping threshold are likely to be uncertain.

For a simple conceptual model of the AMOC, we find
that, for any sized overshoot, provided the duration is less
than 800 years, tipping would very likely be avoided. Im-
portantly, this encompasses most policy-relevant overshoots
under consideration (see e.g. Kikstra et al., 2022); therefore
this low-dimensional box model would suggest AMOC tip-
ping is very unlikely. However, it is important to note that
these timescales are likely to be much longer than those ob-
served in climate models (or the real world) (Jackson et al.,
2023). Box models for the AMOC, such as that used for this
study, tend to omit important advective responses that would
otherwise make the response time faster (Jackson and Wood,
2018b).

Current rates of anthropogenic emissions make crossing
climate tipping thresholds increasingly likely, despite us not
knowing their exact location. This study revealed the strong
influence of uncertainty in the location of the tipping thresh-
old and the strength of the linear restoring force on the uncer-
tainty in the tipping behaviour in response to possible over-
shoot trajectories. We have shown that constraining the un-
certainty in these system characteristics enables us to better
constrain the mitigation window, which is crucial to avoid-
ing tipping elements of the climate system under overshoot
scenarios.

Appendix A: Methods

A1 Overshoot theory for arbitrary threshold

The overshoot theory, as given by Eq. (1), details the time
allowed over the tipping threshold. However, if the threshold
location is uncertain, we would like to generalize this to the
time over an arbitrary threshold, pthr; in our case, we use the
lowest tipping threshold according to the initial distribution.
We follow a similar approach used in the original derivation
in Ritchie et al. (2019), starting with the overshoot theory
given by

ppeak−pb <
1
a0

√
−
p̈(tpeak)

2κ
. (A1)

The Taylor expansion of the forcing profile, p(t), about the
peak level of forcing ppeak at time tpeak, is given by

p(t)≈ ppeak+
1
2
p̈(tpeak)(t − tpeak)2. (A2)
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Table A1. Description of parameters and their values used in the
Stommel–Cessi model.

Parameter Description Value (units)

ta Advective timescale 70 (years)
αT Thermal expansion coefficient 10−4 (K−1)
αS Haline contraction coefficient 7.6× 10−4 (psu−1)
θ Meridional temperature difference 25 (K)
H Mean ocean depth 4500 (m)
S0 Reference salinity 35 (psu)
β Seconds per year 3.1536× 107 (s yr−1)
γ m3 s−1 to Sv conversion 10−6 (Sv s m−3)
V0 Reference volume 3.5× 1016 (m3)

Using Eq. (A2), let us consider the time over, tover,thr, a pre-
scribed threshold, pthr < ppeak:

tover,thr = 2

√
2(ppeak−pthr)
−p̈(tpeak)

. (A3)

Rearranging Eq. (A3) for p̈(tpeak) and substituting into
Eq. (A1) gives the expression for the time allowed over an
arbitrary threshold

t2over,thr <
4(ppeak−pthr)

a2
0κ(ppeak−pb)2

, (A4)

as given in the main text in Eq. (4). Importantly, if the thresh-
old is chosen to be the tipping threshold (pthr = pb), then
Eq. (A4) reduces to the original inverse-square law, Eq. (1).

Code and data availability. The codes and data used to con-
duct the simulations and generate the figures can be found
at https://doi.org/10.5281/zenodo.15348821 (Ritchie and Lux-
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