Articles | Volume 15, issue 2
https://doi.org/10.5194/esd-15-307-2024
https://doi.org/10.5194/esd-15-307-2024
Research article
 | Highlight paper
 | 
27 Mar 2024
Research article | Highlight paper |  | 27 Mar 2024

Solar radiation modification challenges decarbonization with renewable solar energy

Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray

Related authors

The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty
Susanne Baur, Alexander Nauels, Zebedee Nicholls, Benjamin M. Sanderson, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 14, 367–381, https://doi.org/10.5194/esd-14-367-2023,https://doi.org/10.5194/esd-14-367-2023, 2023
Short summary

Related subject area

Topics: Climate change | Interactions: Human/Earth system interactions | Methods: Earth system and climate modeling
Global Cropland Expansion Enhances Cropping Potential and Reduce its Inequality among Countries
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-47,https://doi.org/10.5194/esd-2023-47, 2024
Revised manuscript accepted for ESD
Short summary
The Indonesian Throughflow circulation under solar geoengineering
Chencheng Shen, John C. Moore, Heri Kuswanto, and Liyun Zhao
Earth Syst. Dynam., 14, 1317–1332, https://doi.org/10.5194/esd-14-1317-2023,https://doi.org/10.5194/esd-14-1317-2023, 2023
Short summary
ESD Ideas: Arctic amplification's contribution to breaches of the Paris Agreement
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023,https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary

Cited articles

Angel, R.: Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1), P. Natl. Acad. Sci. USA, 103, 17184–17189, https://doi.org/10.1073/pnas.0608163103, 2006. 
Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., and Imecs, Z.: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe, Clim. Dynam., 49, 2665–2683, https://doi.org/10.1007/s00382-016-3471-2, 2017. 
Baur, S.: Data and code for journal article Solar Radiation Modification challenges decarbonisation with renewable solar energy, Zenodo [data set], https://doi.org/10.5281/zenodo.10658589, 2024. 
Baur, S., Nauels, A., Nicholls, Z., Sanderson, B. M., and Schleussner, C.-F.: The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty, Earth Syst. Dynam., 14, 367–381, https://doi.org/10.5194/esd-14-367-2023, 2023. 
Bazyomo, S. D. Y. B., Agnidé Lawin, E., Coulibaly, O., and Ouedraogo, A.: Forecasted Changes in West Africa Photovoltaic Energy Output by 2045, Climate, 4, 53, https://doi.org/10.3390/cli4040053, 2016. 
Download
Chief editor
There are not a lot of studies about the effects of SRM on renewable energy and how those interactions might contribute to strategies to offset climate change.
Short summary
Most solar radiation modification (SRM) simulations assume no physical coupling between mitigation and SRM. We analyze the impact of SRM on photovoltaic (PV) and concentrated solar power (CSP) and find that almost all regions have reduced PV and CSP potential compared to a mitigated or unmitigated scenario, especially in the middle and high latitudes. This suggests that SRM could pose challenges for meeting energy demands with solar renewable resources.
Altmetrics
Final-revised paper
Preprint