Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time-varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale
School of Earth and Ocean Sciences, University of Victoria, Victoria,
BC, V8P 5C2, Canada
Neil C. Swart
Canadian Centre for Climate Modelling and Analysis, Environment and
Climate Change Canada, Victoria, BC, V8W 2P2, Canada
School of Earth and Ocean Sciences, University of Victoria, Victoria,
BC, V8P 5C2, Canada
Roberta C. Hamme
School of Earth and Ocean Sciences, University of Victoria, Victoria,
BC, V8P 5C2, Canada
Related authors
No articles found.
Morven Muilwijk, Tore Hattermann, Rebecca L. Beadling, Neil C. Swart, Aleksi Nummelin, Chuncheng Guo, David M. Chandler, Petra Langebroek, Shenjie Zhou, Pierre Dutrieux, Jia-Jia Chen, Christopher Danek, Matthew H. England, Stephen M. Griffies, F. Alexander Haumann, André Jüling, Ombeline Jouet, Qian Li, Torge Martin, John Marshall, Andrew G. Pauling, Ariaan Purich, Zihan Song, Inga J. Smith, Max Thomas, Irene Trombini, Eveline van der Linden, and Xiaoqi Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3747, https://doi.org/10.5194/egusphere-2025-3747, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Antarctic meltwater affects ocean stratification and temperature, which in turn influences the rate of ice shelf melting—a coupling missing in most climate models. We analyze a suite of climate models with added meltwater to explore this feedback in different regions. While meltwater generally enhances ocean warming and melt, in West Antarctica most models simulate coastal cooling, suggesting a negative feedback that could slow future ice loss there.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Cited articles
Bopp, L., Lévy, M., Resplandy, L., and Sallée, J. B.: Pathways of
anthropogenic carbon subduction in the global ocean, Geophys. Res.
Lett., 42, 6416–6423, https://doi.org/10.1002/2015GL065073, 2015.
Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A.
R., Baker, D., Mazloff, M. R., Resplandy, L., Johnson, K. S., and Sarmiento,
J. L.: Reassessing Southern Ocean air-sea CO2 flux estimates with the
addition of biogeochemical float observations, Global Biogeochem. Cy., 33, 1370–1388, https://doi.org/10.1029/2019GB006176, 2019.
Canadell, J., G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L.,
Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C.,
Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle,
S., and Zickfeld, K.: Global Carbon and other Biogeochemical Cycles and
Feedbacks. In Climate Change 2021: The Physical Science Basis, Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors,
S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 673–816, https://doi.org/10.1017/9781009157896.007, 2021.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., B., Piao, S., and Thornton, P.: Intergovernmental Panel on Climate Change: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 465–570, Cambridge University Press, https://doi.org/10.1017/CBO9781107415324.015, 2014.
Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A.,
Sitch, S., Eggleston, S., and Aich.V.: How well do we understand the
land-ocean-atmosphere carbon cycle?, Rev. Geophys., 60,
e2021RG000736, https://doi.org/10.1029/2021RG000736, 2022.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fay, A. R. and McKinley, G. A.: Global trends in surface ocean pCO2 from in
situ data, Global Biogeochem. Cy., 27, 541–557,
https://doi.org/10.1002/gbc.20051, 2013.
Friedrich, T., Timmermann, A., Abe-Ouchi, A., Bates, N. R., Chikamoto, M.
O., and Church, M. J.: Detecting regional anthropogenic trends in ocean
acidification against natural variability, Nat. Clim. Change, 2, 167–171,
https://doi.org/10.1038/nclimate1372, 2012.
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P.,
Krasting, J. P., and Winton, M.: Dominance of the Southern Ocean in
anthropogenic carbon and heat uptake in CMIP5 models, J.
Climate, 28, 862–886, 2015.
Frölicher, T. L., Rodgers, K. B., Stock, C. A., and Cheung, W. W. L.:
Sources of uncertainties in 21st century projections of potential ocean
ecosystem stressors, Global Biogeochem. Cy., 30, 1224–1243,
https://doi.org/10.1002/2015GB005338, 2016.
Graven, H. D., Gruber, N., Key, R., Khatiwala, S., and Giraud, X.: Changing
controls on oceanic radiocarbon: New insights on shallow-to-deep ocean
exchange and anthropogenic CO2 uptake, J. Geophys. Res.-Oceans, 117,
C10005, https://doi.org/10.1029/2012JC008074, 2012.
Gloege, L., McKinley, G. A., Landschützer, P., Fay, A.
R., Frölicher, T. L., Fyfe, J. C., Ilyina T., Jones S., Lovenduski N. S., Rodgers K. B., Schlunegger S., and Takano Y.: Quantifying errors in
observationally based estimates of ocean carbon sink variability, Global Biogeochem. Cy., 35, e2020GB006788, https://doi.org/10.1029/2020GB006788, 2021.
Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L.,
Wanninkhof, R., Williams, N. L., and Sarmiento, J. L.: Autonomous
biogeochemical floats detect significant carbon dioxide outgassing in the
high-latitude Southern Ocean, Geophys. Res. Lett., 45, 9049–9057, 2018.
Gruber, N., Landschützer, P., and Lovenduski, N. S.: The Variable
Southern Ocean Carbon Sink, Annu. Rev. Mar. Sci., 11, 159–186,
2019.
Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt,
M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J.,
Gruber, N., Hashioka, T., John, J., Le Quéré, C., Lima, I.
D., Nakano, H., Séférian, R., and Totterdell, I.: On the Southern Ocean
CO2 uptake and the role of the biological carbon pump in the 21st
century, Global Biogeochem. Cy. 29, 1451–1470,
https://doi.org/10.1002/2015GB005140, 2015.
Hauck J., Zeising M., Le Quéré C., Gruber N., Bakker D. C. E., Bopp
L., Chau T. T. T., Gürses Ö., Ilyina T., Landschützer P., Lenton
A., Resplandy L., Rödenbeck C., Schwinger J., and Séférian R.:
Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global
Carbon Budget, Front. Mar. Sci., 7, 571720, https://doi.org/10.3389/fmars.2020.571720,
2020.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional
climate predictions, B. Am. Meteorol. Soc., 90, 1095, https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys.
Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087, 2012.
Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic
radiative forcing over the past 20,000 years, P. Natl. Acad. Sci. USA, 105, 1425–1430, 2008.
Kumar, D. and Ganguly, A. R.: Intercomparison of model response and internal
variability across climate model ensembles, Clim. Dynam., 51,
207–219, https://doi.org/10.1007/s00382-017-3914-4, 2018.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker,
D. C., Van Heuven, S., Hoppema M., Metzl, N., Sweeney, C., Takahashi, T.,
Tilbrook, B., and Wanninkhof R.: The reinvigoration of the Southern Ocean carbon
sink, Science, 349, 1221–1224, 2015.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations
and trends of the global ocean carbon sink, Global Biogeochem. Cy., 30, 1396–1417, https://doi.org/10.1002/2015GB005359, 2016.
Landschützer, P., Gruber N., and Bakker, D. C. E.: An updated
observation-based global monthly gridded sea surface pCO2 and air-sea CO2
flux product from 1982 through 2015 and its monthly climatology (NCEI
Accession 0160558), Version 2.2, NOAA National Centers for Environmental
Information [data set], https://doi.org/10.7289/v5z899n6, 2017.
Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models, Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, 2015.
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020.
Lorenz, E. N.: The predictability of a flow which possesses many scales of
motion, Tellus, 21, 289–307, https://doi.org/10.1111/j.2153-3490.1969.tb00444.x, 1969.
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced CO2
outgassing in the Southern Ocean from a positive phase of the Southern
Annular Mode, Global Biogeochem. Cy., 21, GB2026,
https://doi.org/10.1029/2006GB002900, 2007.
Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., and Long, M.
C.: Partitioning uncertainty in ocean carbon uptake projections: Internal
variability, emission scenario, and model structure, Global Biogeochem. Cy. 30, 1276–1287, 2016.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021.
McKinley, G. A., Pilcher, D. J., Fay, A. R., Lindsay, K., Long, M. C., and
Lovenduski, N. S.: Timescales for detection of trends in the ocean carbon
sink, Nature, 530, 469–472, https://doi.org/10.1038/nature16958,
2016.
McKinley, G. A., Fay, A. R., Lovenduski, N. S., and Pilcher, D.: Natural
variability and anthropogenic trends in the ocean carbon sink, Annu. Rev.
Mar. Sci., 9, 125–150,
https://doi.org/10.1146/annurev-marine-010816-060529, 2017.
McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., and Lovenduski, N.
S.: External forcing explains recent decadal variability of the ocean carbon
sink, AGU Adv., 1, e2019AV000149, https://doi.org/10.1029/2019AV000149,
2020.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F.,
Aleluia Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J.,
Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V.,
Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C.,
Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M.,
Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their
energy, land use, and greenhouse gas emissions implications: An overview,
Global Environ. Chang. 42, 153–168,
https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Ridge, S. M. and McKinley, G. A.: Ocean carbon uptake under aggressive emission mitigation, Biogeosciences, 18, 2711–2725, https://doi.org/10.5194/bg-18-2711-2021, 2021.
Rodgers, K. B., Lin, J., and Frölicher, T. L.: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model, Biogeosciences, 12, 3301–3320, https://doi.org/10.5194/bg-12-3301-2015, 2015.
Rodgers, K. B., Schlunegger, S., Slater, R. D., Ishii, M., Frölicher, T.
L., Toyama, K., Plancherel, Y., Aumont, O., and Fassbender, A. J.: Reemergence of anthropogenic carbon into the ocean's
mixed layer strongly amplifies transient climate sensitivity, Geophys. Res. Lett., 47, e2020GL089275,
https://doi.org/10.1029/2020GL089275, 2020.
Roy, T., Bopp, L., Gehlen, M., Schneider, B., Cadule, P., Frölicher, T. L.,
Segschneider, J., Tjiputra, J., Heinze, C., and Joos, F.:
Regional impacts of climate change and atmospheric CO2 on future
ocean carbon uptake: A multimodel linear feedback analysis, J.
Climate, 24, 2300–2318, 2011.
Santer, B. D., Thorne, P. W., Haimberger, L., Taylor, K. E., Wigley, T. M. L., Lanzante, J. R.,
Solomon, S., Free, M., Gleckler, P. J., Jones, P. D., Karl, T. R., Klein, S. A., Mears, C., Nychka, D., Schmidt, G. A., Sherwood, S. C., and Wentz, F. J.:
Consistency of modelled and observed temperature trends in the tropical
troposphere, Int. J. Climatol., 28, 1703–1722, https://doi.org/10.1002/joc.1756, 2008.
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.:
Simulated response of the ocean carbon cycle to anthropogenic climate
warming, Nature, 393, 245–249, https://doi.org/10.1038/30455, 1998.
Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Frölicher, T. L.,
Dunne, J. P., Ishii, M., and Slater, R.: Emergence of anthropogenic signals
in the ocean carbon cycle, Nat. Clim. Change, 9, 719–725,
https://doi.org/10.1038/s41558-019-0553-2, 2019.
Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Ilyina, T., Dunne, J. P.,
Takano, Y., Christian, J. R., Long, M. C., Frölicher, T. L., Slater, R.,
and Lehner, F.: Time of Emergence and Large Ensemble Intercomparison for
Ocean Biogeochemical Trends, Global Biogeochem. Cy., 34,
e2019GB006453, https://doi.org/10.1029/2019GB006453, 2020.
Somerville, R. C. J.: The predictability of weather and climate, Clim. Change, 11, 239–246, https://doi.org/10.1007/BF00138802, 1987.
Sutton, A. J., Wanninkhof, R., Sabine, C. L., Feely, R. A., Cronin, M. F., and Weller, R. A.:
Variability and trends in surface seawater pCO2 and CO2 flux in the
Pacific Ocean, Geophys Res Lett, 44, 5627–5636, https://doi.org/10.1002/2017GL073814, 2017.
Takahashi, T., Sutherland, S. C., Feely, R. A., and Wanninkhof, R.: Decadal change of
the surface water pCO2 in the North Pacific: A synthesis of 35 years of
observations, J. Geophys. Res., 111, C07S05, https://doi.org/10.1029/2005JC003074,
2006.
Tebaldi, C. and Knutti, R.: The use of the multimodel ensemble in
probabilistic climate projections, Philos. T. Roy. Soc. A, 365, 2053–2075,
2007.
Terhaar, J., Frölicher, T. L., and Joos, F.: Southern Ocean
anthropogenic carbon sink constrained by sea surface salinity, Sci. Adv., 7, eabd5964, https://doi.org/10.1126/sciadv.abd5964, 2021.
Tjiputra, J. F., Olsen, A., Bopp, L., Lenton, A., Pfeil, B., Roy, T.,
Segschneider, J., Totterdell, I., and Heinze, C.: Long-term surface
pCO2 trends from observations and models, Tellus B, 66, 23083, https://doi.org/10.3402/tellusb.v66.23083, 2014.
Toyama, K., Rodgers, K. B., Blanke, B., Iudicone, D., Ishii, M., Aumont, O.,
and Sarmiento, J. L.: Large Reemergence of Anthropogenic Carbon into the
Ocean's Surface Mixed Layer Sustained by the Ocean's Overturning
Circulation, J. Climate, 30,
8615–8631, https://doi.org/10.1175/JCLI-D-16-0725.1, 2017.
Wang, L., Huang, J., Luo, Y., and Zhao, Z.: Narrowing the spread in CMIP5
model projections of air-sea CO2 fluxes, Sci. Rep., 6, 37548,
https://doi.org/10.1038/srep37548, 2016.
Williams, N. L., Juranek, L. W., Feely, R. A., Russell, J. L., Johnson, K.
S., and Hales, B.: Assessment of the carbonate chemistry seasonal cycles in
the Southern Ocean from persistent observational platforms, J. Geophys. Res.-Oceans, 123, 4833–4852, 2018.
Short summary
We report on the ocean carbon sink and sources of uptake uncertainty from the latest version of the Coupled Model Intercomparison Project. We diagnose the highly active regions for the sink and show how knowledge about historical regions of uptake will provide information about future regions of uptake change and uncertainty. We evaluate the dependence of uncertainty on the location and integration scale. Our results help make useful suggestions for both modeling and observational communities.
We report on the ocean carbon sink and sources of uptake uncertainty from the latest version of...
Altmetrics
Final-revised paper
Preprint