Articles | Volume 14, issue 1
https://doi.org/10.5194/esd-14-223-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-223-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal changes in the boreal forest in Siberia over the period 1985–2015 against the background of climate change
Wenxue Fu
CORRESPONDING AUTHOR
International Research Center of Big Data for Sustainable Development
Goals, Beijing, 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing, 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
College of Forestry, Nanjing Forestry University, Nanjing, 210037,
China
Yu Tao
Anhui Province Key Laboratory of Physical Geographical Environment,
Chuzhou University, Chuzhou, 239000, China
Mingyang Li
College of Forestry, Nanjing Forestry University, Nanjing, 210037,
China
Huadong Guo
International Research Center of Big Data for Sustainable Development
Goals, Beijing, 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Related authors
No articles found.
Hong Zhang, Mingyang Song, Yinhaibin Ding, Yazhe Xie, Huadong Guo, Lu Xu, Ji Ge, Yafei Zhu, Shenghan Wang, Zihuan Guo, Zhe Wang, Haoxuan Duan, Lijun Zuo, and Wenjiang Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2026-24, https://doi.org/10.5194/essd-2026-24, 2026
Preprint under review for ESSD
Short summary
Short summary
Accurate rice farming data is vital for global food security. We created GlobalRice20, a global map of paddy rice at 20-meter resolution for 2015 and 2024. By utilizing satellite imagery and advanced processing to overcome cloud issues, this dataset fills a critical gap in agricultural monitoring. It provides a reliable baseline for analyzing food production trends and helps policymakers track progress toward the Sustainable Development Goal of Zero Hunger.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023, https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Short summary
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate parameterization of Arctic leads. For the first time, we applied the 30 m resolution data from the Thermal Infrared Spectrometer (TIS) on the emerging SDGSAT-1 to detect Arctic leads. Validation with Sentinel-2 data shows high accuracy for the three TIS bands. Compared to MODIS, the TIS presents more narrow leads, demonstrating its great potential for observing previously unresolvable Arctic leads.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Cited articles
Abdi, H.: Partial least squares regression and projection on latent
structure regression (PLS Regression), Wiley Interdiscip. Rev. Comput.
Stat., 2, 97–106, https://doi.org/10.1002/wics.51, 2010.
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., and Curtis-McLane, S.:
Adaptation, migration or extirpation: climate change outcomes for tree
populations, Evol. Appl., 1, 95–111,
https://doi.org/10.1111/j.1752-4571.2007.00013.x, 2008.
Alibakhshi, S., Naimi, B., Hovi, A., Crowther, T. W., and Rautiainen, M.:
Quantitative analysis of the links between forest structure and land surface
albedo on a global scale, Remote Sens. Environ., 246, 1–12,
https://doi.org/10.1016/j.rse.2020.111854, 2020.
Allison, S. D. and Treseder, K. K.: Climate change feedbacks to microbial
decomposition in boreal soils, Fungal. Ecol., 4, 362–374,
https://doi.org/10.1016/j.funeco.2011.01.003, 2011.
Assiri, A.: Anomaly classification using genetic algorithm-based random
forest model for network attack detection, Comput. Mater. Contin., 66,
769–778, https://doi.org/10.32604/cmc.2020.013813, 2021.
Balshi, M. S., Mcguire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W.,
and Melillo, J.: Vulnerability of carbon storage in North American boreal
forests to wildfires during the 21st century, Global Change Biol., 15,
1491–510, https://doi.org/10.1111/j.1365-2486.2009.01877.x, 2009.
Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin, T. M.,
Ciais, P., Piao, S., and Tucker, C.: Large-scale variations in the vegetation
growing season and annual cycle of atmospheric CO2 at high northern
latitudes from 1950 to 2011, Global Change Biol., 19, 3167–3183,
https://doi.org/10.1111/gcb.12283, 2013.
Brandt, J. P.: The extent of the North American boreal zone, Environ. Rev.,
17, 101–161, https://doi.org/10.1139/A09-004, 2009.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1016/j.rse.2020.11185410.1023/A:1010933404324, 2001.
Buermann, W., Parida, B., Jung, M., MacDonald, G. M., Tucker, C. J., and
Reichstein, M.: Recent shift in Eurasian boreal forest greening response may
be associated with warmer and drier summers, Geophys. Res. Lett., 41,
1995–2002, https://doi.org/10.1002/2014GL059450, 2014.
Cha, Y., Ni, S. X., and Yang, S.: An Effective Approach to Automatically
Extract Urban Land-use from TM Imagery, Natl. Remote Sens. Bull., 1, 37–40,
https://doi.org/10.3321/j.issn:1007-4619.2003.01.007, 2003.
Chen, C., He, B., Guo, L., Zhang, Y., Xie, X., and Chen, Z.: Identifying
critical climate periods for vegetation growth in the Northern Hemisphere,
J. Geophys. Res.-Biogeo., 123, 2541–2552,
https://doi.org/10.1029/2018JG004443, 2018.
Chen, J., Yuan, Z. Y., Peng, J., Chen, L., Huang, H. Z., Zhu, J. W., Liu, Y.,
and Li, H. F.: DASNet: Dual Attentive Fully Convolutional Siamese Networks
for Change Detection in High-Resolution Satellite Images, IEEE J. Stars.,
14, 1194–1206, https://doi.org/10.1109/JSTARS.2020.3037893, 2021.
Chong, I. G. and Jun, C. H.: Performance of some variable selection methods
when multicollinearity is present, Chemometr. Intell. Lab., 78, 103–112,
https://doi.org/10.1016/j.chemolab.2004.12.011, 2005.
Climent, F., Momparler, A., and Carmona, P.: Anticipating bank distress in
the Eurozone: An Extreme Gradient Boosting approach, J. Bus. Res., 101,
885–896, https://doi.org/10.1016/j.jbusres.2018.11.015, 2019.
Coops, N. C., Wulder, M. A., Duro, D., Han, T., and Berry, S.: The development
of a Canadian dynamic habitat index using multi-temporal satellite estimates
of canopy light absorbance, Ecol. Indic., 8, 754–766,
https://doi.org/10.1016/j.ecolind.2008.01.007, 2008.
Cutler, D. R., Edwards, J. T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson,
J., and Lawler, J. J.: Random forest for classification in ecology, Ecology,
88, 2783–2792, https://doi.org/10.1890/07--0539.1, 2008.
de Groot, W. J., Flannigan, M. D., and Cantin, A. S.: Climate change impacts on
future boreal fire regimes, Forest Ecol. Manage., 294, 35–44,
https://doi.org/10.1016/j.foreco.2012.09.027, 2013.
Gong, P., Wang, J., Yu, L., Zhao, Y. C., Zhao, Y. Y., Liang, L., Niu, Z. G.,
Huang, X. M., Fu, H. H., and Liu, S.: Fine resolution observation and
monitoring of global land cover: First mapping results with Landsat TM and
ETM+ data, Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.
Hadi, K. L., Hovi, A., Rönnholm, P., and Rautiainen, M.: The
accuracy of large-area forest canopy cover estimation using Landsat in
boreal region, Int. J. Appl. Earth Obs., 53, 118–127,
https://doi.org/10.1016/j.jag.2016.08.009, 2016.
Hamann, A. and Wang, T.: Potential effects of climate change on ecosystem
and tree species distribution in British Columbia, Ecology, 87, 2773–2786,
https://doi.org/10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2, 2006.
Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are treelines
advancing?, A global meta-analysis of treeline response to climate warming,
Ecol. Lett., 12, 1040–1049,
https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009.
He, Y., Yang, J., and Guo, X.: Green Vegetation Cover Dynamics in a
Heterogeneous Grassland: Spectral Unmixing of Landsat Time Series from 1999
to 2014, Remote Sens., 12, 3826, https://https://doi.org/10.3390/rs12223826, 2020.
Heiskanen, J., Rautiainen, M., Stenberg, P., Mõttus, M., Vesanto, V.-H.,
Korhonen, L., and Majasalmi, T.: Seasonal variation in MODIS LAI for a
boreal forest area in Finland, Remote Sens. Environ., 126, 104–115,
https://doi.org/10.1016/j.rse.2012.08.001, 2012.
Hersbach, H., Peubey, C., Simmons, A., Berrisford, P., Poli, P., and Dee, D.: ERA-20CM: a twentieth-century atmospheric model ensemble, Q. J. Roy. Meteor. Soc., 141, 2350–2375, https://doi.org/10.1002/qj.2528, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hermosilla, T., Wulder, M. A., White, J. C., and Coops, N. C.: Prevalence of
multiple forest disturbances and impact on vegetation regrowth from
interannual Landsat time series (1985–2015), Remote Sens. Environ., 223,
111403, https://doi.org/10.1016/j.rse.2019.111403, 2019.
Hervé, A.: Partial least squares regression and projection on latent
structure regression (PLS Regression), Wiley Interdiscip. Rev. Comput.
Stat., 2, 97–106, https://doi.org/10.1002/wics.51, 2010.
Hirota, M., Nobre, C., Oyama, M. D., and Bustamante, M. M.: The climatic
sensitivity of the forest, savanna and forest-savanna transition in tropical
South America, New Phytol., 187, 707–719,
https://doi.org/10.2307/40792416, 2010.
Høgda, K. A., Tømmervik, H., and Karlsen, S. R.: Trends in the start of
the growing season in Fennoscandia 1982–2011, Remote Sens., 5, 4304–4318,
https://doi.org/10.3390/rs5094304, 2013.
Hou, M., Venäläinen, A. K., Wang, L., Pirinen, I. P., Gao, Y., Jin, S.,
Zhu, Y., Qin, F., and Hu, Y.: Spatio-temporal divergence in the responses of
Finland's boreal forests to climate variables, Int. J. Appl. Earth Obs.
Geoinfo., 92, 102186, https://doi.org/10.1016/j.jag.2020.102186, 2020.
Hovi, A., Raitio, P., and Rautiainen, M.: A spectral analysis of 25 boreal tree
species, Silva Fenn., 51, 7753, https://doi.org/10.14214/sf.7753, 2017.
Jia, K., Liang, S., Zhang, L., Wei, X., Yao, Y., and Xie, X.: Forest cover
classification using Landsat ETM+ data and time series MODIS NDVI data,
Int. J. Appl. Earth Obs., 33, 32–38,
https://doi.org/10.1016/j.jag.2014.04.015, 2014.
Kasischke, E. S. and Turetsky, M. R.: Recent changes in the fire regime
across the North American boreal region – spatial and temporal patterns of
burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703,
https://doi.org/10.1029/2006GL025677, 2006.
Kauppi, P. E., Posch, M., and Pirinen, P.: Large impacts of climatic warming
on growth of boreal forests since 1960, Plos One, 9, 1–6,
https://doi.org/10.1371/journal.pone.0111340, 2014.
Kharuk, V. I., Ponomarev, E. I., Ivanova, G. A., Dvinskaya, M. L., Coogan,
S. C. P., and Flannigan, M. D.: Wildfires in the Siberian taiga, Ambio, 50,
1953–1974, https://doi.org/10.1007/s13280-020-01490-x, 2021.
Li, W., Li, Y., Chen, D., and Chan, J. C.: Thin cloud removal with residual
symmetrical concatenation network, ISPRS J. Photogramm. Remote Sens., 153,
137–150, https://doi.org/10.1016/j.isprsjprs.2019.05.003, 2019.
Liu, Q., Gao, X., He, L., and Lu, W.: Haze removal for a single visible
remote sensing image, Signal Process., 137, 33–43,
https://doi.org/10.1016/j.sigpro.2017.01.036, 2017.
Lewis, M.: Spectral characterization of Australian arid zone plants, Can. J.
Remote Sens., 28, 219–230, https://doi.org/10.5589/m02-023, 2002.
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., and
Ackerly, D. D.: The velocity of climate change, Nature, 462,
1052–1055, https://doi.org/10.1038/nature08649, 2009.
Ma, X. P., Bai, H. Y., Deng, C. H., and Wu, T.: Sensitivity of Vegetation on
Alpine and Subalpine Timberline in Qinling Mountains to Temperature Change,
Forests, 10, 1105, https://doi.org/10.3390/f10121105, 2019.
Matasci, G., Hermosill, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart,
G. W., and Zald, H. S. J.: Large-area mapping of Canadian boreal forest cover,
height, biomass and other structural attributes using Landsat composites and
lidar plots, Remote Sens. Environ., 209, 90–106,
https://doi.org/10.1016/j.rse.2017.12.020, 2018.
Matthes, J. H., Knox, S. H., Sturtevant, C., Sonnentag, O., Verfaillie, J., and Baldocchi, D.: Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements, Biogeosciences, 12, 4577–4594, https://doi.org/10.5194/bg-12-4577-2015, 2015.
McKenney, D. W., Pedlar, J. H., Lawrence, K., Campbell, K., and Hutchinson,
M. F.: Potential impacts of climate change on the distribution of North
American trees, BioScience, 57, 939–948,
https://doi.org/10.1641/B571106, 2007.
McLachlan, J. S., Clark, J. S., and Manos, P. S.: Molecular indicators of tree
migration capacity under rapid climate change, Ecology, 86, 2088–2098,
https://doi.org/10.1890/04-1036, 2005.
McManus, K. M., Morton, D. C., Masek, J. G., Wang, D., Sexton, J. O., Nagol,
J. R., Ropars, P., and Boudreau, S.: Satellite-based evidence for shrub and
graminoid tundra expansion in northern Quebec from 1986 to 2010, Global Change Biol., 18, 2313–2323,
https://doi.org/10.1111/j.1365-2486.2012.02708.x, 2012.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,
Alm-Kübler, K., Bissolli, P., Braslavská, O. G., Briede, A.,
Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C.,
Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., Nordli,
Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H.,
Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and
Zust, A.: European phenological response to climate change matches the
warming pattern, Glob. Chang. Biol., 12, 1969–1970,
https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006.
Michael, J. C., Brittany, G. J., Kristina, J. B., and Tara, W. H.: Forests of
the future: Climate change impacts and implications for carbon storage in
the Pacific Northwest, USA, Forest Ecol. Manag., 482, 118886,
https://doi.org/10.1016/j.foreco.2020.118886, 2021.
Nelson, T. A., Coops, N. C., Wulder, M. A., Perez, L., Fitterer, J., Powers,
R., and Fontana, F.: Predicting climate change impacts to the Canadian
boreal forest, Diversity, 6, 133–157, https://doi.org/10.3390/d6010133,
2014.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases in
global terrestrial net primary production from 1982 to 1999, Science, 300,
1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Nicolai-Shaw, N., Zscheischler, J., Hirschi, M., Gudmundsson, L., and
Seneviratne, S. I.: A drought event composite analysis using satellite
remote-sensing based soil moisture, Remote Sens. Environ., 203, 216–225,
https://doi.org/10.1016/j.rse.2017.06.014, 2017.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
and Underwood, E. C.: Terrestrial ecoregions of the world: a new map of life
on Earth, BioScience, 51, 933–938,
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Park, H., Jeong, S. J., Ho, C. H., Kim, J., Brown, M. E., and Schaepman, M. E.:
Nonlinear response of vegetation green-up to local temperature variations in
temperate and boreal forests in the northern hemisphere, Remote Sens.
Environ., 165, 100–108, https://doi.org/10.1016/j.rse.2015.04.030, 2015.
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change
impacts across natural systems, Nature, 421, 37–42,
https://doi.org/10.1038/nature01286, 2003.
Piao, S., Ciais, P., Friedlingstein, P., Peylin P., Reichstein, M.,
Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., Grelle, A.,
Hollinger, D., Laurila, T., Lindroth, A., Richardson, A., and Vesala, T.:
Net carbon dioxide losses of northern ecosystems in response to autumn
warming, Nature, 451, 49–52, https://doi.org/10.1038/nature06444, 2008.
Pontius, R. G. and Millones, M.: Death to Kappa: Birth of quantity
disagreement and allocation disagreement for accuracy assessment, Int. J.
Remote Sens., 32, 4407–4429, https://doi.org/10.1080/01431161.2011.552923,
2011.
Price, D. T., Alfaro, R. I., Brown, K. J., Flannigan, M., Fleming, R. A., Hogg,
E. H., Girardin, M. P., Lakusta, T., Johnston, M., McKenney, D., Pedlar, J. H.,
Stratton, T., Sturrock, R. N., Thompson, I. D., Trofymow, J. A., and Venier,
L.: Anticipating the consequences of climate change for Cananda's boreal
forest ecosystems, Environ. Rev., 21, 322–365,
https://doi.org/10.1139/er-2013-0042, 2013.
Qin, Y., Xiao, X., Dong, J., Zhang, G., Shimada, M., and Liu, J.: Forest
cover maps of china in 2010 from multiple approaches and data sources:
PALSAR, Landsat, MODIS, FRA, and NFI, ISPRS J. Photogramm. Remote Sens.,
109, 1–16, https://doi.org/10.1016/j.isprsjprs.2015.08.010, 2015.
Ratcliffe, J. L., Creevy, A., Andersen, R., Zarov, E., Gaffney, P. P. J.,
Taggart, M. A., Mazei, Y., Tsyganov, A. N., Rowson, J. G., Lapshina, E. D.,
and Payne, R. J.: Ecological and environmental transition across the
forested-to-open bog ecotone in a west Siberian peatland, Sci. Total
Environ., 607, 816–828, https://doi.org/10.1016/j.scitotenv.2017.06.276,
2017.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and
Rigol-Sanchez, J. P.: An assessment of the effectiveness of a random forest
classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens.,
67, 93–104, https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.
Salminen, H. and Jalkanen, R.: Modelling of bud break of Scots pine in
northern Finland in 1908–2014, Front. Plant Sci., 6, 1–7,
https://doi.org/10.3389/fpls.2015.00104, 2015.
Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurgerov, M.,
Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T., and Barry, R. G.:
Observational evidence of recent change in the northern high-latitude
environment, Clim. Change, 46, 159–207,
https://doi.org/10.1023/A:1005504031923, 2000.
Shuman, J. K., Shugart, H. H., and O'Halloran, T. L.: Sensitivity of Siberian larch
forests to climate change, Global Change Biol., 17, 2370–2384,
https://doi.org/10.1111/j.1365-2486.2011.02417.x, 2011.
Smoliak, B. V., Wallace, J. M., Lin, P., and Fu, Q.: Dynamical adjustment of
the northern hemisphere surface air temperature Field: methodology and
application to observations, J. Climate, 28, 1613–1629,
https://doi.org/10.1175/JCLI-D-14-00111.1, 2015.
Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart,
H. H., Stocks, B. J., Sukhinin, A. I., Perfenova, E. I., Chapin, F. S., and
Stackhouse, P. W.: Climate-induced boreal forest change: Predictions versus
current observations, Global Planet. Change, 56, 274–296,
https://doi.org/10.1016/j.gloplacha.2006.07.028, 2007.
Strobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T.: Bias in random
forest variable importance measures: Illustrations, sources and a solution,
BMC Bioinform., 8, 25, https://doi.org/10.1186/1471-2105-8-25, 2007.
Sulla-Menashe, D., Woodcock, C., and Friedl, M.: Canadian boreal forest greening
and browning trends: an analysis of biogeographic patterns and the relative
roles of disturbance versus climate drivers, Environ. Res. Lett., 13, 014007,
https://doi.org/10.1088/1748-9326/aa9b8, 2018.
Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and
Feuston, B. P.: Random forest: A classification and regression tool for
compound classification and QSAR modeling, J. Chem. Inf. Comput. Sci., 43,
1974–1958, https://doi.org/10.1021/ci034160g, 2003.
Tian, L. and Fu, W.: Bi-Temporal Analysis of Spatial Changes of Boreal Forest
Cover and Species in Siberia for the Years 1985 and 2015, Remote Sens., 12,
4116, https://doi.org/10.3390/rs12244116, 2020.
Townshend, J. R., Masek, J. G., Huang, C. Q., Vermote, E. F., Gao, F., Channan,
S., Sexton, J. O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D. X.,
Song, X. P., Noojipady, P., Tan, B., Hansen, M. C., Li, M. X., and Wolfe, R. E.:
Global characterization andmonitoring of forest cover using Landsat data:
opportunities and challenges, Int. J. Digit. Earth, 5, 373–397,
https://doi.org/10.1080/17538947.2012.713190, 2012.
Veraverbeke, S., Rogers, B., Goulden, M., Jandt, R., Miller, C., Wiggins,
E., and Randerson, J.: Lightning as a major driver of recent large fire
years in North American boreal forests, Nat. Clim. Change, 7, 529–534,
https://doi.org/10.1038/nclimate3329, 2017.
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee,
T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.:
Ecological responses to recent climate change, Nature, 416, 389–395,
https://doi.org/10.1038/416389a, 2002.
Wang, X. H., Piao, S. L., Ciais, P., Li, J. S., Friedlingstein, P., Koven, C.,
and Chen, A. P.: Spring temperature change and its implication in the change
of vegetation growth in North America from 1982 to 2006, P. Natl. Acad. Sci. USA, 108, 1240–1245, https://doi.org/10.1073/pnas.1014425108, 2011.
Weijers, S., Pape, R., Löffler, J., and Myers-Smith, I. H.: Contrasting
shrub species respond to early summer temperatures leading to correspondence
of shrub growth patterns, Environ. Res. Lett., 13, 1–11,
https://doi.org/10.1088/1748-9326/aaa5b8, 2018.
White, J., Wulder, M., Hermosilla, T., Coops, N., and Hobart, G.: A nationwide
annual characterization of 25 years of forest disturbance and recovery for
Canada using Landsat time series, Remote Sens. Environ., 194, 303–321,
https://doi.org/10.1016/j.rse.2017.03.035, 2017.
Zhang, Y., Guindon, B., and Cihlar, J.: An image transform to characterize
and compensate for spatial variations in thin cloud contamination of Landsat
images, Remote Sens. Environ., 82, 173–187,
https://doi.org/10.1016/S0034-4257(02)00034-2, 2002.
Zhu, K., Woodall, C. W., and Clark, J. S.: Failure to migrate: lack of
tree range expansion in response to climate change, Global Change Biol., 18,
1042–1052, https://doi.org/10.1111/j.1365-2486.2011.02571.x, 2012.
Zhu, K., Woodall, C. W., Ghosh, S., Gelfand, A. E., and Clark, J. S.: Dual
impacts of climate change: forest migration and turnover through life
history, Global Change Biol., 20, 251–264,
https://doi.org/10.1111/gcb.12382, 2013.
Short summary
Climate change has been proven to be an indisputable fact and to be occurring at a faster rate in boreal forest areas. The results of this paper show that boreal forest coverage has shown an increasing trend in the past 3 decades, and the area of broad-leaved forests has increased more rapidly than that of coniferous forests. In addition, temperature rather than precipitation is the main climate factor that is driving change.
Climate change has been proven to be an indisputable fact and to be occurring at a faster rate...
Altmetrics
Final-revised paper
Preprint