Articles | Volume 10, issue 2
https://doi.org/10.5194/esd-10-347-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-10-347-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Millennium-length precipitation reconstruction over south-eastern Asia: a pseudo-proxy approach
Stefanie Talento
CORRESPONDING AUTHOR
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University of Giessen, Giessen, Germany
Physics Institute, Science Faculty, Universidad de la República, Montevideo, Uruguay
Lea Schneider
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University of Giessen, Giessen, Germany
Johannes Werner
independent researcher
Jürg Luterbacher
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University of Giessen, Giessen, Germany
Center of International Development and Environmental Research, Justus Liebig University of Giessen, Giessen, Germany
Related authors
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Stefanie Talento and Marcelo Barreiro
Earth Syst. Dynam., 9, 285–297, https://doi.org/10.5194/esd-9-285-2018, https://doi.org/10.5194/esd-9-285-2018, 2018
Short summary
Short summary
In a series of simulations, with models of different complexity, we analyse the role of the tropical ocean dynamics in the transmission of information when an extratropical thermal forcing is imposed. In terms of annual means we find that the tropical ocean dynamics oppose the remote extratropical signal. However, changes in the sea surface temperature seasonal cycle in the equatorial Pacific Ocean become significant only once the tropical ocean dynamics are incorporated.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-41, https://doi.org/10.5194/cp-2024-41, 2024
Revised manuscript under review for CP
Short summary
Short summary
We study the climatic signal, with focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Ernesto Tejedor, Martín de Luis, Mariano Barriendos, José María Cuadrat, Jürg Luterbacher, and Miguel Ángel Saz
Clim. Past, 15, 1647–1664, https://doi.org/10.5194/cp-15-1647-2019, https://doi.org/10.5194/cp-15-1647-2019, 2019
Short summary
Short summary
We developed a new dataset of historical documents by compiling records (rogation ceremonies) from 13 cities in the northeast of the Iberian Peninsula (IP). These records were transformed into quantitative continuous data to develop drought indices (DIs). We regionalized them by creating three DIs (Ebro Valle, Mediterranean, and Mountain), which cover the period from 1650 to 1899 CE. We identified extreme drought years and periods which help to understand climate variability in the IP.
Rudolf Brázdil, Andrea Kiss, Jürg Luterbacher, David J. Nash, and Ladislava Řezníčková
Clim. Past, 14, 1915–1960, https://doi.org/10.5194/cp-14-1915-2018, https://doi.org/10.5194/cp-14-1915-2018, 2018
Short summary
Short summary
The paper presents a worldwide state of the art of droughts fluctuations based on documentary data. It gives an overview of achievements related to different kinds of documentary evidence with their examples and an overview of papers presenting long-term drought chronologies over the individual continents, analysis of the most outstanding drought events, the influence of external forcing and large-scale climate drivers, and human impacts and responses. It recommends future research directions.
Stefanie Talento and Marcelo Barreiro
Earth Syst. Dynam., 9, 285–297, https://doi.org/10.5194/esd-9-285-2018, https://doi.org/10.5194/esd-9-285-2018, 2018
Short summary
Short summary
In a series of simulations, with models of different complexity, we analyse the role of the tropical ocean dynamics in the transmission of information when an extratropical thermal forcing is imposed. In terms of annual means we find that the tropical ocean dynamics oppose the remote extratropical signal. However, changes in the sea surface temperature seasonal cycle in the equatorial Pacific Ocean become significant only once the tropical ocean dynamics are incorporated.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
D. R. Schmatz, J. Luterbacher, N. E. Zimmermann, and P. B. Pearman
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-2585-2015, https://doi.org/10.5194/cpd-11-2585-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Global climate model output for the Last Glacial Maximum (LGM) is downscaled to a very high resolution using the change factor method. We develop two new methods to extend current baseline climate to the LGM coastline so that the final data cover all terrestrial area at LGM. Results are gridded data for temperature, precipitation and 19 bioclimatic variables which are often used in studies on climate change impact on biological diversity, glacial refugia or migration during Holocene warming.
C. S. Zerefos, K. Tourpali, P. Zanis, K. Eleftheratos, C. Repapis, A. Goodman, D. Wuebbles, I. S. A. Isaksen, and J. Luterbacher
Atmos. Chem. Phys., 14, 7705–7720, https://doi.org/10.5194/acp-14-7705-2014, https://doi.org/10.5194/acp-14-7705-2014, 2014
C. S. Zerefos, P. Tetsis, A. Kazantzidis, V. Amiridis, S. C. Zerefos, J. Luterbacher, K. Eleftheratos, E. Gerasopoulos, S. Kazadzis, and A. Papayannis
Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, https://doi.org/10.5194/acp-14-2987-2014, 2014
Related subject area
Dynamics of the Earth system: concepts
Rate-induced tipping in natural and human systems
Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes
Reliability of resilience estimation based on multi-instrument time series
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
ESD Ideas: planetary antifragility: a new dimension in the definition of the safe operating space for humanity
Glacial runoff buffers droughts through the 21st century
Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution
Extreme weather and societal impacts in the eastern Mediterranean
Sedimentary microplankton distributions are shaped by oceanographically connected areas
Natural hazards and extreme events in the Baltic Sea region
Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops
ESD Ideas: A weak positive feedback between sea level and the planetary albedo
The potential for structural errors in emergent constraints
Sea level dynamics and coastal erosion in the Baltic Sea region
Earth system economics: a biophysical approach to the human component of the Earth system
The half-order energy balance equation – Part 1: The homogeneous HEBE and long memories
The half-order energy balance equation – Part 2: The inhomogeneous HEBE and 2D energy balance models
A dynamical systems characterization of atmospheric jet regimes
Synchronized spatial shifts of Hadley and Walker circulations
ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability
Temperatures from energy balance models: the effective heat capacity matters
Relating climate sensitivity indices to projection uncertainty
The role of prior assumptions in carbon budget calculations
Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework
π-theorem generalization of the ice-age theory
Earth system data cubes unravel global multivariate dynamics
ESD Ideas: Why are glaciations slower than deglaciations?
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer
Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data
Including the efficacy of land ice changes in deriving climate sensitivity from paleodata
The role of moisture transport for precipitation in the inter-annual and inter-daily fluctuations of the Arctic sea ice extension
On the assessment of the moisture transport by the Great Plains low-level jet
ESD Ideas: The stochastic climate model shows that underestimated Holocene trends and variability represent two sides of the same coin
Cascading transitions in the climate system
The climate of a retrograde rotating Earth
Diurnal land surface energy balance partitioning estimated from the thermodynamic limit of a cold heat engine
How intermittency affects the rate at which rainfall extremes respond to changes in temperature
Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data
On deeper human dimensions in Earth system analysis and modelling
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
Estimating sowing and harvest dates based on the Asian summer monsoon
Quantifying changes in spatial patterns of surface air temperature dynamics over several decades
Systematic Correlation Matrix Evaluation (SCoMaE) – a bottom–up, science-led approach to identifying indicators
Climate indices for the Baltic states from principal component analysis
Fractal scaling analysis of groundwater dynamics in confined aquifers
An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle
Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques
Young people's burden: requirement of negative CO2 emissions
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Short summary
Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Gaëlle Leloup and Didier Paillard
Earth Syst. Dynam., 14, 291–307, https://doi.org/10.5194/esd-14-291-2023, https://doi.org/10.5194/esd-14-291-2023, 2023
Short summary
Short summary
Records of past carbon isotopes exhibit oscillations. It is clear over very different time periods that oscillations of 400 kyr take place. Also, strong oscillations of approximately 8–9 Myr are seen over different time periods. While earlier modelling studies have been able to produce 400 kyr oscillations, none of them produced 8–9 Myr cycles. Here, we propose a simple model for the carbon cycle that is able to produce 8–9 Myr oscillations in the modelled carbon isotopes.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Oliver López-Corona, Melanie Kolb, Elvia Ramírez-Carrillo, and Jon Lovett
Earth Syst. Dynam., 13, 1145–1155, https://doi.org/10.5194/esd-13-1145-2022, https://doi.org/10.5194/esd-13-1145-2022, 2022
Short summary
Short summary
Climate change, the loss of biodiversity and land-use change, among others, have been recognized as main human perturbations to Earth system dynamics, the so-called planetary boundaries. Effort has been made to understand how to define a safe operating space for humanity (accepted levels of these perturbations). In this work we address the problem by assessing the Earth's capacity to respond to these perturbations, a capacity that the planet is losing.
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, https://doi.org/10.5194/esd-13-935-2022, 2022
Short summary
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Ben Marzeion
Earth Syst. Dynam., 12, 1057–1060, https://doi.org/10.5194/esd-12-1057-2021, https://doi.org/10.5194/esd-12-1057-2021, 2021
Short summary
Short summary
The oceans are typically darker than land surfaces. Expanding oceans through sea-level rise may thus lead to a darker planet Earth, reflecting less sunlight. The additionally absorbed sunlight may heat planet Earth, leading to further sea-level rise. Here, we provide a rough estimate of the strength of this feedback: it turns out to be very weak, but clearly positive, thereby destabilizing the Earth system.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Eric D. Galbraith
Earth Syst. Dynam., 12, 671–687, https://doi.org/10.5194/esd-12-671-2021, https://doi.org/10.5194/esd-12-671-2021, 2021
Short summary
Short summary
Scientific tradition has left a gap between the study of humans and the rest of the Earth system. Here, a holistic approach to the global human system is proposed, intended to provide seamless integration with natural sciences. At the core, this focuses on what humans are doing with their time, what the bio-physical outcomes of those activities are, and what the lived experience is. The quantitative approach can facilitate data analysis across scales and integrated human–Earth system modeling.
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021, https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary
Short summary
Monthly scale, seasonal-scale, and decadal-scale modeling of the atmosphere is possible using the principle of energy balance. Yet the scope of classical approaches is limited because they do not adequately deal with energy storage in the Earth system. We show that the introduction of a vertical coordinate implies that the storage has a huge memory. This memory can be used for macroweather (long-range) forecasts and climate projections.
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-2021, https://doi.org/10.5194/esd-12-489-2021, 2021
Short summary
Short summary
Radiant energy is exchanged between the Earth's surface and outer space. Some of the local imbalances are stored in the subsurface, and some are transported horizontally. In Part 1 I showed how – in a horizontally homogeneous Earth – these classical approaches imply long-memory storage useful for seasonal forecasting and multidecadal projections. In this Part 2, I show how to apply these results to the heterogeneous real Earth.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Benjamin Sanderson
Earth Syst. Dynam., 11, 721–735, https://doi.org/10.5194/esd-11-721-2020, https://doi.org/10.5194/esd-11-721-2020, 2020
Short summary
Short summary
Here, we assess the degree to which the idealized responses to transient forcing increase and step change forcing increase relate to warming under future scenarios. We find a possible explanation for the poor performance of transient metrics (relative to equilibrium response) as a metric of high-emission future warming in terms of their sensitivity to non-equilibrated initial conditions, and propose alternative metrics which better describe warming under high mitigation scenarios.
Benjamin Sanderson
Earth Syst. Dynam., 11, 563–577, https://doi.org/10.5194/esd-11-563-2020, https://doi.org/10.5194/esd-11-563-2020, 2020
Short summary
Short summary
Levels of future temperature change are often used interchangeably with carbon budget allowances in climate policy, a relatively robust relationship on the timescale of this century. However, recent advances in understanding underline that continued warming after net-zero emissions have been achieved cannot be ruled out by observations of warming to date. We consider here how such behavior could be constrained and how policy can be framed in the context of these uncertainties.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Christine Ramadhin and Chuixiang Yi
Earth Syst. Dynam., 11, 13–16, https://doi.org/10.5194/esd-11-13-2020, https://doi.org/10.5194/esd-11-13-2020, 2020
Short summary
Short summary
Here we explore ancient climate transitions from warm periods to ice ages and from ice ages to warm periods of the last 400 000 years. The changeovers from warm to ice age conditions are slower than those from ice age to warm conditions. We propose the presence of strong negative sea–ice feedbacks may be responsible for slowing the transition from warm to full ice age conditions. By improving understanding of past abrupt changes, we may have improved knowledge of future system behavior.
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020, https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Short summary
After deriving a fractional continuity equation, a previously-developed equation for water flux in porous media was combined with the Dupuit approximation to obtain an equation for groundwater motion in multi-fractional space in unconfined aquifers. As demonstrated in the numerical application, the orders of the fractional space and time derivatives modulate the speed of groundwater table evolution, slowing the process with the decrease in the powers of the fractional derivatives from 1.
Krishna-Pillai Sukumara-Pillai Krishnamohan, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira
Earth Syst. Dynam., 10, 885–900, https://doi.org/10.5194/esd-10-885-2019, https://doi.org/10.5194/esd-10-885-2019, 2019
Short summary
Short summary
We find that sulfate aerosols are more effective in cooling the climate system when they reside higher in the stratosphere. We explain this sensitivity in terms of radiative forcing at the top of the atmosphere. Sulfate aerosols heat the stratospheric layers, causing an increase in stratospheric water vapor content and a reduction in high clouds. These changes are larger when aerosols are prescribed near the tropopause, offsetting part of the aerosol-induced negative radiative forcing/cooling.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018, https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
Short summary
We introduce a framework of cascading tipping, i.e. a sequence of abrupt transitions occurring because a transition in one system affects the background conditions of another system. Using bifurcation theory, various types of these events are considered and early warning indicators are suggested. An illustration of such an event is found in a conceptual model, coupling the North Atlantic Ocean with the equatorial Pacific. This demonstrates the possibility of events such as this in nature.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 9, 1127–1140, https://doi.org/10.5194/esd-9-1127-2018, https://doi.org/10.5194/esd-9-1127-2018, 2018
Short summary
Short summary
Turbulent fluxes represent an efficient way to transport heat and moisture from the surface into the atmosphere. Due to their inherently highly complex nature, they are commonly described by semiempirical relationships. What we show here is that these fluxes can also be predicted by viewing them as the outcome of a heat engine that operates between the warm surface and the cooler atmosphere and that works at its limit.
Marc Schleiss
Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, https://doi.org/10.5194/esd-9-955-2018, 2018
Short summary
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
Ragnhild Bieltvedt Skeie, Terje Berntsen, Magne Aldrin, Marit Holden, and Gunnar Myhre
Earth Syst. Dynam., 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, https://doi.org/10.5194/esd-9-879-2018, 2018
Short summary
Short summary
A key question in climate science is how the global mean surface temperature responds to changes in greenhouse gases. This dependency is quantified by the climate sensitivity, which is determined by the complex feedbacks in the climate system. In this study observations of past climate change are used to estimate this sensitivity. Our estimate is consistent with values for the equilibrium climate sensitivity estimated by complex climate models but sensitive to the use of uncertain input data.
Dieter Gerten, Martin Schönfeld, and Bernhard Schauberger
Earth Syst. Dynam., 9, 849–863, https://doi.org/10.5194/esd-9-849-2018, https://doi.org/10.5194/esd-9-849-2018, 2018
Short summary
Short summary
Cultural processes are underrepresented in Earth system models, although they decisively shape humanity’s planetary imprint. We set forth ideas on how Earth system analysis can be enriched by formalising aspects of religion (understood broadly as a collective belief in things held sacred). We sketch possible modelling avenues (extensions of existing Earth system models and new co-evolutionary models) and suggest research primers to explicate and quantify mental aspects of the Anthropocene.
Stefan Lange
Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, https://doi.org/10.5194/esd-9-627-2018, 2018
Short summary
Short summary
The bias correction of surface downwelling longwave and shortwave radiation using parametric quantile mapping methods is shown to be more effective (i) at the daily than at the monthly timescale, (ii) if the spatial resolution gap between the reference data and the data to be corrected is bridged in a more suitable manner than by bilinear interpolation, and (iii) if physical upper limits are taken into account during the adjustment of either radiation component.
Camilla Mathison, Chetan Deva, Pete Falloon, and Andrew J. Challinor
Earth Syst. Dynam., 9, 563–592, https://doi.org/10.5194/esd-9-563-2018, https://doi.org/10.5194/esd-9-563-2018, 2018
Short summary
Short summary
Sowing and harvest dates are a significant source of uncertainty within crop models. South Asia is one region with a large uncertainty. We aim to provide more accurate sowing and harvest dates than currently available and that are relevant for climate impact assessments. This method reproduces the present day sowing and harvest dates for most parts of India and when applied to two future periods provides a useful way of modelling potential growing season adaptations to changes in future climate.
Dario A. Zappalà, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 9, 383–391, https://doi.org/10.5194/esd-9-383-2018, https://doi.org/10.5194/esd-9-383-2018, 2018
Short summary
Short summary
The dynamics of our climate involves multiple timescales, and while a lot of work has been devoted to quantifying variations in time-averaged variables or variations in their seasonal cycles, variations in daily variability that occur over several decades still remain poorly understood. Here we analyse daily surface air temperature and demonstrate that inter-decadal changes can be precisely identified and quantified with the Hilbert analysis tool.
Nadine Mengis, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 9, 15–31, https://doi.org/10.5194/esd-9-15-2018, https://doi.org/10.5194/esd-9-15-2018, 2018
Short summary
Short summary
The Systematic Correlation Matrix Evaluation (SCoMaE) method applies statistical information to systematically select, transparent, nonredundant indicators for a comprehensive assessment of the Earth system state. We show that due to changing climate forcing, such as anthropogenic climate change, the ad hoc assessment indicators might need to be reevaluated. Within an iterative process, this method would allow us to select scientifically consistent and societally relevant assessment indicators.
Liga Bethere, Juris Sennikovs, and Uldis Bethers
Earth Syst. Dynam., 8, 951–962, https://doi.org/10.5194/esd-8-951-2017, https://doi.org/10.5194/esd-8-951-2017, 2017
Short summary
Short summary
We define three new climate indices based on monthly mean temperature and total precipitation values that describe the main features of the climate in the Baltic states. Higher values in each index correspond to (1) less distinct seasonality and (2) warmer and (3) wetter climate. It was calculated that in the future all three indices will increase. Such indices summarize and illustrate the spatial features of the Baltic climate, and they can be used in further analysis of climate change impact.
Tongbi Tu, Ali Ercan, and M. Levent Kavvas
Earth Syst. Dynam., 8, 931–949, https://doi.org/10.5194/esd-8-931-2017, https://doi.org/10.5194/esd-8-931-2017, 2017
Short summary
Short summary
Groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior, and the underlying distribution exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics. The estimated Hurst exponent is highly dependent on the length and the specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, https://doi.org/10.5194/esd-8-849-2017, 2017
Short summary
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Cited articles
Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X.,
and Wang, X.: The variation of summer monsoon precipitation in central China
since the last deglaciation, Earth Planet. Sc. Lett., 291, 21–31,
https://doi.org/10.1016/j.epsl.2009.12.039, 2010.
Chen, J., Chen, F., Feng, S., Huang, W., Liu, J., and Zhou, A.:
Hydroclimatic changes in China and surroundings during the Medieval Climate
Anomaly and Little Ice Age: spatial patterns and possible mechanisms, Quaternary
Sci. Rev., 107, 98–111, https://doi.org/10.1016/j.quascirev.2014.10.012, 2015.
Chu, G., Sun, Q., Wang, X., Li, D., Rioual, P., Qiang, L., Han, J., and Liu,
J.: A 1600 year multiproxy record of paleoclimatic change from varved
sediments in Lake Xiaolongwan, northeastern China, J. Geophys. Res., 114, D22108,
https://doi.org/10.1029/2009JD012077, 2009.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: a review and comparison of two techniques, Int. J.
Climatol., 14, 379–402, https://doi.org/10.1002/joc.3370140404, 1994.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G.
C., and Wright, W. E. X.: Asian monsoon failure and megadrought during the
last millennium, Science, 328, 486–489, 2010.
Feng, S., Hu, Q., Wu, Q., and Mann, M. E.: A gridded reconstruction of warm
season precipitation for Asia spanning the past half millennium, J. Climate,
26, 2192–2204, https://doi.org/10.1175/JCLI-D-12-00099.1, 2013.
Feng, Z.-D., Wu, H. N., Zhang, C. J., Ran, M., and Sun, A. Z.: Bioclimatic
change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan,
Central Asia, Quatern. Int., 311, 63–70, https://doi.org/10.1016/j.quaint.2013.06.032,
2013.
Franke, J., González-Rouco, J. F., Frank, D., and Graham, N. E.: 200
years of European temperature variability: insights from and tests of the
proxy surrogate reconstruction analog method, Clim. Dynam., 37, 133–150,
https://doi.org/10.1007/s00382-010-0802-6, 2011.
Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian Data Anal, 3rd edn.,
Chapman and Hall, London, 2003.
Gómez-Navarro, J. J., Werner, J., Wagner, S., Luterbacher, J., and
Zorita, E.: Establishing the skill of climate field reconstruction
techniques for precipitation with pseudoproxy experiments, Clim. Dynam.,
45, 1395–1413, https://doi.org/10.1007/s00382-014-2388-x, 2015.
Gong, G. and Hameed, S.: The variation of moisture conditions in China
during the last 2000 years, Int. J. Climatol., 11, 271–283,
https://doi.org/10.1002/joc.3370110304, 1991.
Gou, X., Deng, Y., Chen, F., Yang, M., Fang, K., Gao, L., Yang, T., and Zhang,
F.: Tree ring based streamflow reconstruction for the Upper Yellow River
over the past 1234 years, Chinese Sci. Bull., 55, 4179–418, https://doi.org/10.1007/s11434-010-4215-z, 2010.
Guillot, D., Rajaratnam, B., and Emile-Geay, J.: Statistical paleoclimate
reconstructions via Markov random fields, Ann. Appl. Stat., 9, 324–352,
https://doi.org/10.1214/14-AOAS794, 2015.
He, M., Bräuning, A., Grießinger, J., Hochreuther, P., and Wernicke,
J.: May–June drought reconstruction over the past 821 years on the
south-central Tibetan Plateau derived from tree-ring width series,
Dendrochronologia, 47, 48–57, https://doi.org/10.1016/j.dendro.2017.12.006, 2018.
He, Y., Zhao, C., Wang, Z., Wang, H., Song, M., Liu, W., and Liu, Z.: Late
Holocene coupled moisture and temperature changes on the northern Tibetan
Plateau, Quaternary Sci. Rev., 80, 47–57, https://doi.org/10.1016/j.quascirev.2013.08.017,
2013.
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.
Hong, Y. T., Hong, B., Lin, Q. H., Shibata, Y., Hirota, M., Zhu, Y. X., Leng,
X. T., Wang, Y., Wang, H., and Yi, L.: Inverse phase oscillations between the
East Asian and Indian Ocean summer monsoons during the last 12000 years and
paleo-El Niño, Earth Planet. Sc. Lett., 231, 337–346, https://doi.org/10.1016/j.epsl.2004.12.025, 2005.
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.:
Quantification of Holocene Asian monsoon rainfall from spatially separated
cave records, Earth Planet. Sc. Lett., 266, 221–232, https://doi.org/10.1016/j.epsl.2007.10.015, 2008.
Izenman, A. J.: Modern Multivariate Statistical Techniques, Springer Texts in
Statistics, Springer-Verlag New York, 2008.
Jiang, T., Zhang, Q., Blender, R., and Fraedrich, K.: Yangtze Delta floods
and droughts of the last millennium: Abrupt changes and long term memory,
Theor. Appl. Climatol., 82, 131–141, https://doi.org/10.1007/s00704-005-0125-4, 2005
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E., Zwiers, F. W., Schmidt, G. A.,
Ammann, C., Mann, M. E., Buckley, B. M., Cobb, K., Esper, J., Goosse, H.,
Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, S.,
Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution
palaeoclimatology of the last millennium: a review of current status and
future prospects, Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009.
Kasper, T., Haberzettl, T., Doberschütz, S., Daut, G., Wang, J., Zhu,
L., Nowaczyk, N., and Mäusbacher, R.: Indian Ocean Summer Monsoon
(IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam
Co, central Tibetan Plateau (China), Quaternary Sci. Rev., 39, 73–85,
https://doi.org/10.1016/j.quascirev.2012.02.011, 2012.
Kuo, T. S., Liu, Z. Q., Li, H. C., Wan, N. J., Shen, C. C., and Ku, T. L.: Climate
and environmental changes during the past millennium in central western
Guizhou, China as recorded by Stalagmite ZJD-21, J. Asian Earth Sci., 40,
1111–1120, https://doi.org/10.1016/j.jseaes.2011.01.001, 2011.
Li, H. C., Lee, Z. H., Wan, N. J., Shen, C. C., Li, T. Y., Yuan, D. X., and Chen,
Y. H.: The δ18O and δ13C records in an aragonite stalagmite
from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate,
J. Asian Earth Sci., 40, 1121–1130, https://doi.org/10.1016/j.jseaes.2010.06.011, 2011.
Liangcheng, T., Yanjun, C., Liang, Y., Zhisheng, A., and Li, A.: Precipitation
variations of Longxi, northeast margin of Tibetan Plateau since AD 960
and their relationship with solar activity, Clim. Past, 4, 19–28,
https://doi.org/10.5194/cp-4-19-2008, 2008.
Liu, J., Chen, F., Chen, J., Xia, D., Xu, Q., Wang, Z., and Li, Y.: Humid
medieval warm period recorded by magnetic characteristics of sediments from
Gonghai Lake, Shanxi, North China, Chinese Sci. Bull., 56, 2464–2474,
https://doi.org/10.1007/s11434-011-4592-y, 2011.
Liu, X., Herzschuh, U., Shen, J., Jiang, Q., and Xiao, X.: Holocene
environmental and climatic changes inferred from Wulungu Lake in northern
Xinjiang, China, Quaternary Res., 70, 412–425, https://doi.org/10.1016/j.yqres.2008.06.005,
2008.
Liu, X., Dong, H., Yang, X., Herzschuh, U., Zhang, E., Stuut, J.-B. W., and
Wang, Y.: Late Holocene forcing of the Asian winter and summer monsoon as
evidenced by proxy records from the northern Qinghai–Tibetan Plateau, Earth
Planet. Sc. Lett., 280, 276–284, https://doi.org/10.1016/j.epsl.2009.01.041, 2009.
Liu, Z., Liu, Q., Torrent, J., Barrón, V., and Hu, P.: Testing the
magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern
soil profiles from Shaanxi Province, China, Global Planet. Change, 110,
368–378, https://doi.org/10.1016/j.gloplacha.2013.04.013, 2013.
Ljungqvist, F. C., Krusic, P. J., Sundqvist, H. S., Zorita, E.,
Brattström, G., and Frank, D.: Northern Hemisphere hydroclimate
variability over the past twelve centuries, Nature, 532, 94–98,
https://doi.org/10.1038/nature17418, 2016.
Lorenz, E. N.: Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26, 636–646, 1969.
Luterbacher, J. and Zorita, E.: Spatial climate field reconstructions, in:
The Palgrave Handbook of Climate History, edited by:
White, S., Pfister, C., and Mauelshagen, F.,
Palgrave Macmillan, UK, 131–139, 2018.
Luterbacher, J., Werner, J. P., Smerdon, J. E., et al.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Mann, M. E. and Rutherford, S.: Climate reconstruction using
“Pseudoproxies”, Geophys. Res. Lett., 29, 139-1–139-4,
https://doi.org/10.1029/2001GL014554, 2002.
Nilsen, T., Werner, J. P., Divine, D. V., and Rypdal, M.: Assessing the
performance of the BARCAST climate field reconstruction technique for a climate with long-range memory,
Clim. Past, 14, 947–967, https://doi.org/10.5194/cp-14-947-2018, 2018.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability and
change since 850 CE: An ensemble approach with the Community Earth System Model,
B. Am. Meteorol. Soc., 97, 735–754, https://doi.org/10.1175/BAMS-D-14-00233.1, 2016.
Paulsen, D. E., Li, H. C., and Ku, T. L.: Climate variability in central China
over the last 1270 years revealed by high-resolution stalagmite records,
Quaternary Sci. Rev., 22, 691–701, https://doi.org/10.1016/S0277-3791(02)00240-8, 2003.
Qian, W., Hu, Q., Zhu, Y., and Lee, D. K.: Centennial-scale dry-wet variations in
East Asia, Clim. Dynam., 21, 77–89, https://doi.org/10.1007/s00382-003-0319-3, 2003.
Sanwal, J., Kotlia, B. S., Rajendran, C., Ahmad, S. M., Rajendran, K., and
Sandiford, M.: Climatic variability in Central Indian Himalaya during the
last ∼1800 years: Evidence from a high resolution speleothem record,
Quaternary Int., 304, 183–192, https://doi.org/10.1016/j.quaint.2013.03.029, 2013.
Schneider, T.: Analysis of incomplete climate data: Estimation of mean
values and covariance matrices and imputation of missing values, J. Climate,
14, 853–871, https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2, 2001.
Sheppard, P. R., Tarasov, P. E., Graumlich, L. J., Heussner, K. U., Wagner, M.,
Sterle, H., and Thompson, L. G.: Annual precipitation since 515 BC reconstructed
from living and fossil juniper growth of northeastern Qinghai Province,
China, Clim. Dynam., 23, 869–881, https://doi.org/10.1007/s00382-004-0473-2, 2004.
Shi, F., Li, J., and Wilson, R. J.: A tree-ring reconstruction of the South
Asian summer monsoon index over the past millennium, Scientific Reports, 4, 6739,
https://doi.org/10.1038/srep06739, 2014.
Shi, F., Zhao, S., Guo, Z., Goosse, H., and Yin, Q.: Multi-proxy reconstructions of
May–September precipitation field in
China over the past 500 years, Clim. Past, 13, 1919–1938,
https://doi.org/10.5194/cp-13-1919-2017, 2017.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas,
J.: The leading mode of Indian Summer Monsoon precipitation variability during the last millennium,
Geophys. Res.
Lett., 38, L15703, https://doi.org/10.1029/2011GL047713, 2011.
Smerdon, J. E.: Climate models as a test bed for climate reconstruction
methods: pseudoproxy experiments, WIREs Clim. Change, 3, 63–77,
https://doi.org/10.1002/wcc.149, 2012.
Smerdon, J. E., Kaplan, A., Chang, D., and Evans, M. N.: A pseudoproxy
evaluation of the CCA and RegEM methods for reconstructing climate fields of
the last millennium, J. Climate, 23, 4856–4880, 2010.
Sun, A. and Feng, Z.: Holocene climatic reconstructions from the fossil
pollen record at Qigai Nuur in the southern Mongolian Plateau, Holocene,
23, 1391–1402, https://doi.org/10.1177/0959683613489581, 2013.
Talento, S.: Data: Millennium-length precipitation Reconstruction over South-eastern Asia: a Pseudo-Proxy Approach, https://doi.org/10.17605/OSF.IO/B2RXP, 2019.
Tan, L., Cai, Y., An, Z., Edwards, R. L., Cheng, H., Shen, C. C., and Zhang, H.:
Centennial- to decadal-scale monsoon precipitation variability
in the semi-humid region, northern China during the last 1860 years: Records
from stalagmites in Huangye Cave, Holocene, 21, 287–296, https://doi.org/10.1177/0959683610378880,
2011.
Tingley, M. P. and Huybers, P.: A Bayesian algorithm for reconstructing
climate anomalies in space and time. Part I: Development and applications to
paleoclimate reconstruction problems, J. Climate, 23, 2759–2781,
https://doi.org/10.1175/2009JCLI3015.1, 2010.
Tingley, M. P. and Huybers, P.: Recent temperature extremes at high
northern latitudes unprecedented in the past 600 years, Nature, 496,
201–205, https://doi.org/10.1038/nature11969, 2013.
Treydte, K. S., Schleser, G. H., Helle, G., Frank, D. C., Winiger, M., Haug,
G. H., and Esper, J.: The twentieth century was the wettest period in northern
Pakistan over the past millennium, Nature, 440, 1179–1182, https://doi.org/10.1038/nature04743, 2006.
Wang, Z., Li, Y., Liu, B., and Liu, J.: Global climate internal variability
in a 2000-year control simulation with Community Earth System Model (CESM),
Chinese Geogr. Sci., 25, 263–273, https://doi.org/10.1007/s11769-015-0754-1, 2015.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z. S., Wu, J.,
Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian Monsoon: Links to
Solar Changes and North Atlantic Climate, Science, 308, 854–857,
https://doi.org/10.1126/science.1106296, 2005.
Wang, W., Feng, Z., Ran, M., and Zhang, C.: Holocene climate and vegetation
changes inferred from pollen records of Lake Aibi, northern Xinjiang, China:
A potential contribution to understanding of Holocene climate pattern in
East-central Asia, Quatern. Int., 311, 54–62, https://doi.org/10.1016/j.quaint.2013.07.034,
2013.
Werner, J. P., Luterbacher, J., and Smerdon, J. E.: A Pseudoproxy Evaluation
of Bayesian Hierarchical Modelling and Canonical Correlation Analysis for
Climate Field Reconstructions over Europe, J. Climate, 26, 851–867,
https://doi.org/10.1175/JCLI-D-12-00016.1, 2013.
Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F.,
Nilsen, T., and Francus, P.: Spatio-temporal variability of Arctic summer temperatures
over the past 2 millennia,
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, 2018.
Wilks, D.: Statistical Methods in the Atmospheric Sciences, 2nd edn., Elsevier, Burlington, USA, 2011.
Yan, Z., Li, Z., and Wang, X.: An analysis of decade-to century-scale
climatic jumps in history, Scientia Atmospherica Sinica, 17, 663–672, 1993.
Yang, B., Qin, C., Shi, F., and Sonechkin, D. M.: Tree ring-based annual
streamflow reconstruction for the Heihe River in arid northwestern China from
AD 575 and its implications for water resource management,
Holocene, 22, 773–784, https://doi.org/10.1177/0959683611430411, 2012.
Yang, B., Qin, C., Wang, J., He, M., Melvin, T. M., Osborn, T. J., and Briffa,
K. R.: A 3,500-year tree-ring record of annual precipitation on the
northeastern Tibetan Plateau, P. Natl. Acad. Sci. USA, 111, 2903–2908,
https://doi.org/10.1073/pnas.1319238111, 2014.
Yao, T., Thompson, L., Qin, D., and Tian, L.: Variations in temperature and precipitation in the past 2000
a on the Xizang (Tibet) Plateau – Guliya ice core record, Sci. China Ser. D, 39,
425–433, 1996.
Yin, Z.-Y., Shao, X., Qin, N., and Liang, E.: Reconstruction of a 1436-year soil moisture and vegetation water use history based on tree-ring widths from Qilian junipers in northeastern Qaidam Basin, northwestern China, Int. J. Climatol., 28, 37–53, https://doi.org/10.1002/joc.1515, 2008.
Yu, X., Zhou, W., Franzen, L. G., Xian, F., Cheng, P., and Jull, A. J. T.:
High-resolution peat records for Holocene monsoon history in the eastern
Tibetan Plateau, Sci. China Ser. D, 49, 615–621, https://doi.org/10.1007/s11430-006-0615-y,
2006.
Zeng, Y., Chen, J., Zhu, Z., Li, J., Wang, J., and Wan, G.: The wet Little
Ice Age recorded by sediments in Huguangyan Lake, tropical South China,
Quatern. Int., 263, 55–62, https://doi.org/10.1016/j.quaint.2011.12.022, 2012.
Zhai, D., Xiao, J., Zhou, L., Wen, R., Chang, Z., Wang, X., Jin, X., Pang,
Q., and Itoh, S.: Holocene East Asian monsoon variation inferred from species
assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner
Mongolia, Quaternary Res., 75, 512–522, https://doi.org/10.1016/j.yqres.2011.02.008, 2011.
Zhang, H., Werner, J. P., García-Bustamante, E., González-Rouco,
F. J., Wagner, S., Zorita, E., Fraedrich, K., Jungclaus, J., Zhu, X.,
Xoplaki, E., Chen, F., Duan, J., Ge, Q., Hao, Z., Ivanov, M., Talento, S.,
Schneider, L., Wang, J., Yang, B., and Luterbacher, J.: East Asian warm
season temperature variations over the past two millennia, Scientific Reports,
8, 7702, https://doi.org/10.1038/s41598-018-26038-8, 2018.
Zhang, Y., Tian, Q., Gou, X., Chen, F., Leavitt, S. W., and Wang, Y.: Annual
precipitation reconstruction since AD 775 based on tree rings from the
Qilian Mountains, northwestern China, Int. J. Climatol., 31, 371–381,
https://doi.org/10.1002/joc.2085, 2011.
Zhang, Q., Gemmer, M., and Chen, J.: Climate changes and flood/drought risk in
the Yangtze Delta, China, during the past millennium, Quatern. Int., 176–177,
62–69, https://doi.org/10.1016/j.quaint.2006.11.004, 2008.
Zheng, J., Wang, W.-C., Ge, Q., Man, Z., and Zhang, P.: Precipitation
Variability and Extreme Events in Eastern China during the Past 1500 Years,
Terr. Atmos. Ocean. Sci., 17, 579–592, https://doi.org/10.3319/TAO.2006.17.3.579(A),
2006.
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Quantifying hydroclimate variability beyond the instrumental period is essential for putting...
Special issue
Altmetrics
Final-revised paper
Preprint