Articles | Volume 10, issue 2
https://doi.org/10.5194/esd-10-347-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-10-347-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Millennium-length precipitation reconstruction over south-eastern Asia: a pseudo-proxy approach
Stefanie Talento
CORRESPONDING AUTHOR
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University of Giessen, Giessen, Germany
Physics Institute, Science Faculty, Universidad de la República, Montevideo, Uruguay
Lea Schneider
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University of Giessen, Giessen, Germany
Johannes Werner
independent researcher
Jürg Luterbacher
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University of Giessen, Giessen, Germany
Center of International Development and Environmental Research, Justus Liebig University of Giessen, Giessen, Germany
Related authors
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Rupesh Dhyani, Dario Martin Benito, Louis Verschuren, Vladimir Matskovsky, Jan Van den Bulcke, Mehmet Doğan, Revaz Kvaratskhelia, Nesibe Köse, Hüseyin Tuncay Güner, and Lea Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2025-5809, https://doi.org/10.5194/egusphere-2025-5809, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present the first summer temperature reconstruction for the Caucasus using maximum latewood density from tree rings. The record spans 326 years and calibrates exceptionally well with local instrumental data. Before the onset of unprecedented warming in the 1990s, long-term temperature variability is low, but tropical volcanic eruptions cause distinct short-term cooling events. Our reconstruction agrees well with local products, but contrasts in multiple aspects with an Alpine reconstruction.
Eva Hartmann, Mingyue Zhang, Sebastian Wagner, Muralidhar Adakudlu, Jürg Luterbacher, and Elena Xoplaki
Clim. Past, 21, 1699–1724, https://doi.org/10.5194/cp-21-1699-2025, https://doi.org/10.5194/cp-21-1699-2025, 2025
Short summary
Short summary
For the first time, we provide a regional climate model with past climate forcings. The model's sensitivity to each forcing is tested in a case study around the large Samalas volcanic eruption in 1257. The orbital forcing shows the largest effect with an amplification of the seasons in the past compared with the standard model. The volcanic forcing has a strong short-term cooling effect after the volcanic eruption. This model is later used for a transient simulation of the last 2500 years.
Kai Man, Xichen Li, Jürg Luterbacher, Lei Geng, Naiming Yuan, Yurong Hou, Yonghao Wang, and Yujie Miao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1381, https://doi.org/10.5194/egusphere-2025-1381, 2025
Preprint archived
Short summary
Short summary
The West Antarctic Ice Sheet shows opposing snow accumulation trends: decreasing in the west and increasing in the east. Our study reveals that tropical ocean temperature shifts – Pacific cooling and Atlantic warming – drive changes in winds and moisture, boosting snowfall in the east while reducing it in the west. Using ice cores and models, we highlight how distant ocean changes shape Antarctic Ice Sheet, crucial for predicting future sea level rise.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll
Clim. Past, 21, 327–342, https://doi.org/10.5194/cp-21-327-2025, https://doi.org/10.5194/cp-21-327-2025, 2025
Short summary
Short summary
We study the climatic signal, with a focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Cited articles
Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X.,
and Wang, X.: The variation of summer monsoon precipitation in central China
since the last deglaciation, Earth Planet. Sc. Lett., 291, 21–31,
https://doi.org/10.1016/j.epsl.2009.12.039, 2010.
Chen, J., Chen, F., Feng, S., Huang, W., Liu, J., and Zhou, A.:
Hydroclimatic changes in China and surroundings during the Medieval Climate
Anomaly and Little Ice Age: spatial patterns and possible mechanisms, Quaternary
Sci. Rev., 107, 98–111, https://doi.org/10.1016/j.quascirev.2014.10.012, 2015.
Chu, G., Sun, Q., Wang, X., Li, D., Rioual, P., Qiang, L., Han, J., and Liu,
J.: A 1600 year multiproxy record of paleoclimatic change from varved
sediments in Lake Xiaolongwan, northeastern China, J. Geophys. Res., 114, D22108,
https://doi.org/10.1029/2009JD012077, 2009.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: a review and comparison of two techniques, Int. J.
Climatol., 14, 379–402, https://doi.org/10.1002/joc.3370140404, 1994.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G.
C., and Wright, W. E. X.: Asian monsoon failure and megadrought during the
last millennium, Science, 328, 486–489, 2010.
Feng, S., Hu, Q., Wu, Q., and Mann, M. E.: A gridded reconstruction of warm
season precipitation for Asia spanning the past half millennium, J. Climate,
26, 2192–2204, https://doi.org/10.1175/JCLI-D-12-00099.1, 2013.
Feng, Z.-D., Wu, H. N., Zhang, C. J., Ran, M., and Sun, A. Z.: Bioclimatic
change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan,
Central Asia, Quatern. Int., 311, 63–70, https://doi.org/10.1016/j.quaint.2013.06.032,
2013.
Franke, J., González-Rouco, J. F., Frank, D., and Graham, N. E.: 200
years of European temperature variability: insights from and tests of the
proxy surrogate reconstruction analog method, Clim. Dynam., 37, 133–150,
https://doi.org/10.1007/s00382-010-0802-6, 2011.
Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian Data Anal, 3rd edn.,
Chapman and Hall, London, 2003.
Gómez-Navarro, J. J., Werner, J., Wagner, S., Luterbacher, J., and
Zorita, E.: Establishing the skill of climate field reconstruction
techniques for precipitation with pseudoproxy experiments, Clim. Dynam.,
45, 1395–1413, https://doi.org/10.1007/s00382-014-2388-x, 2015.
Gong, G. and Hameed, S.: The variation of moisture conditions in China
during the last 2000 years, Int. J. Climatol., 11, 271–283,
https://doi.org/10.1002/joc.3370110304, 1991.
Gou, X., Deng, Y., Chen, F., Yang, M., Fang, K., Gao, L., Yang, T., and Zhang,
F.: Tree ring based streamflow reconstruction for the Upper Yellow River
over the past 1234 years, Chinese Sci. Bull., 55, 4179–418, https://doi.org/10.1007/s11434-010-4215-z, 2010.
Guillot, D., Rajaratnam, B., and Emile-Geay, J.: Statistical paleoclimate
reconstructions via Markov random fields, Ann. Appl. Stat., 9, 324–352,
https://doi.org/10.1214/14-AOAS794, 2015.
He, M., Bräuning, A., Grießinger, J., Hochreuther, P., and Wernicke,
J.: May–June drought reconstruction over the past 821 years on the
south-central Tibetan Plateau derived from tree-ring width series,
Dendrochronologia, 47, 48–57, https://doi.org/10.1016/j.dendro.2017.12.006, 2018.
He, Y., Zhao, C., Wang, Z., Wang, H., Song, M., Liu, W., and Liu, Z.: Late
Holocene coupled moisture and temperature changes on the northern Tibetan
Plateau, Quaternary Sci. Rev., 80, 47–57, https://doi.org/10.1016/j.quascirev.2013.08.017,
2013.
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.
Hong, Y. T., Hong, B., Lin, Q. H., Shibata, Y., Hirota, M., Zhu, Y. X., Leng,
X. T., Wang, Y., Wang, H., and Yi, L.: Inverse phase oscillations between the
East Asian and Indian Ocean summer monsoons during the last 12000 years and
paleo-El Niño, Earth Planet. Sc. Lett., 231, 337–346, https://doi.org/10.1016/j.epsl.2004.12.025, 2005.
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.:
Quantification of Holocene Asian monsoon rainfall from spatially separated
cave records, Earth Planet. Sc. Lett., 266, 221–232, https://doi.org/10.1016/j.epsl.2007.10.015, 2008.
Izenman, A. J.: Modern Multivariate Statistical Techniques, Springer Texts in
Statistics, Springer-Verlag New York, 2008.
Jiang, T., Zhang, Q., Blender, R., and Fraedrich, K.: Yangtze Delta floods
and droughts of the last millennium: Abrupt changes and long term memory,
Theor. Appl. Climatol., 82, 131–141, https://doi.org/10.1007/s00704-005-0125-4, 2005
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E., Zwiers, F. W., Schmidt, G. A.,
Ammann, C., Mann, M. E., Buckley, B. M., Cobb, K., Esper, J., Goosse, H.,
Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, S.,
Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution
palaeoclimatology of the last millennium: a review of current status and
future prospects, Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009.
Kasper, T., Haberzettl, T., Doberschütz, S., Daut, G., Wang, J., Zhu,
L., Nowaczyk, N., and Mäusbacher, R.: Indian Ocean Summer Monsoon
(IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam
Co, central Tibetan Plateau (China), Quaternary Sci. Rev., 39, 73–85,
https://doi.org/10.1016/j.quascirev.2012.02.011, 2012.
Kuo, T. S., Liu, Z. Q., Li, H. C., Wan, N. J., Shen, C. C., and Ku, T. L.: Climate
and environmental changes during the past millennium in central western
Guizhou, China as recorded by Stalagmite ZJD-21, J. Asian Earth Sci., 40,
1111–1120, https://doi.org/10.1016/j.jseaes.2011.01.001, 2011.
Li, H. C., Lee, Z. H., Wan, N. J., Shen, C. C., Li, T. Y., Yuan, D. X., and Chen,
Y. H.: The δ18O and δ13C records in an aragonite stalagmite
from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate,
J. Asian Earth Sci., 40, 1121–1130, https://doi.org/10.1016/j.jseaes.2010.06.011, 2011.
Liangcheng, T., Yanjun, C., Liang, Y., Zhisheng, A., and Li, A.: Precipitation
variations of Longxi, northeast margin of Tibetan Plateau since AD 960
and their relationship with solar activity, Clim. Past, 4, 19–28,
https://doi.org/10.5194/cp-4-19-2008, 2008.
Liu, J., Chen, F., Chen, J., Xia, D., Xu, Q., Wang, Z., and Li, Y.: Humid
medieval warm period recorded by magnetic characteristics of sediments from
Gonghai Lake, Shanxi, North China, Chinese Sci. Bull., 56, 2464–2474,
https://doi.org/10.1007/s11434-011-4592-y, 2011.
Liu, X., Herzschuh, U., Shen, J., Jiang, Q., and Xiao, X.: Holocene
environmental and climatic changes inferred from Wulungu Lake in northern
Xinjiang, China, Quaternary Res., 70, 412–425, https://doi.org/10.1016/j.yqres.2008.06.005,
2008.
Liu, X., Dong, H., Yang, X., Herzschuh, U., Zhang, E., Stuut, J.-B. W., and
Wang, Y.: Late Holocene forcing of the Asian winter and summer monsoon as
evidenced by proxy records from the northern Qinghai–Tibetan Plateau, Earth
Planet. Sc. Lett., 280, 276–284, https://doi.org/10.1016/j.epsl.2009.01.041, 2009.
Liu, Z., Liu, Q., Torrent, J., Barrón, V., and Hu, P.: Testing the
magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern
soil profiles from Shaanxi Province, China, Global Planet. Change, 110,
368–378, https://doi.org/10.1016/j.gloplacha.2013.04.013, 2013.
Ljungqvist, F. C., Krusic, P. J., Sundqvist, H. S., Zorita, E.,
Brattström, G., and Frank, D.: Northern Hemisphere hydroclimate
variability over the past twelve centuries, Nature, 532, 94–98,
https://doi.org/10.1038/nature17418, 2016.
Lorenz, E. N.: Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26, 636–646, 1969.
Luterbacher, J. and Zorita, E.: Spatial climate field reconstructions, in:
The Palgrave Handbook of Climate History, edited by:
White, S., Pfister, C., and Mauelshagen, F.,
Palgrave Macmillan, UK, 131–139, 2018.
Luterbacher, J., Werner, J. P., Smerdon, J. E., et al.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Mann, M. E. and Rutherford, S.: Climate reconstruction using
“Pseudoproxies”, Geophys. Res. Lett., 29, 139-1–139-4,
https://doi.org/10.1029/2001GL014554, 2002.
Nilsen, T., Werner, J. P., Divine, D. V., and Rypdal, M.: Assessing the
performance of the BARCAST climate field reconstruction technique for a climate with long-range memory,
Clim. Past, 14, 947–967, https://doi.org/10.5194/cp-14-947-2018, 2018.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability and
change since 850 CE: An ensemble approach with the Community Earth System Model,
B. Am. Meteorol. Soc., 97, 735–754, https://doi.org/10.1175/BAMS-D-14-00233.1, 2016.
Paulsen, D. E., Li, H. C., and Ku, T. L.: Climate variability in central China
over the last 1270 years revealed by high-resolution stalagmite records,
Quaternary Sci. Rev., 22, 691–701, https://doi.org/10.1016/S0277-3791(02)00240-8, 2003.
Qian, W., Hu, Q., Zhu, Y., and Lee, D. K.: Centennial-scale dry-wet variations in
East Asia, Clim. Dynam., 21, 77–89, https://doi.org/10.1007/s00382-003-0319-3, 2003.
Sanwal, J., Kotlia, B. S., Rajendran, C., Ahmad, S. M., Rajendran, K., and
Sandiford, M.: Climatic variability in Central Indian Himalaya during the
last ∼1800 years: Evidence from a high resolution speleothem record,
Quaternary Int., 304, 183–192, https://doi.org/10.1016/j.quaint.2013.03.029, 2013.
Schneider, T.: Analysis of incomplete climate data: Estimation of mean
values and covariance matrices and imputation of missing values, J. Climate,
14, 853–871, https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2, 2001.
Sheppard, P. R., Tarasov, P. E., Graumlich, L. J., Heussner, K. U., Wagner, M.,
Sterle, H., and Thompson, L. G.: Annual precipitation since 515 BC reconstructed
from living and fossil juniper growth of northeastern Qinghai Province,
China, Clim. Dynam., 23, 869–881, https://doi.org/10.1007/s00382-004-0473-2, 2004.
Shi, F., Li, J., and Wilson, R. J.: A tree-ring reconstruction of the South
Asian summer monsoon index over the past millennium, Scientific Reports, 4, 6739,
https://doi.org/10.1038/srep06739, 2014.
Shi, F., Zhao, S., Guo, Z., Goosse, H., and Yin, Q.: Multi-proxy reconstructions of
May–September precipitation field in
China over the past 500 years, Clim. Past, 13, 1919–1938,
https://doi.org/10.5194/cp-13-1919-2017, 2017.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas,
J.: The leading mode of Indian Summer Monsoon precipitation variability during the last millennium,
Geophys. Res.
Lett., 38, L15703, https://doi.org/10.1029/2011GL047713, 2011.
Smerdon, J. E.: Climate models as a test bed for climate reconstruction
methods: pseudoproxy experiments, WIREs Clim. Change, 3, 63–77,
https://doi.org/10.1002/wcc.149, 2012.
Smerdon, J. E., Kaplan, A., Chang, D., and Evans, M. N.: A pseudoproxy
evaluation of the CCA and RegEM methods for reconstructing climate fields of
the last millennium, J. Climate, 23, 4856–4880, 2010.
Sun, A. and Feng, Z.: Holocene climatic reconstructions from the fossil
pollen record at Qigai Nuur in the southern Mongolian Plateau, Holocene,
23, 1391–1402, https://doi.org/10.1177/0959683613489581, 2013.
Talento, S.: Data: Millennium-length precipitation Reconstruction over South-eastern Asia: a Pseudo-Proxy Approach, https://doi.org/10.17605/OSF.IO/B2RXP, 2019.
Tan, L., Cai, Y., An, Z., Edwards, R. L., Cheng, H., Shen, C. C., and Zhang, H.:
Centennial- to decadal-scale monsoon precipitation variability
in the semi-humid region, northern China during the last 1860 years: Records
from stalagmites in Huangye Cave, Holocene, 21, 287–296, https://doi.org/10.1177/0959683610378880,
2011.
Tingley, M. P. and Huybers, P.: A Bayesian algorithm for reconstructing
climate anomalies in space and time. Part I: Development and applications to
paleoclimate reconstruction problems, J. Climate, 23, 2759–2781,
https://doi.org/10.1175/2009JCLI3015.1, 2010.
Tingley, M. P. and Huybers, P.: Recent temperature extremes at high
northern latitudes unprecedented in the past 600 years, Nature, 496,
201–205, https://doi.org/10.1038/nature11969, 2013.
Treydte, K. S., Schleser, G. H., Helle, G., Frank, D. C., Winiger, M., Haug,
G. H., and Esper, J.: The twentieth century was the wettest period in northern
Pakistan over the past millennium, Nature, 440, 1179–1182, https://doi.org/10.1038/nature04743, 2006.
Wang, Z., Li, Y., Liu, B., and Liu, J.: Global climate internal variability
in a 2000-year control simulation with Community Earth System Model (CESM),
Chinese Geogr. Sci., 25, 263–273, https://doi.org/10.1007/s11769-015-0754-1, 2015.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z. S., Wu, J.,
Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian Monsoon: Links to
Solar Changes and North Atlantic Climate, Science, 308, 854–857,
https://doi.org/10.1126/science.1106296, 2005.
Wang, W., Feng, Z., Ran, M., and Zhang, C.: Holocene climate and vegetation
changes inferred from pollen records of Lake Aibi, northern Xinjiang, China:
A potential contribution to understanding of Holocene climate pattern in
East-central Asia, Quatern. Int., 311, 54–62, https://doi.org/10.1016/j.quaint.2013.07.034,
2013.
Werner, J. P., Luterbacher, J., and Smerdon, J. E.: A Pseudoproxy Evaluation
of Bayesian Hierarchical Modelling and Canonical Correlation Analysis for
Climate Field Reconstructions over Europe, J. Climate, 26, 851–867,
https://doi.org/10.1175/JCLI-D-12-00016.1, 2013.
Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F.,
Nilsen, T., and Francus, P.: Spatio-temporal variability of Arctic summer temperatures
over the past 2 millennia,
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, 2018.
Wilks, D.: Statistical Methods in the Atmospheric Sciences, 2nd edn., Elsevier, Burlington, USA, 2011.
Yan, Z., Li, Z., and Wang, X.: An analysis of decade-to century-scale
climatic jumps in history, Scientia Atmospherica Sinica, 17, 663–672, 1993.
Yang, B., Qin, C., Shi, F., and Sonechkin, D. M.: Tree ring-based annual
streamflow reconstruction for the Heihe River in arid northwestern China from
AD 575 and its implications for water resource management,
Holocene, 22, 773–784, https://doi.org/10.1177/0959683611430411, 2012.
Yang, B., Qin, C., Wang, J., He, M., Melvin, T. M., Osborn, T. J., and Briffa,
K. R.: A 3,500-year tree-ring record of annual precipitation on the
northeastern Tibetan Plateau, P. Natl. Acad. Sci. USA, 111, 2903–2908,
https://doi.org/10.1073/pnas.1319238111, 2014.
Yao, T., Thompson, L., Qin, D., and Tian, L.: Variations in temperature and precipitation in the past 2000
a on the Xizang (Tibet) Plateau – Guliya ice core record, Sci. China Ser. D, 39,
425–433, 1996.
Yin, Z.-Y., Shao, X., Qin, N., and Liang, E.: Reconstruction of a 1436-year soil moisture and vegetation water use history based on tree-ring widths from Qilian junipers in northeastern Qaidam Basin, northwestern China, Int. J. Climatol., 28, 37–53, https://doi.org/10.1002/joc.1515, 2008.
Yu, X., Zhou, W., Franzen, L. G., Xian, F., Cheng, P., and Jull, A. J. T.:
High-resolution peat records for Holocene monsoon history in the eastern
Tibetan Plateau, Sci. China Ser. D, 49, 615–621, https://doi.org/10.1007/s11430-006-0615-y,
2006.
Zeng, Y., Chen, J., Zhu, Z., Li, J., Wang, J., and Wan, G.: The wet Little
Ice Age recorded by sediments in Huguangyan Lake, tropical South China,
Quatern. Int., 263, 55–62, https://doi.org/10.1016/j.quaint.2011.12.022, 2012.
Zhai, D., Xiao, J., Zhou, L., Wen, R., Chang, Z., Wang, X., Jin, X., Pang,
Q., and Itoh, S.: Holocene East Asian monsoon variation inferred from species
assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner
Mongolia, Quaternary Res., 75, 512–522, https://doi.org/10.1016/j.yqres.2011.02.008, 2011.
Zhang, H., Werner, J. P., García-Bustamante, E., González-Rouco,
F. J., Wagner, S., Zorita, E., Fraedrich, K., Jungclaus, J., Zhu, X.,
Xoplaki, E., Chen, F., Duan, J., Ge, Q., Hao, Z., Ivanov, M., Talento, S.,
Schneider, L., Wang, J., Yang, B., and Luterbacher, J.: East Asian warm
season temperature variations over the past two millennia, Scientific Reports,
8, 7702, https://doi.org/10.1038/s41598-018-26038-8, 2018.
Zhang, Y., Tian, Q., Gou, X., Chen, F., Leavitt, S. W., and Wang, Y.: Annual
precipitation reconstruction since AD 775 based on tree rings from the
Qilian Mountains, northwestern China, Int. J. Climatol., 31, 371–381,
https://doi.org/10.1002/joc.2085, 2011.
Zhang, Q., Gemmer, M., and Chen, J.: Climate changes and flood/drought risk in
the Yangtze Delta, China, during the past millennium, Quatern. Int., 176–177,
62–69, https://doi.org/10.1016/j.quaint.2006.11.004, 2008.
Zheng, J., Wang, W.-C., Ge, Q., Man, Z., and Zhang, P.: Precipitation
Variability and Extreme Events in Eastern China during the Past 1500 Years,
Terr. Atmos. Ocean. Sci., 17, 579–592, https://doi.org/10.3319/TAO.2006.17.3.579(A),
2006.
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Quantifying hydroclimate variability beyond the instrumental period is essential for putting...
Special issue
Altmetrics
Final-revised paper
Preprint