Articles | Volume 16, issue 3
https://doi.org/10.5194/esd-16-683-2025
https://doi.org/10.5194/esd-16-683-2025
Research article
 | 
06 May 2025
Research article |  | 06 May 2025

Ensemble design for seasonal climate predictions: studying extreme Arctic sea ice lows with a rare event algorithm

Jerome Sauer, François Massonnet, Giuseppe Zappa, and Francesco Ragone

Related authors

Evolution and drivers of the large-scale surface freeze-back onset in Siberian permafrost regions with the ERA5-Land reanalysis
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680,https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
EC-Earth- and ERA5-driven ensemble hindcasts with the fully coupled ice-sheet–ocean–sea ice–atmosphere–land circum-Antarctic model PARASO
Florian Sauerland, Pierre-Vincent Huot, Sylvain Marchi, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, François Klein, François Massonnet, Bianca Mezzina, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Charles Pelletier, Deborah Verfaillie, Lars Zipf, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2889,https://doi.org/10.5194/egusphere-2025-2889, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
CMIP7 Data Request: Ocean and Sea Ice Priorities and Opportunities
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083,https://doi.org/10.5194/egusphere-2025-3083, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Anatomy of Arctic and Antarctic sea ice lows in an ocean–sea ice model
Benjamin Richaud, François Massonnet, Thierry Fichefet, Dániel Topál, Antoine Barthélemy, and David Docquier
EGUsphere, https://doi.org/10.5194/egusphere-2025-886,https://doi.org/10.5194/egusphere-2025-886, 2025
Short summary
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024,https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical process of the UCLA general circulation model, Meth. Comp. Phys., 17, 173–265, 1977. a
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a
Baldwin, M. P., Stephenson, D. B., Thompson, D. W. J., Dunkerton, T. J., Charlton, A. J., and O'Neill, A.: Stratospheric memory and skill of extended-range weather forecasts, Science, 301, 636–640, https://doi.org/10.1126/science.1087143, 2003. a
Baxter, I., Ding, Q., Schweiger, A., L'Heureux, M., Baxter, S., Wang, T., Zhang, Q., Harnos, K., Markle, B., Topal, D., and Lu, J.: How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing, J. Climate, 32, 8583–8602, https://doi.org/10.1175/JCLI-D-18-0783.1, 2019. a, b
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010JCLI3775.1, 2011. a, b, c, d, e
Download
Short summary
An obstacle in studying climate extremes is the lack of robust statistics. We use a rare event algorithm to gather robust statistics on extreme Arctic sea ice lows with probabilities below 0.1 % and to study drivers of events with amplitudes larger than observed in 2012. The work highlights that the most extreme sea ice reductions result from the combined effects of preconditioning and weather variability, emphasizing the need for thoughtful ensemble design when turning to real applications.
Share
Altmetrics
Final-revised paper
Preprint