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Abstract. Initialized ensemble simulations can help identify the physical drivers and assess the probabilities
of weather and climate extremes based on a given initial state. However, the significant computational burden
of complex climate models makes it challenging to quantitatively investigate extreme events with probabilities
below a few percent. A possible solution to overcome this problem is to use rare event algorithms, i.e. compu-
tational techniques originally developed in statistical physics that increase the sampling efficiency of rare events
in numerical simulations. Here, we apply a rare event algorithm to ensemble simulations with the intermediate-
complexity coupled climate model PlaSim-LSG to study extremes of pan-Arctic sea ice area reduction under
pre-industrial greenhouse gas conditions. We construct four pairs of control and rare event algorithm ensemble
simulations, each starting from four different initial winter sea ice states. The rare event simulations produce
sea ice lows with probabilities of 2 orders of magnitude smaller than feasible with the control ensembles and
drastically increase the number of extremes compared to direct sampling. We find that for a given probability
level, the amplitude of negative late-summer sea ice area anomalies strongly depends on the baseline winter sea
ice thickness but hardly on the baseline winter sea ice area. Finally, we investigate the physical processes in two
trajectories leading to sea ice lows with conditional probabilities of less than 0.001 %. In both cases, negative
late-summer pan-Arctic sea ice area anomalies are preceded by negative spring sea ice thickness anomalies.
These are related to enhanced surface downward longwave radiative and sensible heat fluxes in an anomalously
moist, cloudy and warm atmosphere. During summer, extreme sea ice area reduction is favoured by enhanced
open-water-formation efficiency, anomalously strong downward solar radiation and the sea ice–albedo feedback.
This work highlights that the most extreme summer sea ice conditions result from the combined effects of pre-
conditioning and weather variability, emphasizing the need for thoughtful ensemble design when turning to real
applications.
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1 Introduction

Anthropogenic emissions of greenhouse gases have con-
tributed to the loss of Arctic sea ice during the last 45 years
(Notz and Marotzke, 2012; Stroeve and Notz, 2018; Gre-
gory et al., 2002; Ding et al., 2017). Despite the steadily in-
creasing rate of greenhouse gas concentrations (Meinshausen
et al., 2017), the decline of the pan-Arctic sea ice area is non-
linear, and internal climate variability and feedback mecha-
nisms have been shown to modulate the downward trend of
the sea ice (Ding et al., 2017; Baxter et al., 2019; Ono et al.,
2019; Francis and Wu, 2020; Tietsche et al., 2011; England
et al., 2019). Accelerated decline of the late-summer sea ice
area occurred from the mid-2000s to 2012, resulting in record
reductions of sea ice area compared to the trend line in 2007
and 2012.

Various studies attributed the 2007 and 2012 drastic sea
ice loss events both to climate change via preconditioning
through the ongoing winter sea ice thinning and to internal
climate variability via particular weather and climate events
during the melting season (Lindsay et al., 2009; Kauker
et al., 2009; Zhang et al., 2008, 2013; Parkinson and Comiso,
2013; Kirchmeier-Young et al., 2017). While progress has
been made in quantifying the relative contributions of an-
thropogenically forced vs. internal climate variability to the
observed downward trend of the sea ice cover in the Arc-
tic (e.g. Ding et al., 2017; England et al., 2019), their rela-
tive contributions to extreme sea ice loss events such as ob-
served in 2007 and 2012 are uncertain (Kirchmeier-Young
et al., 2017; Ono et al., 2019). By applying an extreme event
attribution analysis to ensemble simulations with the Sec-
ond Generation Canadian Earth System Model (CanESM2),
Kirchmeier-Young et al. (2017) concluded that a sea ice low
with an amplitude as observed in 2012 (i.e. a 2012-like sea
ice area anomaly relative to the observed 1981–2010 mean)
would have been extremely unlikely to occur without global
warming. A substantial contribution of internal climate vari-
ability to the 2007 and 2012 events is turn evidenced by the
fact that, despite ongoing global warming, summer sea ice
conditions are still above the 2012 minimum (Baxter et al.,
2019; Francis and Wu, 2020).

Different drivers of anomalously low summer Arctic sea
ice area were discussed in the literature. These include en-
hanced North Atlantic and Pacific oceanic heat transport
(Årthun et al., 2012; Woodgate et al., 2010), the positive
and negative phases of the winter and summer Arctic Os-
cillation (AO) (e.g. Rigor et al., 2002; Ogi et al., 2016), re-
duced cloudiness during summer (Schweiger et al., 2008),
and increased surface downward longwave radiation related
to enhanced poleward atmospheric moisture transport dur-
ing spring (Kapsch et al., 2013, 2019). In 2007, sea ice re-
duction was favoured by enhanced inflow of warm Pacific
water through the Bering Strait (Woodgate et al., 2010) and
by anomalously persistent southerly winds in the Pacific sec-
tor associated with the Arctic Dipole Anomaly (ADA) pat-

tern (Wang et al., 2009; Lindsay et al., 2009; Overland et al.,
2012; Kauker et al., 2009). In 2012, a summer storm con-
tributed to enhanced sea ice reduction by leading to increased
bottom melt via anomalously strong vertical mixing in the
oceanic boundary layer (Guemas et al., 2013; Zhang et al.,
2013).

Even though the physical drivers of individual extremes of
Arctic sea ice reduction have been suggested, their quantita-
tive statistical analysis is hampered by the small number of
extreme events that can be sampled from observations and
numerical simulations. Likewise, it is the small number of
events in the lower tail of the distribution of sea ice area
values that makes it challenging to quantify the probability
of a 2012-like sea ice low event for a given background cli-
mate and for a given initial condition. The record of satellite-
based sea ice observations includes only a few annual sea
ice minima with orders of magnitude comparable to the ones
in September 2007 and 2012 (Fetterer et al., 2017). More-
over, the large computational cost of complex climate models
makes it unrealistic to run ensembles with a few thousands of
trajectories and to quantitatively study extreme events with
probabilities of less than 1 %. The use of multiple models in-
stead of one single model would increase the computational
cost even further. One workaround is to estimate these very
small probabilities with extreme value theory models (Coles,
2001). However, even when applicable, these methods only
provide a statistical extrapolation of the probabilities and do
not provide information on the dynamics. A better under-
standing of the precursors of extremes of summer Arctic sea
ice reduction and a more precise estimate of their probabil-
ities are in turn crucial to improve seasonal predictions of
these events and to assess their risk of occurrence under dif-
ferent climate change scenarios.

In this work, we study extremely negative summer pan-
Arctic sea ice area anomalies using initialized ensemble sim-
ulations with the intermediate-complexity coupled climate
model PlaSim-LSG under pre-industrial greenhouse gas con-
ditions. We investigate the statistical properties of extreme
summer sea ice lows as a function of different initial winter
states and examine the physical drivers favouring extremes
of sea ice area reduction within a single melting season. In
order to improve the sampling of extreme sea ice loss events,
we use a rare event algorithm. Rare event algorithms are
computational techniques developed in statistical physics to
improve the sampling efficiency of rare events in numerical
simulations (e.g Ragone et al., 2018; Ragone and Bouchet,
2020, 2021; Sauer et al., 2024a). Compared to conventional
numerical simulations with the same computational cost, rare
event algorithms enable the number of simulated extreme
events to be increased by several orders of magnitude while
preserving the dynamical consistency of the model. In this
way, these techniques allow the uncertainty of probability
and return time estimates and of conditional statistics on ex-
treme events (e.g. composites) to be reduced compared to
conventional simulation strategies and ultra-rare events to
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be generated that are very unlikely to be observed using di-
rect sampling. Rare event algorithms were introduced in the
1950s (Kahn and Harris, 1951) and have been used since for
a wide range of applications (for an overview and the math-
ematical analysis, see for example, Del Moral, 2004; Gia-
rdina et al., 2011; Grafke and Vanden-Eijnden, 2019). Re-
cently, some of these techniques have been applied in climate
science and in fluid dynamics to study heat waves (Ragone
et al., 2018; Ragone and Bouchet, 2020, 2021), midlatitude
precipitation (Wouters et al., 2023), tropical storms (Plotkin
et al., 2019; Webber et al., 2019), weakening and collapse
of the Atlantic Meridional Overturning Circulation (AMOC)
(Cini et al., 2023), extreme Arctic sea ice lows related to
unconditional probability distributions (Sauer et al., 2024a),
and turbulence (Bouchet et al., 2018; Grafke et al., 2015;
Lestang et al., 2020).

Here we use a genealogical selection algorithm (Ragone
et al., 2018; Ragone and Bouchet, 2020, 2021; Sauer et al.,
2024a), adapted from Del Moral and Garnier (2005) and Gi-
ardina et al. (2011), that is efficient to study persistent, long-
lasting events. A first application of this algorithm to study
extreme Arctic sea ice lows in the intermediate-complexity
coupled climate model PlaSim under pre-industrial green-
house gas conditions is given in Sauer et al. (2024a). In that
study, ensemble simulations with the rare event algorithm
were initialized with independent initial conditions sampled
from a stationary 3000-year control run such that the statis-
tics of extreme events is related to unconditional probabil-
ity distributions. In such an approach, the rare event algo-
rithm seeks to oversample trajectories leading to low sea ice
states in an absolute sense, i.e. independent from the extent
to which the sea ice lows are related to multi-annual fluctu-
ations in the sea ice–ocean system (referred to as “precon-
ditioning” in Sauer et al., 2024a) or driven by the dynam-
ics occurring on intra-seasonal timescales. Here, instead, we
use a seasonal climate prediction set-up where an ensem-
ble simulation is initialized from a single initial condition
to which a small perturbation is added. The goal of these ex-
periments is to disentangle the roles of the initial condition
vs. seasonal-scale fluctuations in favouring the occurrence of
extremely negative summer sea ice area anomalies. A simi-
lar investigation on the influence of initial conditions on an
extreme event, albeit using action minimization instead of a
genealogical selection algorithm and applied to extreme trop-
ical cyclones, is performed in Plotkin et al. (2019). Here we
perform different ensemble simulations starting from differ-
ent initial conditions sampled from the same control run as
in Sauer et al. (2024a). Since each individual ensemble sim-
ulation is initialized from a same, slightly perturbed initial
condition, statistical and physical properties of low sea ice
states inferred from that ensemble need to be interpreted in
terms of conditional probabilities.

Owing to the rare event algorithm, we generate extremely
low sea ice summers with conditional probabilities of less
than 0.001 %. Likewise, we investigate the impact of differ-

ent initial conditions on the probabilities and amplitudes of
extreme sea ice lows. Finally, we elaborate physical drivers
in two trajectories leading to late-summer sea ice lows with
probabilities of less than 0.001 %. The paper is structured
as follows. In Sect. 2, we present the set-up of the model,
the methodology of the rare event algorithm, and the design
of control and rare event algorithm ensemble simulations. In
Sect. 3, we show that the rare event algorithm improves the
sampling efficiency of extreme sea ice lows conditional on
starting from a certain initial condition compared to stan-
dard control ensemble simulations. We analyse the impact
of the initial condition on the probabilities and amplitudes of
the extremes. In Sect. 4, we discuss physical processes and
conditions in individual trajectories prior to extreme sea ice
lows with probabilities with less than 0.001 %. In Sect. 5, we
present our conclusions.

2 Materials and methods

2.1 Model and data

All simulations are performed with a coupled set-up of
the intermediate-complexity climate model Planet Simula-
tor (PlaSim) version 17 (Fraedrich et al., 2005). This set-up
includes a dynamic Large-Scale Geostrophic (LSG) ocean
(Maier-Reimer et al., 1993; Drijfhout et al., 1996), a mixed-
layer ocean and a thermodynamic sea ice model (PlaSim cou-
pled to LSG is referred to as “PlaSim-LSG” in the following).

The atmosphere is run with a horizontal spectral resolution
of T21 (triangular truncation at wavenumber 21∼ 5.625°×
5.625° on a Gaussian grid), 10 levels up to 40 hPa in the ver-
tical and a computational time step of 45 min. The LSG is
configured on a 2.5°× 5° staggered E-type grid (Arakawa
and Lamb, 1977) in the horizontal, with 22 levels and a max-
imum ocean depth of 6000 m in the vertical and a compu-
tational time step of 5 d. The sea ice model is based on the
zero-layer model of Semtner (1976). It computes the sea ice
thickness and sea surface temperature evolution from the en-
ergy balances at the top and bottom of a sea ice–snow layer.
The sea ice–snow layer is assumed to have a linear temper-
ature gradient and to have no capacity to store heat. No sea
ice drift is taken into account. The sea ice concentration is
binary; i.e. a grid cell is fully sea ice covered or open water.
The computational time step in the sea ice and mixed-layer
ocean models is 1 d.

PlaSim-LSG is run with a fixed pre-industrial effective
CO2 volume mixing ratio of 280 ppmv. We choose a constant
greenhouse gas forcing since we are interested in the statis-
tics and dynamics of Arctic sea ice lows related to internal
climate variability under a stationary climate. Solar radiation
includes the seasonal cycle but not the diurnal cycle. Each
model month is 30 d long.

We use data from a stationary 3000-year control run (Sauer
et al., 2024a) and from a set of control and rare event algo-
rithm ensemble simulations (see Sect. 2.2 for more details).
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We consider the statistics of the pan-Arctic sea ice area

A(t)=
∑
φ≥φmin

∑
λ

SICφ,λ(t) ·Gφ,λ, (1)

where SICφ,λ(t) is the sea ice concentration at time t in
a grid cell centred at latitude φ and longitude λ,Gφ,λ =∫ φ+1φ2
φ−

1φ
2

∫ λ+1λ2
λ−1λ2

R2 cos(φ′)dλ′dφ′ is the grid cell area, R is the

earth radius, and 1φ and 1λ are the angular distances be-
tween two grid points in the meridional and zonal direc-
tion. The summation in Eq. (1) includes all ocean grid boxes
north of 40° N (i.e. φmin ·

180°
π
= 40°) with a binary land–sea

mask (i.e. a grid cell is either completely ocean or completely
land). The annual average, amplitude of the seasonal cycle,
and the timing of the annual minimum and maximum of the
pan-Arctic sea ice area produced by the model are represen-
tative of the observed Arctic sea ice climatology between
1979 and 2015 (cf. Fig. 1a and c of Sauer et al., 2024a, and
Fig. S1 in the Supplement of Sauer et al., 2024a). Likewise,
PlaSim captures a spring predictability barrier-like structure
in the persistence of pan-Arctic sea ice area anomalies sim-
ilar to the one found in comprehensive climate models (cf.
Fig. S1 and Blanchard-Wrigglesworth et al., 2011; Day et al.,
2014). Compared to the 1979–2015 climatology available
from the Pan-Arctic Ice Ocean Modeling and Assimilation
System (PIOMAS), PlaSim represents the pan-Arctic sea ice
volume reasonably well during spring and slightly underes-
timates the sea ice volume during summer (cf. Fig. S2a in
the Supplement and p. 207 of Chevallier et al., 2019). Differ-
ences in the representation of sea ice in PlaSim-LSG com-
pared to observations and reanalysis data include a delayed
melting period, a positive sea ice concentration (SIC) bias
from the Greenland to the Kara Sea, a negative SIC bias
western of Greenland, and positive sea ice thickness biases
around the North Pole and from the Greenland to Kara seas
(cf. Fig. 1a and c of Sauer et al., 2024a, Fig. S1 of Sauer et al.,
2024a, p. 207 of Chevallier et al., 2019, and Fig. S2b). While
overall the differences between the pan-Arctic sea ice area in
PlaSim-LSG and in observational data are small compared
to the range of sea ice area values available from the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) mod-
els (Notz and SIMIP Community, 2020), the regional sea ice
thickness and sea ice concentration biases of PlaSim com-
pared to the derived 1979–2015 climatologies may impact
the interpretation of the results. We will discuss this point in
Sect. 5.

We study extreme anomalies of February–September and
August–September mean pan-Arctic sea ice area. We classify
a sea ice area anomaly I ′(t) as extremely negative if I ′(t)≤
nσctrl, where σctrl is the standard deviation of sea ice area in
the control run or in a control ensemble (see Sect. 2.2) and
n is a real-valued number. In the following, we will vary n
continuously to study an extensive range of extreme event
amplitudes.

2.2 Rare event algorithm: methodology and set-up

One key difficulty in the study of climate extremes is the lack
of robust statistics as the large computational burden of com-
plex climate models makes it unfeasible to run them long
enough to sample a large number of trajectories correspond-
ing to the tail of the distribution of a target observable.

The rare event algorithm presented in recent studies (Gia-
rdina et al., 2011; Ragone et al., 2018; Ragone and Bouchet,
2020, 2021; Sauer et al., 2024a) is a genealogical selection
algorithm applied on top of an ensemble simulation. It is
designed to improve the sampling efficiency of trajectories
populating the tail of the distribution of the time average of a
target observable A(t). At constant intervals of a resampling
time τr, we assign to each trajectory a weight. The weight is
a function of the time average of the observable during the
past interval of duration τr for that trajectory. Before simu-
lating the next time window of length τr, trajectories with
small weights are removed from the ensemble and are sub-
stituted by slightly perturbed copies of trajectories with large
weights. The algorithm includes a parameter k, which con-
trols the relative amplitude of the weights for given values
of the target observable, where the case k = 0 would corre-
spond to a regular ensemble simulation. If τr is not larger
than the decorrelation time of the observable, then the selec-
tion will favour the survival of trajectories leading to extreme
anomalies of the time average of a target observable such as
the pan-Arctic sea ice area (positive for k positive and vice
versa). We refer to Ragone et al. (2018), Ragone and Bouchet
(2020, 2021), and Sauer et al. (2024a) for more details about
the method and present the main outcome here.

We denote X(t) the vector of all model variables at
time t and Ta the total simulation time. We consider an
ensemble of N trajectories {Xn(t)} (n= 1,2, . . .,N ). Let
P0({Xn(t)}0≤t≤Ta ) be the probability density of observing a
given trajectory Xn(t) from time 0 to time Ta in a direct nu-
merical simulation with the model and Pk({Xn(t)}0≤t≤Ta ) be
the probability density of the same trajectory in an ensemble
simulation with the rare event algorithm with a given value
of the parameter k. For a large ensemble size N , the relation
between the two is given by the importance sampling formula

Pk
(
{Xn(t)}0≤t≤Ta

)
∼

N→∞

ek
∫ Ta

0 A({Xn(t)}) dt

E0
[
ek
∫ Ta

0 A({Xn(t)}) dt ]P0
(
{Xn(t)}0≤t≤Ta

)
, (2)

where E0 is the expectation value with respect to
P0,A{Xn(t)} the target observable and k a biasing parameter
controlling the strength of the selection. Thanks to Eq. (2),
the expectation value according to P0 (the real statistics of
the system) of a generic quantity O({Xn(t)}0≤t≤Ta ) can be
estimated from data generated with the algorithm (which are
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Figure 1. PlaSim-LSG 3000-year control run (Sauer et al., 2024a): (a) Normalized mean anomalies of January–February mean quantities
conditional on extreme negative (left) February–September (FEBSEP) and (right) August–September (AUGSEP) mean pan-Arctic sea ice
area anomalies equal to or smaller than −2.5 standard deviations. “SIV”, “SIA” and “SIT” are the pan-Arctic sea ice volume, sea ice area
and mean sea ice thickness. “SIT≤ threshold” are anomalies in the cumulative area with sea ice thickness equal to or larger than a critical
threshold. Hatching denotes statistical significance at the 5 % level assessed from a two-sided t test applied to five composite estimates after
subdividing the 3000-year control run into five 600-member ensembles (see Fig. S4 for more details). (b) Scatter plot of January–February
mean anomalies of SIT1.93 vs. pan-Arctic sea ice area including the years from the selected initial conditions.

instead distributed according to Pk) as

E0
[
O
(
{Xn(t)}0≤t≤Ta

)]
∼

N→∞

1
N

N∑
n=1

Zke−k
∫ Ta

0 A({Xn(t)}) dt
·O
(
{Xn(t)}0≤t≤Ta

)
, (3)

where Zk is a constant factor computed by the algorithm
(see Ragone et al., 2018; Ragone and Bouchet, 2020). Equa-
tion (3) shows that statistical quantities like composites,
probabilities or return times with respect to the real model
statistics can be estimated with data generated by the al-
gorithm by weighting the contribution of each trajectory
to sample averages by the inverse of the exponential fac-
tor which appears in the importance sampling formula. In
Ragone et al. (2018), Ragone and Bouchet (2020, 2021), and
Sauer et al. (2024a), the trajectories appearing in Eqs. (2)
and (3) were generated from ensembles initialized with dif-
ferent initial conditions randomly selected from a control run
to uniformly sample the attractor of the dynamics. In such
an application, Eq. (2) would refer to unconditional proba-
bilities. In this work, however, the ensembles are initialized
from single initial conditions, and the probabilities and ex-
pectation values in Eqs. (2) and (3) have to be interpreted as
conditional on the selected initial state.

We use A{Xn(t)}, the pan-Arctic sea ice area, as the target
observable and perform M = 4 ensemble simulations with
the rare event algorithm initialized from four different ini-

tial conditions. For each of these four initial conditions, we
produce K = 10 realizations (i.e. a total number of 40 en-
semble simulations) in order to quantify the sampling uncer-
tainty in the estimation of probabilities of exceeding a given
sea ice area threshold (see Sect. 3 and Fig. S4 in the Supple-
ment). In order to have a baseline of the statistics, each of the
four experiments is accompanied by K = 10 realizations of
control ensemble simulation (i.e. a simulation without apply-
ing the algorithm) with the same ensemble size, simulation
length and initial condition as the one with the rare event al-
gorithm. Each ensemble containsN = 600 trajectories and is
run for a total simulation time Ta = 240 d from 1 February to
30 September. TheK = 10 realizations of rare event and con-
trol ensemble simulations are labelled arbitrarily as “REAL-
IZATION1”, “REALIZATION2”, . . . ,“REALIZATION10”;
i.e. the random perturbation set at the initial condition for, for
example, REALIZATION1 of the rare event simulation is in-
dependent from the perturbation set at REALIZATION1 for
the control ensemble. Hereafter, the baseline of the statistics
and all climatologies are derived from a N = 6000 “master
control ensemble” (referred to as “control ensemble” here-
after), where the trajectories of all the 10 realizations of the
control ensembles are merged together.

The biasing parameter in the simulations with the rare
event algorithm is k =−0.075×10−6 km−2 d−1. The precise
value of k is chosen empirically. However, a reasonable or-
der of magnitude of the parameter can be derived from the
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standard deviation and decorrelation time of the sea ice area
anomalies in the control ensembles using a scaling argument
presented in Ragone and Bouchet (2020) and in the Supple-
ment of Ragone and Bouchet (2021). According to this scal-
ing argument, the selected k value corresponds to a shift of
the mean of the distribution of the February–September mean
sea ice area to values between approximately 0.15×106 and
0.35× 106 km2 below the means of the control ensembles.
This corresponds to a range of estimated probabilities be-
tween about 10 % and 1 % (see Sect. 3).

The resampling time in the simulations with the rare event
algorithm is τr = 5 d. It is chosen to be not larger than the
persistence timescale of the large-scale atmospheric circula-
tion (Baldwin et al., 2003) and to be only slightly larger than
the typical persistence of synoptic-scale atmospheric fluctua-
tions (Hoven, 1957). The rare event simulations are therefore
suitable to improve the sampling efficiency of extremely low
sea ice states both driven by oceanic processes and due to
anomalies in the atmospheric circulation that are on the order
of or larger than the upper range of the synoptic timescale.

Within an individual ensemble, each trajectory starts from
the same initial condition, as done for ensemble weather and
seasonal climate predictions. In order to allow the trajectories
to diverge from each other, we slightly perturb the surface
pressure field of each trajectory as described in the Supple-
ment of Ragone et al. (2018). The four different initial con-
ditions for the four ensembles are sampled from the 3000-
year control run according to different anomaly values of the
January–February mean pan-Arctic sea ice area, i.e. the ob-
servable itself, and of the January–February mean cumula-
tive area with sea ice thickness equal to or larger than 1.93 m
(SIT1.93, Fig. 1 and Table 1). The choice of SIT1.93 is mo-
tivated by the studies of Chevallier and Salas-Mélia (2012)
and Lindsay et al. (2008). According to those studies, the
late-winter–early-spring cumulative area with sea ice thick-
ness larger than a critical threshold has a larger impact on the
late-summer sea ice area than the winter–spring sea ice vol-
ume and area itself. Here we apply a composite analysis to
the PlaSim-LSG control run to identify a sea-ice-related vari-
able whose anomaly value during the timing of the ensem-
ble initialization has a potentially large connection with the
probability of an extreme late-summer sea ice low (Fig. 1a;
note that the critical thickness values of 0.2, 0.5, 0.66, 0.9,
1.5, 1.93, 2.5, 4, 4.2 and 6 m are selected from Chevallier
and Salas-Mélia, 2012; Lindsay et al., 2008). Compared to
the various variables shown in Fig. 1a, extremely negative
February–September and August–September mean sea ice
area anomalies are most strongly related to the January–
February sea ice volume and cumulative area with sea ice
thickness equal to or larger than a critical thickness between
1.8 and 2.1 m respectively. We choose SIT1.93 following the
critical threshold used in Lindsay et al. (2008). We empha-
size, however, that the labelling (“SIT1.93−”, “SIT1.93=”,
“SIT1.93+”) of the selected initial conditions would be the
same as in this study if the labelling were chosen according

to the anomaly values of the cumulative area with sea ice
thickness equal to or larger than the remaining thresholds be-
tween 1.80 and 2.10 m. In PlaSim-LSG, the correlations be-
tween SIT1.93 and the cumulative area with sea ice thickness
equal to or larger than the remaining thresholds between 1.8
and 2.1 m are between 0.96 and 0.99, and the precise choice
of a threshold between 1.8 and 2.1 m does not affect the in-
terpretation of the results.

3 Results

Importance sampling of extreme sea ice lows and
estimation of their probabilities

We exploit initialized ensemble simulations to investigate
the statistical properties of extreme negative February–
September and August–September mean pan-Arctic sea ice
area anomalies as a function of four different initial winter
sea ice states (see Sect. 2.2). The goal of using the rare event
algorithm is to obtain a better statistics of extremely low sea
ice area values than available from standard control ensemble
simulations. Compared to the latter, the algorithm likewise
allows the order of magnitude of a lower bound of sea ice
area values that can be generated internally via atmosphere–
ocean dynamics to be better inferred.

We show the time evolution of pan-Arctic sea ice area
anomalies relative to the control ensemble mean and the
distributions of summer sea ice area for the ensemble sim-
ulations starting from a neutral initial winter sea ice state
(Fig. 2a, c, and e; control run model year 1930 and labelled
as “SIA= SIT1.93=”; see Sect. 2.2 for more details) and
from an initial winter state characterized by neutral sea ice
area and extremely low cumulative area with sea ice thick-
ness equal to or larger than 1.93 m (SIT1.93; Fig. 2b, d, and
f; a control run model year 1037 and labelled as “SIA=
SIT1.93−”; note that Fig. 2 compares for both initial con-
ditions one realization of the rare event simulation with N =
600 trajectories with the statistics of N = 6000 control en-
semble trajectories). Among all four experiments, the SIA=
SIT1.93= and SIA= SIT1.93− rare event simulations deliv-
ers the trajectory with the most extremely negative August–
September mean sea ice area anomaly relative to the corre-
sponding control ensemble means (i.e. relative to the clima-
tological mean values defined for the two sea ice initial con-
ditions; these anomalies are in both cases −1.87×106 km2),
and the SIA= SIT1.93− experiment produces the trajectory
leading to the lowest August–September mean sea ice area
value in an absolute sense among all available simulations.

In both the SIA= SIT1.93= and SIA= SIT1.93− exper-
iments, the differences between the sea ice area in the rare
event algorithm and the control ensemble mean are small
compared to the control intra-ensemble standard deviation
until June (Fig. 2a and b). From the end of June onwards,
trajectories generated with the rare event algorithm show a
systematic shift towards lower sea ice area values compared
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Table 1. The 6000-member control and 600-member rare event algorithm ensemble simulations running between 1 February and 30 Septem-
ber. Labelling of the experiments according to the different initial conditions with (middle column) the full label and (right column) short
labels used in the text.

Control run year Full label Short label

1083 SIA-LOW SIT1.93-LOW SIA− SIT1.93−
1037 SIA-NEUTRAL SIT1.93-LOW SIA= SIT1.93−
1075 SIA-LOW SIT1.93-NEUTRAL SIA− SIT1.93=
1930 SIA-NEUTRAL SIT1.93-NEUTRAL SIA= SIT1.93=

to the control ensembles, reaching an ensemble mean shift of
about−1.2×106 and−1.5×106 km2 in the SIA= SIT1.93=
and SIA= SIT1.93− experiments respectively.

The biasing towards negative sea ice area anomalies with
the rare event algorithm compared to the control ensemble
reflects the importance sampling of extreme negative sea
ice area anomaly values on average over the entire simula-
tion period between February and September (Fig. 2c and
d) (cf. Sauer et al., 2024a; Ragone and Bouchet, 2021).
The distributions of February–September mean sea ice area
obtained with the rare event algorithm fluctuate around a
mean value in the lower tail of the control distribution,
and their minimum sea ice area values are smaller than the
minima obtained with the corresponding control ensembles
(minimum February–September mean sea ice area values
of 9.69× 106 and 9.25× 106 km2 in the SIA= SIT1.93=
and SIA= SIT1.93− rare event simulations vs. 9.74× 106

and 9.32× 106 km2 in the corresponding control ensem-
ble simulations). As the February–September mean sea ice
area is strongly related to the August–September one (the
minimum–maximum range of the correlation between both
quantities across the members in all four control ensembles
is [0.89 0.92]), the algorithm likewise improves the sam-
pling efficiency of extremely low August–September mean
sea ice area exceeding the lower range of sea ice area val-
ues obtained with the control ensembles (Fig. 2e and f);
minimum August–September mean sea ice area values of
2.82× 106 and 1.91× 106 km2 in the SIA= SIT1.93= and
SIA= SIT1.93− rare event simulations vs. 3.16× 106 and
2.18×106 km2 in the control ensemble simulations). The dis-
tributions of sea ice area values obtained with the rare event
algorithm show a bimodality in both experiments. We will
address this behaviour in Sect. 5.

It is noticeable that the sea ice area obtained with the con-
trol and rare event ensemble simulations depends on the cho-
sen initial condition (i.e. its location relative to the distri-
bution of the 3000-year control run varies among the dif-
ferent experiments; Fig. 2c–f). In order to quantify the im-
pact of the initial condition on extreme summer sea ice lows,
we compare the probability of extreme negative February–
September and August–September mean sea ice area anoma-
lies between the four experiments (Fig. 3). We compute these

probabilities as

P (a)=
1
N

N∑
n=1

1a(In) with 1a(In)=

{
1, In ≤ a

0, In > a
, (4)

where In is the February–September or August–September
time-averaged pan-Arctic sea ice area in trajectory n,a is the
amplitude of the sea ice area anomaly, N is the number of
trajectories, and 1a(In) is the indicator function. As Eq. (4)
represents the probability as an expectation value of the in-
dicator function, probabilities from the simulations with the
rare event algorithm can be computed by applying the esti-
mator in Eq. (3) to this quantity (see Lestang et al., 2018;
Ragone et al., 2018; Ragone and Bouchet, 2020; Sauer et al.,
2024a).

In Fig. 3, the star markers show the probabilities estimated
with the N = 6000 trajectory control ensembles. The solid
lines and the shading show the average estimates and 95 %
confidence intervals obtained from multiple realizations of
the rare event algorithm ensemble simulations respectively
(see Fig. S4 for a description of the computation of the con-
fidence intervals). The control and rare event algorithm es-
timates are consistent with each other where they overlap.
Compared to the control ensembles, the major advantage of
the algorithm is the access to much rarer events with the
former than the latter, reaching probability values of 10−5

(0.001 %) for a computational cost of order 103–104 years.
Moreover, compared to direct sampling, the rare event algo-
rithm allows for a statistically more robust estimate of the
probabilities of trajectories corresponding to the lower tail
of the control distribution (i.e. corresponding to probability
estimates below 10−3 in this application).

For a fixed probability level, the amplitudes of February–
September and August–September mean sea ice area span a
range of about 3 and 2 standard deviations among the dif-
ferent initial conditions. This confirms a strong impact of
the initial condition on the amplitudes and probabilities of
extreme negative summer sea ice area anomalies evaluated
relative to the 3000-year control run baseline climatology
(Fig. 3). Regarding the February–September seasonal aver-
age, a low state both in the winter SIT1.93 and in the win-
ter sea ice area contribute to the preconditioning of an ex-
treme (Fig. 3a). Consequently, the most extremely negative
seasonally averaged sea ice area anomalies occur following
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Figure 2. Ensemble simulations initialized on 1 February (a, c, e) 1930 and (b, d, f) 1037 of the control run. (a, b) Rare event simula-
tions: N = 600 trajectories (thin blue lines) and ensemble mean (thick blue line) of daily pan-Arctic sea ice area anomalies relative to the
daily climatology of the corresponding control ensemble means. The dashed grey lines show the intra-ensemble standard deviations in the
control ensembles. All lines are presented as 15 d running means. (c–f) Probability distribution functions of (c, d) February–September and
(e, f) August–September mean pan-Arctic sea ice area for (blue) the rare event simulation, (black) the control ensembles (N = 6000 trajecto-
ries) and (red) the 3000-year control run. The vertical lines show the mean of the distributions. The black and blue values indicate the smallest
February–September and August–September mean sea ice area value in the control and rare event ensemble simulations respectively.

years with a low winter state both in the sea ice area and in
SIT1.93 (Fig. 3a). The contribution of low winter sea ice area
and low SIT1.93 to these anomalies, however, is not fully ad-
ditive (Fig. 3a). For a fixed probability level, the sum of the
February–September mean sea ice area anomalies relative to
the control run mean over the SIA= SIT1.93− and “SIA−

SIT1.93=” experiments exceeds the sea ice area anomalies
obtained with the “SIA− SIT1.93−” experiment in magni-
tude. We hypothesize that the preconditioning of low states
of the seasonally mean sea ice area through low winter sea
ice area and SIT1.93 is only efficient for a restricted geo-
graphic region where the climatological mean sea ice thick-
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Figure 3. Probabilities (x axes) of (a) February–September and (b) August–September mean sea ice area equal to or smaller than a given
threshold (y axes) as a function of four different initial conditions for (stars) the N = 6000 trajectory control ensembles (i.e. 10 realizations
are merged into one single ensemble) and (solid lines) the average over 4–10 algorithm estimates. The shading shows the 95 % confidence
intervals derived from the t distribution of the 4–10 estimates (see Fig. S4 for a description of the computation of the confidence intervals).
Note that the y axes are displayed in reverse order. In the legend, “SIA” and “SIT1.93” indicate the state of the January–February mean
anomaly of the pan-Arctic sea ice area and the cumulative area with sea ice thickness equal to or larger than 1.93 m respectively. The grey
labels on the right of each panel show how many standard deviations a sea ice area value is below the mean of the 3000-year control run.

ness is small enough to be able to form open water within one
season. In parts of that region, the contribution of low win-
ter sea ice area and SIT1.93 to an anomalously large area of
open water during summer is likely to overlap spatially (i.e.
open-water conditions prevail in certain grid boxes indepen-
dent from whether both winter sea ice area and SIT1.93 are in
a low state or only one of them). Moreover, the overlapping
confidence intervals between the SIA= SIT1.93− and SIA−
SIT1.93= experiments suggest that low winter states in the
sea ice area and SIT1.93 are equally important in favour-
ing an extremely negative February–September mean sea ice
area anomaly.

Regarding the August–September mean, the contribution
of a low winter sea ice area to an extreme is small com-
pared to the contribution of a low winter state in SIT1.93
(Fig. 3b). Thus, similar amplitudes of extremely low August–
September mean sea ice area occur for the SIA= SIT1.93=
and SIA− SIT1.93= experiments. Likewise, the most ex-
tremely negative August–September mean sea ice area oc-
curs in the experiment starting from an initial condition with
a low SIT1.93 and a neutral winter sea ice area. A low winter
sea ice area is therefore not required to produce the most ex-
tremely negative August–September sea ice area anomalies.

Despite the important role of preconditioning in favour-
ing extremely low sea ice states, preconditioning represents
only a necessary and not a sufficient condition for extremes
with the largest amplitudes available in this study (Fig. 3 and
Table 2). Extreme sea ice lows with sea ice area values cor-
responding to the 1 % percentile of the model distribution or

less occur as a consequence of both winter sea ice–ocean pre-
conditioning and anomalous intra-seasonal processes (e.g.
weather patterns; see Sect. 4) that enhance sea ice reduc-
tion within one single melting season. The relative contribu-
tion of preconditioning to extreme sea ice lows vs. anoma-
lous dynamics on an intra-seasonal timescale is larger for
February–September than August–September mean sea ice
area (Fig. 3 and Table 2). Thus, the February–September
time-averaged control ensemble mean sea ice area anomaly
for the SIA− SIT1.93−” initial condition explains about
65 % of the magnitude of the 1 % percentile of February–
September mean sea ice area anomalies available from all the
10 SIA− SIT1.93− rare event algorithm ensemble simula-
tions. In contrast, the August–September time-averaged con-
trol ensemble mean sea ice area anomaly for the experiments
starting from a “SIT1.93−” initial condition is in magnitude
on the order of 40 %–50 % of the 1 % percentile of August–
September mean sea ice area anomalies available from 10
ensemble simulations with the rare event algorithm respec-
tively (Fig. 3 and Table 2).

The results obtained in Fig. 3 are consistent with the
memory properties of the sea ice in the Arctic. Typically,
late-summer sea ice area anomalies are poorly connected to
the late-winter sea ice area (Blanchard-Wrigglesworth et al.,
2011; Chevallier and Salas-Mélia, 2012; Day et al., 2014; Ti-
etsche et al., 2014), explaining the non-existing contribution
of winter sea ice area anomalies to extreme late-summer sea
ice area lows. Compared to the sea ice area, quantities related
to the sea ice thickness, as shown in Chevallier and Salas-
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Table 2. February–September (FEBSEP) and August–September (AUGSEP) mean sea ice area anomalies relative to the mean µ of the
3000-year control run expressed in the unit of multiple control run standard deviations (“nσ” with n ∈ R). “Control run” refers to a 3000-
year-long integration of a single trajectory (presented in Sauer et al., 2024a), whereas “control ensembles” refer to multiple trajectories run
from 1 February to 30 September and initialized from one single initial condition. The anomalies in the column “SIA0.01−µ” correspond
to the 1 % percentile sea ice area value (i.e. preconditioning + anomalous weather) presented as the average over 10 estimates available from
the output of 10 rare event algorithm experiments. The anomalies in the µENS−µ column correspond to the control ensemble mean, i.e.
the impact of preconditioning on the mean of the N = 6000 trajectory control ensemble. For the computation of the percentiles with the
algorithm, we weight the contribution of each trajectory to the percentile by the product of Zk and the exponential factor shown in Eq. (3).

FEBSEP AUGSEP

Initial condition (SIA0.01−µ) (µENS−µ) (SIA0.01−µ) (µENS−µ)
[nσ ] [nσ ] [nσ ] [nσ ]

SIA− SIT1.93− −3.80 −2.49 −3.32 −1.36
SIA= SIT1.93− −2.76 −1.39 −3.91 −1.89
SIA− SIT1.93= −2.81 −1.71 −1.82 −0.19
SIA= SIT1.93= −0.98 +0.22 −2.14 −0.19

Mélia (2012), act as a preconditioning for extreme reduction
of sea ice area via its impact on the open-water formation
efficiency during summer. The dependency of extreme neg-
ative seasonally averaged sea ice area anomalies on the win-
ter sea ice area is explainable by the persistence of negative
sea ice area anomalies from late winter to spring (Blanchard-
Wrigglesworth et al., 2011).

4 Physical processes and conditions prior to sea
ice lows with probabilities of less than 0.001 %

In this section we study the physical processes and conditions
favouring extremely low late-summer sea ice area. In con-
trast to the work in Sauer et al. (2024a), the development of
low sea ice states relative to the initial condition-specific con-
trol ensemble mean is entirely attributable to intra-seasonal
drivers as all trajectories within an ensemble start from the
same initial condition. Using the SIA= SIT1.93= and SIA=
SIT1.93− experiments, we discuss the trajectory leading to
the lowest August–September mean pan-Arctic sea ice area
value available within each of the two experiments respec-
tively (Figs. 4–7). The lowest August–September mean sea
ice area values in the SIA= SIT1.93= and SIA= SIT1.93−
ensembles are 2.82×106 and 1.91×106 km2 and thus about
40 % and 49 % smaller than the control ensemble mean val-
ues of 4.69× 106 and 3.78× 106 km2. These sea ice area
anomalies are therefore larger in magnitude than the devi-
ation of the observed 2012 mean August–September mean
sea ice area from a trend line fitted to the period 1979–2006
(about −32 %; 3.09× 106 compared to 4.53× 106 km2; see
Fig. S3 in the Supplement). The computation of the probabil-
ities to generate a sea ice area equal to or smaller than a given
threshold indicates that the sea ice lows in the trajectories of
the two ensemble simulations are below 0.001 % (Fig. 3).

4.1 Seasonal evolution of the state of the sea ice

The most dominant negative sea ice area anomalies in both
trajectories start to develop in June–July and reach their peak
amplitudes in August–September (Fig. 4a and d). Negative
August–September mean sea ice area anomalies are char-
acterized by enhanced open-water area in the Barents and
Kara seas, the eastern central Arctic Ocean, and the north-
ern Canadian Archipelago (Fig. 4b and e). From late winter
to late spring, sea ice area anomalies are close to zero in the
SIA= SIT1.93= experiment. In the SIA= SIT1.93− exper-
iment, sea ice area anomalies are slightly positive in early
spring and are close to zero during late spring. The fact that
winter–spring sea ice area anomalies are small in magnitude
compared to the late-summer ones supports the conclusion
from Fig. 3 that winter–spring sea ice area anomalies do not
play an important role for the formation of late-summer sea
ice lows.

It is noticeable that late-summer negative sea ice area
anomalies are preceded by negative pan-Arctic sea ice vol-
ume anomalies starting to develop in spring (Fig. 4a and
d). These are related to the development of negative sea
ice thickness anomalies before an anomalous reduction of
the pan-Arctic sea ice area. In the SIA= SIT1.93= exper-
iment, these negative sea ice thickness anomalies develop
predominantly on the Eurasian side of the Arctic and north-
ern of the Canadian Archipelago (Fig. 4c). In the SIA=
SIT1.93− experiment, negative sea ice thickness anomalies
are present from the Kara and Barents seas towards the Cana-
dian Archipelago and in the Beaufort Sea. In both experi-
ments, the anomalously strong sea ice thinning acts as a pre-
conditioning for enhanced open-water formation in late sum-
mer as described in Chevallier and Salas-Mélia (2012). The
presence of negative spring sea ice volume anomalies rela-
tive to the control ensemble mean suggests that the spring
sea ice volume provides an additional source of predictabil-
ity of extremely negative late-summer sea ice area anomalies
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Figure 4. Trajectory with the lowest February–September and August–September mean pan-Arctic sea ice area obtained with the rare event
simulation starting from a winter initial condition characterized by (a–c) neutral sea ice area and neutral SIT1.93 (control run year 1930)
and (d–f) neutral sea ice area and low SIT1.93 (control run year 1037). (a, d) Pan-Arctic sea ice (black) area (106 km2) and (blue) volume
(103 km3) anomalies. Shading shows the intra-ensemble standard deviation of the corresponding control ensemble. (b, e) August–September
mean sea ice concentration and (c, f) May–June mean sea ice thickness anomalies. Hatching indicates anomalies larger in magnitude than
the intra-ensemble standard deviation of the control ensemble. (a–f) All anomalies are computed with respect to the climatology of the
corresponding control ensemble.

relative to the climatology of the full control run on top of
the predictability emerging from the late-winter initial con-
dition. This result is consistent with the findings of Bonan
et al. (2019) and Bushuk et al. (2020) according to which
late-summer sea ice area is substantially stronger connected
to late spring to early summer sea ice volume than to mid
spring sea ice volume. In this way, sea ice volume contributes
to a spring barrier of the predictability of late-summer sea ice
area in addition to a part of the predictability barrier that may
be purely related to a substantial increase in the persistence
of sea ice area anomalies from May to July (Tietsche et al.,
2014; Day et al., 2014; Bonan et al., 2019; Bushuk et al.,
2020).

4.2 Seasonal evolution of the state of the atmosphere

We are interested in the processes favouring the development
of negative sea ice thickness and ensuing negative sea ice
area anomalies. Firstly, we analyse the seasonal evolution
of 2 m temperature (T2M) and 500 hPa geopotential height
(Z500) anomalies to establish a link between sea ice lows and
the thermodynamic and dynamic states of the atmosphere

(Fig. 5). The evolution of the atmospheric state differs be-
tween the SIA= SIT1.93= and SIA= SIT1.93− trajecto-
ries. In the SIA= SIT1.93= trajectory, the Arctic region is
in an anomalously warm state from late winter to late spring.
Positive T2M anomalies occur over the central Arctic Ocean
in February–March and show a wavenumber-3-like positive
T2M pattern in spring associated with a baroclinic signal
in the 500 hPa geopotential height anomaly field (Fig. 5b,
c, g, and h). In May–June, anomalously warm conditions
prevail over the eastern Arctic and north of the Canadian
Archipelago and thus spatially coincide with the region of
negative sea ice thickness anomalies (cf. Figs. 5c and 4c).
In June–July, the magnitude of T2M anomalies declines as
2 m temperatures are constrained by the climatological sea
ice melting to be close to the freezing point (Fig. 5d). The
re-emergence of anomalously warm conditions in August–
September (Fig. 5e) may be both a driver of sea ice re-
duction and a consequence of reduced sea ice conditions.
In contrast to the SIA= SIT1.93= experiment, February–
March 2 m temperature anomalies in the SIA= SIT1.93−
trajectory are close to zero over the Arctic Ocean (Fig. 5k).
This approximately neutral temperature state is followed by
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a strong warming with a barotropic positive geopotential
height anomaly response over the Norwegian Sea and the
Arctic Ocean during spring (Fig. 5k, l, m, p, q and r). Posi-
tive 500 hPa geopotential height anomalies persist until early
summer, while T2M values are constrained to be close to the
freezing point in June–July in large parts of the Arctic Ocean
before re-emerging in August–September as for the SIA=
SIT1.93= trajectory (cf. Fig. 5n, o, s and t and d and e).

4.3 Surface energy budget analysis

We perform a surface energy budget analysis to understand
how the anomalous reduction of sea ice is physically related
to anomalous atmospheric conditions (Figs. 6 and 7). We de-
fine the surface energy budget for an infinitesimally thin in-
terface without heat storage located between the atmosphere
and the snow–sea ice–ocean system (cf. Serreze and Barry,
2014). The different terms of the budget are then given by

RSW(1−α)+RLW+ S+L=−εσT
4

s +Q+M, (5)

whereRSW andRLW are the downward shortwave and down-
ward longwave radiative fluxes respectively, α is the surface
albedo, S and L are the sensible and latent heat fluxes, ε
is the surface emissivity, σ = 5.67× 10−8 Wm−2 K−4 is the
Stefan–Boltzmann constant, and Ts is the surface tempera-
ture. Q summarizes conductive and turbulent energy fluxes
between the surface and the snow–sea ice–ocean system. M
is the energy flux associated with melting and freezing at the
surface. Energy fluxes related to bottom sea ice growth, to
temperature changes in the snow–sea ice–ocean system and
to the vertical energy flux from the ocean into the sea ice are
implicitly included in Q. In Fig. 6, we complement the anal-
ysis of the atmosphere–surface energy fluxes by the analysis
of the vertical oceanic heat flux. If not stated otherwise, we
define upward (downward) energy fluxes and associated flux
anomalies to be positive (negative).

In both the SIA= SIT1.93= and SIA= SIT1.93− trajec-
tories, strongly negative net surface-atmosphere energy flux
anomalies occur over the Arctic Ocean from April–May to
August–September, indicating an anomalous energy accu-
mulation within the snow–sea ice–ocean system (Fig. 6a and
b). Anomalies in the vertical oceanic heat flux are much
smaller than the atmospheric ones but are still systematically
positive in summer in both trajectories (Fig. 6a and b).

The contribution of different flux components to the neg-
ative net atmosphere–surface energy flux anomalies varies
among the season, and both trajectories show two distinct
phases. While these two phases show similarities between the
two trajectories, their precise characteristics differ from each
other. In the SIA= SIT1.93= trajectory, enhanced net en-
ergy accumulation in the snow–sea ice–ocean system during
spring is predominantly explained by negative net longwave
radiative flux anomalies and enhanced downward sensible
heat fluxes (Fig. 6c and e). During summer, the anomalies
in the atmosphere–surface energy transfer are dominated by

the shortwave fluxes. Compared to the SIA= SIT1.93= tra-
jectory, enhanced longwave radiative forcing on the sea ice
in the SIA= SIT1.93− trajectory has a larger magnitude but
is restricted to April–May (Fig. 6d). In May–June, instead, a
transition takes place towards enhanced downward sensible
heat fluxes and enhanced shortwave radiative forcing on the
sea ice (Fig. 6d and f). The shortwave radiative forcing on
the sea ice during middle to late summer is twice as large for
the “SIA= SIT1.93=” trajectory as for the SIA= SIT1.93−
trajectory.

We further subdivide the net shortwave and longwave ra-
diative surface flux anomalies into their downward and up-
ward components to trace back the net radiative surface flux
anomalies to anomalous atmospheric conditions (Fig. 7). In
the SIA= SIT1.93= trajectory, reduced downward solar ra-
diation and enhanced downward longwave radiation occur in
April–May and May–June (Fig. 7a and c). The signal in the
longwave radiative fluxes is associated with enhanced atmo-
spheric water vapour and cloudiness (Fig. 7e). In the SIA=
SIT1.93− trajectory, instead, enhanced downward radiative
flux anomalies associated with clouds and water vapour pri-
marily occur in April–May (Fig. 7b, d, and f). In summer, a
reduction in clouds occurs, and the shortwave radiative fluxes
in combination with the sea ice–albedo feedback become the
dominant driver of sea ice reduction in both experiments.
The latter is, however, much more dominant in the SIA=
SIT1.93− than in the SIA= SIT1.93= trajectory.

5 Discussion and conclusions

We exploit four initialized ensemble simulations to study the
statistical properties of extreme negative summer and late-
summer pan-Arctic sea ice area anomalies as a function of
four different initial winter states. Likewise, we investigate
physical processes in two trajectories leading to extreme late-
summer sea ice lows with larger amplitudes than the one ob-
served in 2012. In order to circumvent the poor sampling of
rare events in numerical simulations, we apply a rare event
algorithm to improve the sampling efficiency of trajectories
leading to extremely low pan-Arctic sea ice area on average
over the melting season and during the annual sea ice min-
imum. The simulations with the rare event algorithm pro-
duce several hundreds of times more extremes than conven-
tional control ensemble simulations for the same computa-
tional cost and allow extreme sea ice low probabilities to be
estimated that are 2 orders of magnitude smaller compared
to direct sampling (Fig. 3).

The approach used in this study is complementary to the
rare event algorithm study of Sauer et al. (2024a). In their
study, ensemble simulations are initialized with independent
initial conditions sampled from an entire 3000-year control
run, and the statistics computed with the rare event algorithm
corresponds to unconditional probability distributions. Such
an approach allows the sampling efficiency of low sea ice
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Figure 5. Trajectory with the lowest February–September and August–September mean pan-Arctic sea ice area in the rare event simulation
starting from a winter initial condition characterized by (a–j) neutral sea ice area and neutral SIT1.93 (control run year 1930) and (k–
t) neutral sea ice area and low SIT1.93 (control run year 1037). Panels (a)–(e) and (k)–(o) show February–March (FM), April–May (AM),
May–June (MJ), June–July (JJ) and August–September (AS) mean T2M anomalies [K]. Panels (f)–(j) and (p)–(t) show FM, AM, MJ, JJ
and AS mean Z500 anomalies [gpm]. Contour interval for Z500 is 10 gpm. Hatching indicates anomalies larger in magnitude than the intra-
ensemble standard deviation of the control ensemble. All anomalies are computed with respect to the climatology of the corresponding control
ensembles. The black contour line in (a)–(e) and (k)–(o) shows the climatological sea ice edge defined as the 15 % sea ice concentration
contour line.

states to be improved, both related to multi-annual variability
in the sea ice–ocean system (referred to as “preconditioning”
in Sauer et al., 2024a) and driven by the dynamics occurring
on intra-seasonal timescales. The single initial condition ap-
proach used in this study, instead, corresponds to a seasonal
climate prediction set-up, giving access to the probability to

observe an extreme late-summer sea ice low as a function
of a given initial state. This approach also enables a targeted
study of intra-seasonal drivers of anomalously strong sea ice
reduction during the melting season. Within each ensemble
simulation, a contribution of multi-annual sea ice–ocean pre-
conditioning to the generation of low sea ice states compared
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Figure 6. Trajectory with the lowest February–September and August–September mean pan-Arctic sea ice area in the rare event simulation
starting from a winter initial condition characterized by (a, c, e) neutral sea ice area and neutral SIT1.93 (control run year 1930) and
(b, d, f) neutral sea ice area and low SIT1.93 (control run year 1037). Mean energy flux anomalies [Wm−2] on average over all ocean grid
boxes northern of 70° N. (a, b) (black) Net atmosphere–surface energy flux (sensible + latent + net longwave + net shortwave) and (red)
vertical ocean heat flux. (c, d) Net surface (blue) longwave radiative and (black) shortwave radiative flux. (e, f) Surface (red) latent and
(black) sensible heat flux anomalies. The sign convention is chosen such that positive anomalies correspond to enhanced upward fluxes.
(a–f) Shading indicates the intra-ensemble standard deviation of the corresponding control ensembles. All anomalies are computed with
respect to the climatology of the corresponding control ensembles.
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Figure 7. Trajectory with the lowest February–September and August–September mean pan-Arctic sea ice area in the rare event ensemble
simulation starting from a winter initial condition characterized by (a, c, e) neutral sea ice area and neutral SIT1.93 (control run year 1930)
and (b, d, f) neutral sea ice area and low SIT1.93 (control run year 1037). Mean anomalies of different quantities spatially averaged over all
ocean grid boxes northern of 70° N. (a, b) Surface (dark red) upward and (black) downward shortwave radiative flux anomalies [Wm−2].
(c, d) Surface (blue) upward and (black) downward longwave radiative flux anomalies [Wm−2]. (a–d) Direction-independent absolute values
of the downward and upward fluxes are considered; i.e. a positive (negative) anomaly indicates a radiative flux that is stronger (weaker) in
magnitude than the climatology. (e, f) (black) Total cloud cover [%] and (red) integrated water vapour [kgm−2] anomalies. (a–f) Shading
indicates the intra-ensemble standard deviation of the corresponding control ensembles. All anomalies are computed with respect to the
climatology of the corresponding control ensembles.

to the control ensemble mean is by definition excluded as
each trajectory starts from the same sea ice–ocean state.

The statistics obtained from the four different experiments
indicates a strong impact of the late-winter sea ice initial con-
dition on the probability and amplitudes of extremely neg-

ative summer pan-Arctic sea ice area anomalies computed
relative to a 3000-year control run baseline climatology. For
a fixed probability level, amplitudes of extremely negative
February–September and August–September mean sea ice
area anomalies span a range of about 3 and 2 control run
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standard deviations over the four experiments (Fig. 3 and
Table 2). While winter preconditioning is a necessary con-
dition to generate a sea ice low with an amplitude larger
than a certain threshold, the most extreme sea ice lows avail-
able in this study require both preconditioning and anoma-
lous intra-seasonal dynamics (e.g. anomalies in the atmo-
spheric circulation) favouring enhanced reduction of sea ice
area during the melting season (Fig. 3 and Table 2). The
relative importance of preconditioning compared to intra-
seasonal dynamics in driving extremely low sea ice area is
larger for the February–September than August–September
mean sea ice area (Table 2). Thus, about 65 % of the mag-
nitude of the anomaly corresponding to the 1 % percentile
value of February–September mean sea ice area in the “SIA−
SIT1.93− experiment” is explainable by the impact of the
preconditioning on the control ensemble mean sea ice area
(Table 2). For August–September sea ice area, instead, about
40 %–50 % of the magnitude of the anomaly value corre-
sponding to the 1 % percentile value is explainable by the
impact of the preconditioning on the control ensemble mean
in the experiments initialized with the SIA− SIT1.93− and
SIA= SIT1.93− initial conditions (Table 2).

The analysis of the four initialized experiments sug-
gests that an extremely negative February–September mean
pan-Arctic sea ice area anomaly is preconditioned by low
January–February mean states of both the pan-Arctic sea ice
area and the cumulative area with sea ice thickness larger
than a given threshold (the precise value used in this study
is 1.93 m). In contrast, a source of predictability of an ex-
treme late-summer sea ice low is given by the winter sea
ice thickness information but not from the winter sea ice
area. Both results are in line with the memory properties
of the sea ice in the Arctic (Blanchard-Wrigglesworth et al.,
2011; Chevallier and Salas-Mélia, 2012; Bonan et al., 2019;
Bushuk et al., 2020; Tietsche et al., 2014). Using a prein-
dustrial simulation with the Centre National de Recherches
Météorologiques Coupled Global Climate Model version
3.3 (CNRM-CM3.3), Chevallier and Salas-Mélia (2012) find
that the cumulative area with sea ice thickness larger than a
threshold between 0.9 and 1.5 m provides a potential source
of predictability of the September pan-Arctic sea ice area
6 months in advance. The authors argue that winter–spring
sea ice thickness influences summer sea ice area by mod-
ulating the open-water-formation efficiency during the melt-
ing season. The dependency of extremely negative February–
September mean sea ice area anomalies on both the win-
ter SIT1.93 and winter pan-Arctic sea ice area itself can be
explained by the fact that late-winter sea ice area anoma-
lies have a non-zero persistence until spring (Blanchard-
Wrigglesworth et al., 2011; Chevallier and Salas-Mélia,
2012). All in all, we emphasize that the precise critical sea
ice thickness threshold used to define the cumulative area
covered by sea ice thickness larger than a given value and
the precise time lag may vary between different models.

Owing to the rare event algorithm, we analyse the physical
properties in two individual trajectories leading to extremely
negative August–September mean sea ice area anomalies
with conditional probabilities of less than 0.001 %. While
the precise thermodynamic and dynamical evolution of the
atmosphere differs between both trajectories, common mech-
anisms can be detected between both trajectories. In both
cases, an anomalously strong reduction of the pan-Arctic sea
ice area in middle to late summer is anticipated by the de-
velopment of negative sea ice thickness anomalies during
spring. Even though this result is based on two individual tra-
jectories instead of being inferred from a robust statistics of
extreme sea ice low events, it suggests that late spring to early
summer sea ice volume potentially provides an additional
source of predictability of extremely negative late-summer
sea ice area anomalies relative to the full control run in addi-
tion to the predictability associated with the late-winter ini-
tial condition. This finding is consistent with the studies of
Bonan et al. (2019) and Bushuk et al. (2020). Bonan et al.
(2019) and Bushuk et al. (2020) argue that sea ice volume
captures a spring barrier in the predictability of late-summer
sea ice area, resulting from the fact that late-summer sea ice
area is substantially stronger connected to late spring to early
summer sea ice volume than to the sea ice volume during mid
spring. Apart from a small contribution of enhanced vertical
ocean heat flux anomalies to the anomalous reduction of sea
ice in the two trajectories discussed in this study, the largest
amount of net energy accumulation in the sea ice–ocean
system is related to enhanced downward net atmosphere–
surface energy fluxes. Within the season, we observe two
phases with two different physical properties. During spring,
enhanced cloudiness and atmospheric water vapour results
in negative (i.e. downward) net surface longwave radiative
flux anomalies, providing enhanced energy to warm or melt
sea ice. This is consistent with the finding of Kapsch et al.
(2013, 2019), showing that observed extreme September sea
ice lows have been preceded by enhanced downward long-
wave radiative fluxes in an anomalously moist and cloudy
atmosphere. During summer, anomalous reduction of sea
ice area is favoured by enhanced downward solar radiative
flux, the sea ice–albedo feedback and enhanced open-water-
formation efficiency in an anomalously thin sea ice environ-
ment.

We hypothesize that the bimodality in the distribution of
late-summer sea ice area values obtained with the rare event
simulation (Fig. 2) is favoured by the particular characteris-
tics of the atmosphere–sea ice–ocean system in the Arctic,
including preconditioning of anomalously low sea ice area
via enhanced spring sea ice thinning and amplifying feed-
back mechanisms. A bimodality in a rare event simulation,
however, does not necessarily imply a physical bimodality
in the real model distribution. It could also be purely re-
lated to sampling (Ragone and Bouchet, 2021). For example,
the peak of the probability density function at an August–
September mean sea ice area value of 2.9× 106 km2 in the
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“SIA= SIA=” experiment is related to hundreds of repli-
cated trajectories originating from two ancestors (cf. Figs. 2a
and e and S4). The bimodality may therefore simply emerge
from the fact that trajectories leading to sea ice area values
corresponding to the local minimum of the probability den-
sity function are undersampled in this particular simulation.
Out of the 10 realizations of the “SIA= SIA=” experiment, a
pronounced bimodality as in Fig. 2e occurs in a total number
of three realizations (cf. Figs. 2a, c, and e and S5 in the Sup-
plement). The August–September mean sea ice area values
at which the two peaks and the local minimum of the prob-
ability distribution functions occur, however, vary from one
realization to the next (cf. Figs. 2e and S5). Therefore, we
do not expect that the real model probability density function
has a bimodality explained by two peaks at specific sea ice
area values. Nevertheless, we point out that trajectories be-
longing to the peak at August–September mean sea ice area
values of 2.9× 106 km2 show different physical characteris-
tics to the ones leading to sea ice area values centred around a
peak at 3.75×106 km2 (cf. Fig. 2e and Figs. S4 and S6 in the
Supplement). Thus, compared to the latter, the former show
a more pronounced spring preconditioning via anomalously
strong sea ice thinning in a more humid Arctic atmosphere
and a more pronounced water vapour feedback during late-
summer (Fig. S6).

This study shows how rare event algorithms can be ap-
plied to initialized ensembles to study the probability of ex-
treme states conditional on given initial conditions. This ap-
proach could be extremely useful in the context of seasonal
to decadal predictions, in terms of both risk quantification
and informing of the ensemble initialization strategies by the
identification of important physical drivers for the develop-
ment of extremes. The approach can be used to better quan-
tify the relative contribution of a given initial condition to
specific extreme sea ice loss events such as observed as in
2007 and 2012 (by comparing an ensemble initialized with
the state of, for example, 1 March 2012 of a historical simu-
lation with an ensemble initialized with the state of, for ex-
ample, 1 March 1979 of a historical simulation). Moreover,
the experimental design can be adapted to make quantitative
statements about the relative contributions of global warming
vs. internal climate variability to the probabilities and am-
plitudes of extreme sea ice loss events and to quantify the
probability of observing a sea-ice-free Arctic within a given
period of time. This can be achieved by initializing an en-
semble with late-winter initial conditions sampled from, for
example, the period 2016–2025 (i.e. an ensemble of 300 tra-
jectories could be generated by producing 30 perturbed repli-
cates of one initial condition per year respectively) and com-
paring the statistics with another ensemble initialized with
data drawn from, for example, the period 1986–1995 of a
historical simulation. In this study, we use the rare event al-
gorithm to provide an estimate of the probability of a 2012-
like late-summer sea ice area anomaly relative to a linear
trend fitted to the period 1979–2006 (see Fig. S3). As de-

scribed in Sect. 4, the observed August–September mean sea
ice area anomaly in 2012 deviated by −1.44×106 km2 from
that trend line. The probabilities of generating a sea ice area
anomaly being equal to or larger than −1.44× 106 km2 in
magnitude compared to the control ensemble mean (i.e. re-
lated to processes on an intra-seasonal timescale) estimated
with the four PlaSim ensemble simulation experiments range
between 2.99× 10−5 and 7.59× 10−4 (Fig. 3).

Finally, we emphasize that this study is based on a rela-
tively low resolution climate model with a purely thermo-
dynamic sea ice model. A variety of idealizations such as
the lack of sea ice dynamics (Wang et al., 2009; Ogi et al.,
2016), the coarse atmospheric and oceanic resolutions (Doc-
quier et al., 2019), biases in the mean sea ice thickness state
(cf. Fig. S2b and p. 207 of Chevallier et al., 2019), response
of clouds to sea ice changes, and the binary sea ice concen-
trations without representation of polynyas potentially affect
the results about the physical drivers and the estimation of
the probabilities of low sea ice states. Due to the lack of sea
ice dynamics, the impact of anomalous winds associated with
anomalous states of the Arctic Oscillation (AO) and the Arc-
tic Dipole Anomaly (ADA) pattern on the export of sea ice
from the marginal Arctic seas into the central Arctic Ocean
and out of the Arctic via Fram Strait (Wang et al., 2009; Ogi
et al., 2016), as well as the dynamical impact of synoptic
storms on the sea ice (Zhang et al., 2013), is not captured
in this model. We hypothesize that this leads to an under-
estimation of the amplitude of the most extremely negative
sea ice area anomalies compared to more complex models
than PlaSim. Consequently, the lack of sea ice dynamics po-
tentially also leads to an underestimation of the probability
of observing a 2012-like sea ice area anomaly presented in
this study. Moreover, regional biases in the sea ice thickness
field in PlaSim-T21-LSG compared to the PIOMAS reanaly-
sis (sea ice too thick on annual average around the North Pole
and in the Barents Sea; cf. Fig. S2b and p. 207 of Cheval-
lier et al., 2019) may affect the results of this study. Thus,
the trajectories with the most extremely negative sea ice con-
centration anomalies available from the ensembles show no
substantial sea ice concentration anomalies around the North
Pole, while strongly negative sea ice concentration anomalies
are present in the Barents and Kara seas (Fig. 4). In observa-
tions, the Barents and Kara seas are sea-ice-free in late sum-
mer (Kapsch et al., 2019). While the overestimation of sea ice
in the Barents and Kara seas in PlaSim compared to obser-
vations likely contributes to an overestimation of the ampli-
tudes of extremely negative pan-Arctic sea ice area anoma-
lies compared to the real world, an opposing effect is to be
expected from the positive sea ice thickness bias around the
North Pole in PlaSim compared to observations.

All in all, based on the analysis of two individual trajec-
tories, the present study illustrates possible thermodynamics
states of the atmosphere to generate sea ice lows larger in
magnitude than the one observed in 2012. Likewise, it makes
an important step forward towards the computation of proba-
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bilities of extreme Arctic sea ice lows as a function of differ-
ent initial and climate states. A similar rare event algorithm
study using the EC-Earth model version 3.3.1, including a
more complex physics than PlaSim and a dynamic sea ice
model, initialized with two sea ice–ocean initial conditions
selected from a historical run, is in preparation. A possibility
to rely on multiple models instead of one single model will
consist in complementing the EC-Earth3 study by an analy-
sis of extreme sea ice lows in existing large ensembles of the
models of the Phases 5 and 6 of the Coupled Model Inter-
comparison Project.
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