Articles | Volume 10, issue 1
https://doi.org/10.5194/esd-10-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-10-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ESD Ideas: Photoelectrochemical carbon removal as negative emission technology
Matthias M. May
CORRESPONDING AUTHOR
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Kira Rehfeld
British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
Related authors
No articles found.
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1387, https://doi.org/10.5194/egusphere-2024-1387, 2024
Short summary
Short summary
We explore past global temperatures, critical for climate change comprehension. We devise a method to test temperature reconstruction using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhances accuracy for long-term trends, high quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Christian Wirths, Elisa Ziegler, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2023-86, https://doi.org/10.5194/egusphere-2023-86, 2023
Preprint archived
Short summary
Short summary
We compare Holocene temperature trends from reconstructions and global climate models of different complexities. We find that models of all complexities disagree with mid-Holocene trends in reconstructions, and we show that this disagreement is largely independent of the type of reconstruction. From our results we conclude that a seasonal bias in the reconstructions is unlikely as a full explanation for the disagreement.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Elisa Ziegler and Kira Rehfeld
Geosci. Model Dev., 14, 2843–2866, https://doi.org/10.5194/gmd-14-2843-2021, https://doi.org/10.5194/gmd-14-2843-2021, 2021
Short summary
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
Related subject area
Management of the Earth system: carbon sequestration and management
Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study
Soil organic carbon dynamics from agricultural management practices under climate change
Regional variation in the effectiveness of methane-based and land-based climate mitigation options
Meeting climate targets by direct CO2 injections: what price would the ocean have to pay?
Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
Characteristics of soil profile CO2 concentrations in karst areas and their significance for global carbon cycles and climate change
Revisiting ocean carbon sequestration by direct injection: a global carbon budget perspective
Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching
Carbon farming in hot, dry coastal areas: an option for climate change mitigation
Jiajun Wu, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 14, 185–221, https://doi.org/10.5194/esd-14-185-2023, https://doi.org/10.5194/esd-14-185-2023, 2023
Short summary
Short summary
In this study we investigate an ocean-based carbon dioxide removal method: macroalgae open-ocean mariculture and sinking (MOS), which aims to cultivate seaweed in the open-ocean surface and to sink matured biomass quickly to the deep seafloor. Our results suggest that MOS has considerable potential as an ocean-based CDR method. However, MOS has inherent side effects on marine ecosystems and biogeochemistry, which will require careful evaluation beyond this first idealized modeling study.
Tobias Herzfeld, Jens Heinke, Susanne Rolinski, and Christoph Müller
Earth Syst. Dynam., 12, 1037–1055, https://doi.org/10.5194/esd-12-1037-2021, https://doi.org/10.5194/esd-12-1037-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration on cropland has been proposed as a climate change mitigation strategy. We simulate different agricultural management practices under climate change scenarios using a global biophysical model. We find that at the global aggregated level, agricultural management practices are not capable of enhancing total carbon storage in the soil, yet for some climate regions, we find that there is potential to enhance the carbon content in cropland soils.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Fabian Reith, Wolfgang Koeve, David P. Keller, Julia Getzlaff, and Andreas Oschlies
Earth Syst. Dynam., 10, 711–727, https://doi.org/10.5194/esd-10-711-2019, https://doi.org/10.5194/esd-10-711-2019, 2019
Short summary
Short summary
This modeling study is the first one to look at the suitability and collateral effects of direct CO2 injection into the deep ocean as a means to bridge the gap between CO2 emissions and climate impacts of an intermediate CO2 emission scenario and a temperature target on a millennium timescale, such as the 1.5 °C climate target of the Paris Agreement.
Maarten C. Braakhekke, Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren
Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019, https://doi.org/10.5194/esd-10-617-2019, 2019
Short summary
Short summary
We developed a computer model that simulates forests plantations at global scale and how fast such forests can take up CO2 from the atmosphere. Using this new model, we performed simulations for a scenario in which a large fraction (14 %) of global croplands and pastures are either converted to planted forests or natural forests. We find that planted forests take up CO2 substantially faster than natural forests and are therefore a viable strategy for reducing climate change.
Qiao Chen
Earth Syst. Dynam., 10, 525–538, https://doi.org/10.5194/esd-10-525-2019, https://doi.org/10.5194/esd-10-525-2019, 2019
Short summary
Short summary
The missing carbon sink is puzzling since carbon cycle is related to global climate. The varying characteristics of soil profile CO2 concentration in carbonate areas and noncarbonates were investigated, together with pH, SOC, and isotope. It is found that carbonate corrosion deeply consumes soil CO2, which accounts for an average of 36 %. Such a process is important for karst carbon cycles and global climate changes, and may be a potential part of the
missing sink.
Fabian Reith, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 7, 797–812, https://doi.org/10.5194/esd-7-797-2016, https://doi.org/10.5194/esd-7-797-2016, 2016
Vera Heck, Jonathan F. Donges, and Wolfgang Lucht
Earth Syst. Dynam., 7, 783–796, https://doi.org/10.5194/esd-7-783-2016, https://doi.org/10.5194/esd-7-783-2016, 2016
Short summary
Short summary
We assess the co-evolutionary dynamics of the Earth's carbon cycle and societal interventions through terrestrial carbon dioxide removal (tCDR) with a conceptual model in a planetary boundary context. The focus on one planetary boundary alone may lead to navigating the Earth system out of the safe operating space due to transgression of other boundaries. The success of tCDR depends on the degree of anticipation of climate change, the potential tCDR rate and the underlying emission pathway.
S. Olin, M. Lindeskog, T. A. M. Pugh, G. Schurgers, D. Wårlind, M. Mishurov, S. Zaehle, B. D. Stocker, B. Smith, and A. Arneth
Earth Syst. Dynam., 6, 745–768, https://doi.org/10.5194/esd-6-745-2015, https://doi.org/10.5194/esd-6-745-2015, 2015
Short summary
Short summary
Croplands are vital ecosystems for human well-being. Properly managed they can supply food, store carbon and even sequester carbon from the atmosphere. Conversely, if poorly managed, croplands can be a source of nitrogen to inland and coastal waters, causing algal blooms, and a source of carbon dioxide to the atmosphere, accentuating climate change. Here we studied cropland management types for their potential to store carbon and minimize nitrogen losses while maintaining crop yields.
K. Becker, V. Wulfmeyer, T. Berger, J. Gebel, and W. Münch
Earth Syst. Dynam., 4, 237–251, https://doi.org/10.5194/esd-4-237-2013, https://doi.org/10.5194/esd-4-237-2013, 2013
Cited articles
Amillo, A. G., Huld, T., and Müller, R.: A New Database of Global and Direct
Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation,
Remote Sens., 6, 8165–8189, https://doi.org/10.3390/rs6098165, 2014. a
Anderson, K. and Peters, G.: The trouble with negative emissions, Science, 354,
182–183, https://doi.org/10.1126/science.aah4567, 2016. a
Araki, K., Nagai, H., Ikeda, K., Lee, K. H., and Yamaguchi, M.: Optimization of
Land Use for a Multitracker System Using a Given Geometrical Site Condition,
IEEE J. Photovolt., 6, 960–966, https://doi.org/10.1109/JPHOTOV.2016.2569443, 2016. a
Chang, N., Ho-Baillie, A., Wenham, S., Woodhouse, M., Evans, R., Tjahjono, B.,
Qi, F., Chong, C. M., and Egan, R. J.: A techno-economic analysis method for
guiding research and investment directions for c-Si photovoltaics and its
application to Al-BSF, PERC, LDSE and advanced hydrogenation, Sustain. Energy Fuels,
2, 1007–1019, https://doi.org/10.1039/C8SE00047F, 2018. a
Cheng, W.-H., Richter, M. H., May, M. M., Ohlmann, J., Lackner, D., Dimroth, F.,
Hannappel, T., Atwater, H. A., and Lewerenz, H.-J.: Monolithic Photoelectrochemical
Device for 19 % Direct Water Splitting, ACS Energy Lett., 3, 1795–1800,
https://doi.org/10.1021/acsenergylett.8b00920, 2018. a, b, c
Damen, K., Faaij, A., and Turkenburg, W.: Health, Safety and Environmental Risks
of Underground CO2 Storage – Overview of Mechanisms and Current
Knowledge, Climatic Change, 74, 289–318, https://doi.org/10.1007/s10584-005-0425-9, 2006. a
Fukuzumi, S., Lee, Y.-M., and Nam, W.: Fuel Production from Seawater and Fuel
Cells Using Seawater, ChemSusChem, 10, 4264–4276, https://doi.org/10.1002/cssc.201701381, 2017. a
Goeppert, A., Czaun, M., Surya Prakash, G. K., and Olah, G. A.: Air as the
renewable carbon source of the future: an overview of CO2 capture
from the atmosphere, Energy Environ. Sci., 5, 7833–7853, https://doi.org/10.1039/C2EE21586A, 2012.
a
Heck, V., Gerten, D., Lucht, W., and Popp, A.: Biomass-based negative emissions
difficult to reconcile with planetary boundaries, Nat. Clim. Change, 8, 151–155,
https://doi.org/10.1038/s41558-017-0064-y, 2018. a
Kirner, S., Bogdanoff, P., Stannowski, B., van de Krol, R., Rech, B., and
Schlatmann, R.: Architectures for scalable integrated photo driven catalytic
devices – A concept study, Int. J. Hydrogen Energy, 41, 20823–20831,
https://doi.org/10.1016/j.ijhydene.2016.05.088, 2016. a
Kleidon, A., Miller, L., and Gans, F.: Physical Limits of Solar Energy Conversion
in the Earth System, Springer International Publishing, Cham, 1–22, https://doi.org/10.1007/128_2015_637, 2016. a
Liu, C., Gallagher, J. J., Sakimoto, K. K., Nichols, E. M., Chang, C. J., Chang,
M. C. Y., and Yang, P.: Nanowire-Bacteria Hybrids for Unassisted Solar Carbon
Dioxide Fixation to Value-Added Chemicals, Nano Lett., 15, 3634–3639,
https://doi.org/10.1021/acs.nanolett.5b01254, 2015. a
May, M. M.: YaSoFo – Yet Another SOlar Fuels Optimizer, https://doi.org/10.5281/zenodo.1489158, 2018. a
May, M. M., Lackner, D., Ohlmann, J., Dimroth, F., van de Krol, R., Hannappel,
T., and Schwarzburg, K.: On the Benchmarking of Multi-Junction Photoelectrochemical
Fuel Generating Devices, Sustain. Energy Fuels, 1, 492–503, https://doi.org/10.1039/C6SE00083E, 2017. a, b, c
Melis, A.: Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and
botryococcene production, Energy Environ. Sci., 5, 5531–5539, https://doi.org/10.1039/C1EE02514G, 2012. a
Parkinson, B.: Advantages of Solar Hydrogen Compared to Direct Carbon Dioxide
Reduction for Solar Fuel Production, ACS Energy Lett., 1, 1057–1059,
https://doi.org/10.1021/acsenergylett.6b00377, 2016. a
Schreier, M., Héroguel, F., Steier, L., Ahmad, S., Luterbacher, J. S.,
Mayer, M. T., Luo, J., and Grätzel, M.: Solar conversion of CO2
to CO using Earth-abundant electrocatalysts prepared by atomic layer modification
of CuO, Nat. Energy, 2, 17087, https://doi.org/10.1038/nenergy.2017.87, 2017. a, b
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato,
E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J.,
Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R.,
Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grubler, A., Heidug, W.
K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J.
R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E.,
Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., and Yongsung, C.:
Biophysical and economic limits to negative CO2 emissions, Nat. Clim.
Change, 6, 42–50, https://doi.org/10.1038/nclimate2870, 2016. a, b, c
Verma, A., Nimana, B., Olateju, B., Rahman, M. M., Radpour, S., Canter, C.,
Subramanyam, V., Paramashivan, D., Vaezi, M., and Kumar, A.: A techno-economic
assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian
oil sands industry: Oil via rail or pipeline?, Energy, 124, 665–683,
https://doi.org/10.1016/j.energy.2017.02.057, 2017. a
Short summary
Current CO2 emission rates are incompatible with the 2 °C target for global warming. Negative emission technologies are therefore an important basis for climate policy scenarios. We show that photoelectrochemical CO2 reduction might be a viable, high-efficiency alternative to biomass-based approaches, which reduce competition for arable land. To develop them, chemical reactions have to be optimized for CO2 removal, which deviates from energetic efficiency optimization in solar fuel applications.
Current CO2 emission rates are incompatible with the 2 °C target for global warming. Negative...
Special issue
Altmetrics
Final-revised paper
Preprint