Articles | Volume 6, issue 2
https://doi.org/10.5194/esd-6-769-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/esd-6-769-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Implications of land use change in tropical northern Africa under global warming
T. Brücher
Max Planck Institute for Meteorology, Hamburg, Germany
now at: GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
M. Claussen
Max Planck Institute for Meteorology, Hamburg, Germany
Centrum für Erdsystemforschung und Nachhaltigkeit (CEN), Universität Hamburg, Hamburg, Germany
T. Raddatz
Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Fabio Cresto Aleina, Benjamin R. K. Runkle, Tim Brücher, Thomas Kleinen, and Victor Brovkin
Geosci. Model Dev., 9, 915–926, https://doi.org/10.5194/gmd-9-915-2016, https://doi.org/10.5194/gmd-9-915-2016, 2016
Short summary
Short summary
This study presents the hotspot parameterization, a novel approach to upscaling methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this new parameterization on the analysis of water table patterns generated by the Hummock–Hollow (HH) model. We show how the hotspot parameterization successfully upscales the micro-topographic controls on methane emissions for both present-day conditions and for the next century under three different scenarios.
S. Kloster, T. Brücher, V. Brovkin, and S. Wilkenskjeld
Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015, https://doi.org/10.5194/cp-11-781-2015, 2015
T. Brücher, V. Brovkin, S. Kloster, J. R. Marlon, and M. J. Power
Clim. Past, 10, 811–824, https://doi.org/10.5194/cp-10-811-2014, https://doi.org/10.5194/cp-10-811-2014, 2014
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-61, https://doi.org/10.5194/cp-2024-61, 2024
Preprint under review for CP
Short summary
Short summary
We simulate the last glacial cycle with a comprehensive Earth system model and investigate vegetation change in North Africa during the last four African humid periods (AHPs). We find a common AHP pattern of vegetation change and relate it to climatic factors to discuss how vegetation might have evolved in much older AHPs. The relationship we found for past AHPs does not hold for projected changes in North Africa under strong greenhouse gas warming.
Pin-Hsin Hu, Christian H. Reick, Reiner Schnur, Axel Kleidon, and Martin Claussen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-111, https://doi.org/10.5194/gmd-2024-111, 2024
Preprint under review for GMD
Short summary
Short summary
We introduce the new plant functional diversity model JeDi-BACH, a novel tool that integrates the Jena Diversity Model (JeDi) within the land component of the ICON Earth System Model. JeDi-BACH captures a richer set of plant trait variations based on environmental filtering and functional tradeoffs without a priori knowledge of the vegetation types. JeDi-BACH represents a significant advancement in modeling the complex interactions between plant functional diversity and climate.
Suqi Guo, Felix Havermann, Steven J. De Hertog, Fei Luo, Iris Manola, Thomas Raddatz, Hongmei Li, Wim Thiery, Quentin Lejeune, Carl-Friedrich Schleussner, David Wårlind, Lars Nieradzik, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2387, https://doi.org/10.5194/egusphere-2024-2387, 2024
Short summary
Short summary
Land-cover and land management changes (LCLMCs) can alter climate even in intact areas, causing carbon changes in remote areas. This study is the first to assess these effects, finding they substantially alter global carbon dynamics, changing terrestrial stocks by up to dozens of gigatons. These results are vital for scientific and policy assessments, given the expected role of LCLMCs in achieving the Paris Agreement’s goal to limit global warming below 1.5 °C.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024, https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Short summary
We close the terrestrial water cycle across the Sahara and Sahel by integrating a new endorheic-lake model into a climate model. A factor analysis of mid-Holocene simulations shows that both dynamic lakes and dynamic vegetation individually contribute to a precipitation increase over northern Africa that is collectively greater than that caused by the interaction between lake and vegetation dynamics. Thus, the lake–vegetation interaction causes a relative drying response across the entire Sahel.
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 19, 637–664, https://doi.org/10.5194/cp-19-637-2023, https://doi.org/10.5194/cp-19-637-2023, 2023
Short summary
Short summary
Increasing the vegetation cover over mid-Holcocene North Africa expands the West African monsoon ∼ 4–5° further north. This northward shift of monsoonal precipitation is caused by interactions of the land surface with large-scale monsoon circulation and the coupling of soil moisture to precipitation. We highlight the importance of considering not only how soil moisture influences precipitation but also how different precipitation characteristics alter the soil hydrology via runoff generation.
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Mateo Duque-Villegas, Martin Claussen, Victor Brovkin, and Thomas Kleinen
Clim. Past, 18, 1897–1914, https://doi.org/10.5194/cp-18-1897-2022, https://doi.org/10.5194/cp-18-1897-2022, 2022
Short summary
Short summary
Using an Earth system model of intermediate complexity, we quantify contributions of the Earth's orbit, greenhouse gases (GHGs) and ice sheets to the strength of Saharan greening during late Quaternary African humid periods (AHPs). Orbital forcing is found as the dominant factor, having a critical threshold and accounting for most of the changes in the vegetation response. However, results suggest that GHGs may influence the orbital threshold and thus may play a pivotal role for future AHPs.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, https://doi.org/10.5194/cp-18-1035-2022, 2022
Short summary
Short summary
Palaeoenvironmental records only provide a fragmentary picture of the lake and wetland extent in North Africa during the mid-Holocene. Therefore, we investigate the possible range of mid-Holocene precipitation changes caused by an estimated small and maximum lake extent and a maximum wetland extent. Results show a particularly strong monsoon precipitation response to lakes and wetlands over the Western Sahara and an increased monsoon precipitation when replacing lakes with vegetated wetlands.
Jooyeop Lee, Martin Claussen, Jeongwon Kim, Je-Woo Hong, In-Sun Song, and Jinkyu Hong
Clim. Past, 18, 313–326, https://doi.org/10.5194/cp-18-313-2022, https://doi.org/10.5194/cp-18-313-2022, 2022
Short summary
Short summary
It is still a challenge to simulate the so–called Green Sahara (GS), which was a wet and vegetative Sahara region in the mid–Holocene, using current climate models. Our analysis shows that Holocene greening is simulated better if the amount of soil nitrogen and soil texture is properly modified for the humid and vegetative GS period. Future climate simulation needs to consider consequent changes in soil nitrogen and texture with changes in vegetation cover for proper climate simulations.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 17, 1665–1684, https://doi.org/10.5194/cp-17-1665-2021, https://doi.org/10.5194/cp-17-1665-2021, 2021
Short summary
Short summary
We investigate the impact of explicitly resolving convection on the mid-Holocene West African Monsoon rain belt by employing the ICON climate model in high resolution. While the spatial distribution and intensity of the precipitation are improved by this technique, the monsoon extents further north and the mean summer rainfall is higher in the simulation with parameterized convection.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Johannes Winckler, Christian H. Reick, Sebastiaan Luyssaert, Alessandro Cescatti, Paul C. Stoy, Quentin Lejeune, Thomas Raddatz, Andreas Chlond, Marvin Heidkamp, and Julia Pongratz
Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, https://doi.org/10.5194/esd-10-473-2019, 2019
Short summary
Short summary
For local living conditions, it matters whether deforestation influences the surface temperature, temperature at 2 m, or the temperature higher up in the atmosphere. Here, simulations with a climate model show that at a location of deforestation, surface temperature generally changes more strongly than atmospheric temperature. Comparison across climate models shows that both for summer and winter the surface temperature response exceeds the air temperature response locally by a factor of 2.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Sabine Egerer, Martin Claussen, and Christian Reick
Clim. Past, 14, 1051–1066, https://doi.org/10.5194/cp-14-1051-2018, https://doi.org/10.5194/cp-14-1051-2018, 2018
Short summary
Short summary
We find a rapid increase in simulated dust deposition between 6 and
4 ka BP that is fairly consistent with an abrupt change in dust deposition that was observed in marine sediment records at around 5 ka BP. This rapid change is caused by a rapid increase in simulated dust emissions in the western Sahara due to a fast decline in vegetation cover and a locally strong reduction of lake area. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape.
Sirisha Kalidindi, Christian H. Reick, Thomas Raddatz, and Martin Claussen
Earth Syst. Dynam., 9, 739–756, https://doi.org/10.5194/esd-9-739-2018, https://doi.org/10.5194/esd-9-739-2018, 2018
Short summary
Short summary
Using climate simulations, we investigate the role of water recycling in shaping the climate of low-obliquity Earth-like terra-planets. By such a mechanism feeding water back from the extra-tropics to the tropics, the planet can assume two drastically different climate states differing by more than 35 K in global temperature. We describe the bifurcation between the two states occurring upon changes in surface albedo and argue that the bistability hints at a wider habitable zone for such planets.
Markus Adloff, Christian H. Reick, and Martin Claussen
Earth Syst. Dynam., 9, 413–425, https://doi.org/10.5194/esd-9-413-2018, https://doi.org/10.5194/esd-9-413-2018, 2018
Short summary
Short summary
Computer simulations show that during an ice age a strong atmospheric CO2 increase would have resulted in stronger carbon uptake of the continents than today. Causes are the larger potential of glacial vegetation to increase its photosynthetic efficiency under increasing CO2 and the smaller amount of carbon in extratropical soils during an ice age that can be released under greenhouse warming. Hence, for different climates the Earth system is differently sensitive to carbon cycle perturbations.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Daniel S. Goll, Alexander J. Winkler, Thomas Raddatz, Ning Dong, Ian Colin Prentice, Philippe Ciais, and Victor Brovkin
Geosci. Model Dev., 10, 2009–2030, https://doi.org/10.5194/gmd-10-2009-2017, https://doi.org/10.5194/gmd-10-2009-2017, 2017
Short summary
Short summary
The response of soil organic carbon decomposition to warming and the interactions between nitrogen and carbon cycling affect the feedbacks between the land carbon cycle and the climate. In the model JSBACH carbon–nitrogen interactions have only a small effect on the feedbacks, whereas modifications of soil organic carbon decomposition have a large effect. The carbon cycle in the improved model is more resilient to climatic changes than in previous version of the model.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Chris D. Jones, Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charlie Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and Sönke Zaehle
Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, https://doi.org/10.5194/gmd-9-2853-2016, 2016
Short summary
Short summary
How the carbon cycle interacts with climate will affect future climate change and how society plans emissions reductions to achieve climate targets. The Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) is an endorsed activity of CMIP6 and aims to quantify these interactions and feedbacks in state-of-the-art climate models. This paper lays out the experimental protocol for modelling groups to follow to contribute to C4MIP. It is a contribution to the CMIP6 GMD Special Issue.
Alexander Lemburg, Martin Claussen, and Felix Ament
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-68, https://doi.org/10.5194/cp-2016-68, 2016
Manuscript not accepted for further review
Short summary
Short summary
The deforestation of Easter Island several hundred years ago might have influenced its local near-surface climate. With a series of numerical model experiments we investigate the impact of deforestation on precipitation and near-surface climate. We find that a deforested Easter Island appears to be significantly less resistant to drought than a forested island and thus, deforestation has probably exacerbated the effects of past climate drought spells on Easter Island's socio-ecological systems.
Ulrike Port, Martin Claussen, and Victor Brovkin
Earth Syst. Dynam., 7, 535–547, https://doi.org/10.5194/esd-7-535-2016, https://doi.org/10.5194/esd-7-535-2016, 2016
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Sabine Egerer, Martin Claussen, Christian Reick, and Tanja Stanelle
Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016, https://doi.org/10.5194/cp-12-1009-2016, 2016
Short summary
Short summary
We demonstrate for the first time the direct link between dust accumulation in marine sediment cores and Saharan land surface by simulating the mid-Holocene and pre-industrial dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations.
Fabio Cresto Aleina, Benjamin R. K. Runkle, Tim Brücher, Thomas Kleinen, and Victor Brovkin
Geosci. Model Dev., 9, 915–926, https://doi.org/10.5194/gmd-9-915-2016, https://doi.org/10.5194/gmd-9-915-2016, 2016
Short summary
Short summary
This study presents the hotspot parameterization, a novel approach to upscaling methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this new parameterization on the analysis of water table patterns generated by the Hummock–Hollow (HH) model. We show how the hotspot parameterization successfully upscales the micro-topographic controls on methane emissions for both present-day conditions and for the next century under three different scenarios.
U. Port and M. Claussen
Clim. Past, 11, 1563–1574, https://doi.org/10.5194/cp-11-1563-2015, https://doi.org/10.5194/cp-11-1563-2015, 2015
V. P. Groner, M. Claussen, and C. Reick
Clim. Past, 11, 1361–1374, https://doi.org/10.5194/cp-11-1361-2015, https://doi.org/10.5194/cp-11-1361-2015, 2015
S. Kloster, T. Brücher, V. Brovkin, and S. Wilkenskjeld
Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015, https://doi.org/10.5194/cp-11-781-2015, 2015
U. Port, M. Claussen, and V. Brovkin
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-997-2015, https://doi.org/10.5194/cpd-11-997-2015, 2015
Revised manuscript not accepted
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
S. Wilkenskjeld, S. Kloster, J. Pongratz, T. Raddatz, and C. H. Reick
Biogeosciences, 11, 4817–4828, https://doi.org/10.5194/bg-11-4817-2014, https://doi.org/10.5194/bg-11-4817-2014, 2014
T. Brücher, V. Brovkin, S. Kloster, J. R. Marlon, and M. J. Power
Clim. Past, 10, 811–824, https://doi.org/10.5194/cp-10-811-2014, https://doi.org/10.5194/cp-10-811-2014, 2014
F. S. E. Vamborg, V. Brovkin, and M. Claussen
Earth Syst. Dynam., 5, 89–101, https://doi.org/10.5194/esd-5-89-2014, https://doi.org/10.5194/esd-5-89-2014, 2014
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
Related subject area
Earth system interactions with the biosphere: landuse
The biogeophysical effects of idealized land cover and land management changes in Earth system models
The response of the regional longwave radiation balance and climate system in Europe to an idealized afforestation experiment
Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation
Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches
Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing
Impact of environmental changes and land management practices on wheat production in India
Impacts of future agricultural change on ecosystem service indicators
Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison
A multi-model analysis of teleconnected crop yield variability in a range of cropping systems
Different response of surface temperature and air temperature to deforestation in climate models
Changes in crop yields and their variability at different levels of global warming
A global assessment of gross and net land change dynamics for current conditions and future scenarios
Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River basin, China
Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era
Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia
Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments
Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions
Continuous and consistent land use/cover change estimates using socio-ecological data
Vulnerability to climate change and adaptation strategies of local communities in Malawi: experiences of women fish-processing groups in the Lake Chilwa Basin
Deforestation in Amazonia impacts riverine carbon dynamics
Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework
Ocean–atmosphere interactions modulate irrigation's climate impacts
Impacts of land-use history on the recovery of ecosystems after agricultural abandonment
Actors and networks in resource conflict resolution under climate change in rural Kenya
Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada
The role of spatial scale and background climate in the latitudinal temperature response to deforestation
Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa
Quantifying differences in land use emission estimates implied by definition discrepancies
Inter-annual and seasonal trends of vegetation condition in the Upper Blue Nile (Abay) Basin: dual-scale time series analysis
Local sources of global climate forcing from different categories of land use activities
Effects of climate variability on savannah fire regimes in West Africa
Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
Terminology as a key uncertainty in net land use and land cover change carbon flux estimates
Towards decision-based global land use models for improved understanding of the Earth system
Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa
The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr
A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"
Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)
Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations
Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use
The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Marcus Breil, Felix Krawczyk, and Joaquim G. Pinto
Earth Syst. Dynam., 14, 243–253, https://doi.org/10.5194/esd-14-243-2023, https://doi.org/10.5194/esd-14-243-2023, 2023
Short summary
Short summary
We provide evidence that biogeophysical effects of afforestation can counteract the favorable biogeochemical climate effect of reduced CO2 concentrations. By changing the land surface characteristics, afforestation reduces vegetation surface temperatures, resulting in a reduced outgoing longwave radiation in summer, although CO2 concentrations are reduced. Since forests additionally absorb a lot of solar radiation due to their dark surfaces, afforestation has a total warming effect.
Ana Bastos, Kerstin Hartung, Tobias B. Nützel, Julia E. M. S. Nabel, Richard A. Houghton, and Julia Pongratz
Earth Syst. Dynam., 12, 745–762, https://doi.org/10.5194/esd-12-745-2021, https://doi.org/10.5194/esd-12-745-2021, 2021
Short summary
Short summary
Fluxes from land-use change and management (FLUC) are a large source of uncertainty in global and regional carbon budgets. Here, we evaluate the impact of different model parameterisations on FLUC. We show that carbon stock densities and allocation of carbon following transitions contribute more to uncertainty in FLUC than response-curve time constants. Uncertainty in FLUC could thus, in principle, be reduced by available Earth-observation data on carbon densities at a global scale.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Shilpa Gahlot, Tzu-Shun Lin, Atul K. Jain, Somnath Baidya Roy, Vinay K. Sehgal, and Rajkumar Dhakar
Earth Syst. Dynam., 11, 641–652, https://doi.org/10.5194/esd-11-641-2020, https://doi.org/10.5194/esd-11-641-2020, 2020
Short summary
Short summary
Spring wheat, a staple for millions of people in India and the world, is vulnerable to changing environmental and management factors. Using a new spring wheat model, we find that over the 1980–2016 period elevated CO2 levels, irrigation, and nitrogen fertilizers led to an increase of 30 %, 12 %, and 15 % in countrywide production, respectively. In contrast, rising temperatures have reduced production by 18 %. These effects vary across the country, thereby affecting production at regional scales.
Sam S. Rabin, Peter Alexander, Roslyn Henry, Peter Anthoni, Thomas A. M. Pugh, Mark Rounsevell, and Almut Arneth
Earth Syst. Dynam., 11, 357–376, https://doi.org/10.5194/esd-11-357-2020, https://doi.org/10.5194/esd-11-357-2020, 2020
Short summary
Short summary
We modeled how agricultural performance and demand will shift as a result of climate change and population growth, and how the resulting adaptations will affect aspects of the Earth system upon which humanity depends. We found that the impacts of land use and management can have stronger impacts than climate change on some such
ecosystem services. The overall impacts are strongest in future scenarios with more severe climate change, high population growth, and/or resource-intensive lifestyles.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Matias Heino, Joseph H. A. Guillaume, Christoph Müller, Toshichika Iizumi, and Matti Kummu
Earth Syst. Dynam., 11, 113–128, https://doi.org/10.5194/esd-11-113-2020, https://doi.org/10.5194/esd-11-113-2020, 2020
Short summary
Short summary
In this study, we analyse the impacts of three major climate oscillations on global crop production. Our results show that maize, rice, soybean, and wheat yields are influenced by climate oscillations to a wide extent and in several important crop-producing regions. We observe larger impacts if crops are rainfed or fully fertilized, while irrigation tends to mitigate the impacts. These results can potentially help to increase the resilience of the global food system to climate-related shocks.
Johannes Winckler, Christian H. Reick, Sebastiaan Luyssaert, Alessandro Cescatti, Paul C. Stoy, Quentin Lejeune, Thomas Raddatz, Andreas Chlond, Marvin Heidkamp, and Julia Pongratz
Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, https://doi.org/10.5194/esd-10-473-2019, 2019
Short summary
Short summary
For local living conditions, it matters whether deforestation influences the surface temperature, temperature at 2 m, or the temperature higher up in the atmosphere. Here, simulations with a climate model show that at a location of deforestation, surface temperature generally changes more strongly than atmospheric temperature. Comparison across climate models shows that both for summer and winter the surface temperature response exceeds the air temperature response locally by a factor of 2.
Sebastian Ostberg, Jacob Schewe, Katelin Childers, and Katja Frieler
Earth Syst. Dynam., 9, 479–496, https://doi.org/10.5194/esd-9-479-2018, https://doi.org/10.5194/esd-9-479-2018, 2018
Short summary
Short summary
It has been shown that regional temperature and precipitation changes in future climate change scenarios often scale quasi-linearly with global mean temperature change (∆GMT). We show that an important consequence of these physical climate changes, namely changes in agricultural crop yields, can also be described in terms of ∆GMT to a large extent. This makes it possible to efficiently estimate future crop yield changes for different climate change scenarios without need for complex models.
Richard Fuchs, Reinhard Prestele, and Peter H. Verburg
Earth Syst. Dynam., 9, 441–458, https://doi.org/10.5194/esd-9-441-2018, https://doi.org/10.5194/esd-9-441-2018, 2018
Short summary
Short summary
We analysed current global land change dynamics based on high-resolution (30–100 m) remote sensing products. We integrated these empirical data into a future simulation model to assess global land change dynamics in the future (2000 to 2040). The consideration of empirically derived land change dynamics in future models led globally to ca. 50 % more land changes than currently assumed in state-of-the-art models. This impacts the results of other global change studies (e.g. climate change).
Xingran Liu and Yanjun Shen
Earth Syst. Dynam., 9, 211–225, https://doi.org/10.5194/esd-9-211-2018, https://doi.org/10.5194/esd-9-211-2018, 2018
Short summary
Short summary
The impacts of climate change and human activities on oasis water requirements in Heihe River basin were quantified with the methods of partial derivative and slope in this study. The results showed that the oasis water requirement increased sharply from 10.8 × 108 to 19.0 × 108 m3 during 1986–2013. Human activities were the dominant driving forces. Changes in climate, land scale and structure contributed to the increase in water requirement at rates of 6.9, 58.1, and 25.3 %, respectively.
Ben Parkes, Dimitri Defrance, Benjamin Sultan, Philippe Ciais, and Xuhui Wang
Earth Syst. Dynam., 9, 119–134, https://doi.org/10.5194/esd-9-119-2018, https://doi.org/10.5194/esd-9-119-2018, 2018
Short summary
Short summary
We present an analysis of three crops in West Africa and their response to short-term climate change in a world where temperatures are 1.5 °C above the preindustrial levels. We show that the number of crop failures for all crops is due to increase in the future climate. We further show the difference in yield change across several West African countries and show that the yields are not expected to increase fast enough to prevent food shortages.
Praveen Noojipady, Douglas C. Morton, Wilfrid Schroeder, Kimberly M. Carlson, Chengquan Huang, Holly K. Gibbs, David Burns, Nathalie F. Walker, and Stephen D. Prince
Earth Syst. Dynam., 8, 749–771, https://doi.org/10.5194/esd-8-749-2017, https://doi.org/10.5194/esd-8-749-2017, 2017
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Anita D. Bayer, Mats Lindeskog, Thomas A. M. Pugh, Peter M. Anthoni, Richard Fuchs, and Almut Arneth
Earth Syst. Dynam., 8, 91–111, https://doi.org/10.5194/esd-8-91-2017, https://doi.org/10.5194/esd-8-91-2017, 2017
Short summary
Short summary
We evaluate the effects of land-use and land-cover changes on carbon pools and fluxes using a dynamic global vegetation model. Different historical reconstructions yielded an uncertainty of ca. ±30 % in the mean annual land use emission over the last decades. Accounting for the parallel expansion and abandonment of croplands on a sub-grid level (tropical shifting cultivation) substantially increased the effect of land use on carbon stocks and fluxes compared to only accounting for net effects.
Michael Marshall, Michael Norton-Griffiths, Harvey Herr, Richard Lamprey, Justin Sheffield, Tor Vagen, and Joseph Okotto-Okotto
Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, https://doi.org/10.5194/esd-8-55-2017, 2017
Short summary
Short summary
The transition of land from one cover type to another can adversely affect the Earth system. A growing body of research aims to map these transitions in space and time to better understand the impacts. Here we develop a statistical model that is parameterized by socio-ecological geospatial data and extensive aerial/ground surveys to visualize and interpret these transitions on an annual basis for 30 years in Kenya. Future work will use this method to project land suitability across Africa.
Hanne Jørstad and Christian Webersik
Earth Syst. Dynam., 7, 977–989, https://doi.org/10.5194/esd-7-977-2016, https://doi.org/10.5194/esd-7-977-2016, 2016
Short summary
Short summary
This research is about climate change adaptation. It demonstrates how adaptation to climate change can avoid social tensions if done in a sustainable way. Evidence is drawn from Malawi in southern Africa.
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
Andreas Krause, Thomas A. M. Pugh, Anita D. Bayer, Mats Lindeskog, and Almut Arneth
Earth Syst. Dynam., 7, 745–766, https://doi.org/10.5194/esd-7-745-2016, https://doi.org/10.5194/esd-7-745-2016, 2016
Short summary
Short summary
We used a vegetation model to study the legacy effects of different land-use histories on ecosystem recovery in a range of environmental conditions. We found that recovery trajectories are crucially influenced by type and duration of former agricultural land use, especially for soil carbon. Spatially, we found the greatest sensitivity to land-use history in boreal forests and subtropical grasslands. These results are relevant for measurements, climate modeling and afforestation projects.
Grace W. Ngaruiya and Jürgen Scheffran
Earth Syst. Dynam., 7, 441–452, https://doi.org/10.5194/esd-7-441-2016, https://doi.org/10.5194/esd-7-441-2016, 2016
Short summary
Short summary
Climate change complicates rural conflict resolution dynamics and institutions. There is urgent need for conflict-sensitive adaptation in Africa. The study of social network data reveals three forms of fused conflict resolution arrangements in Loitoktok, Kenya. Where, extension officers, council of elders, local chiefs and private investors are potential conduits of knowledge. Efficiency of rural conflict resolution can be enhanced by diversification in conflict resolution actors and networks.
Daniel Paradis, Harold Vigneault, René Lefebvre, Martine M. Savard, Jean-Marc Ballard, and Budong Qian
Earth Syst. Dynam., 7, 183–202, https://doi.org/10.5194/esd-7-183-2016, https://doi.org/10.5194/esd-7-183-2016, 2016
Short summary
Short summary
According to groundwater flow and mass transport simulations, nitrate concentration for year 2050 would increase mainly due to the attainment of equilibrium conditions of the aquifer system related to actual nitrogen loadings, and to the increase in nitrogen loadings due to changes in agricultural practices. Impact of climate change on the groundwater recharge would contribute only slightly to that increase.
Yan Li, Nathalie De Noblet-Ducoudré, Edouard L. Davin, Safa Motesharrei, Ning Zeng, Shuangcheng Li, and Eugenia Kalnay
Earth Syst. Dynam., 7, 167–181, https://doi.org/10.5194/esd-7-167-2016, https://doi.org/10.5194/esd-7-167-2016, 2016
Short summary
Short summary
The impact of deforestation is to warm the tropics and cool the extratropics, and the magnitude of the impact depends on the spatial extent and the degree of forest loss. That also means location matters for the impact of deforestation on temperature because such an impact is largely determined by the climate condition of that region. For example, under dry and wet conditions, deforestation can have quite different climate impacts.
Kazi Farzan Ahmed, Guiling Wang, Liangzhi You, and Miao Yu
Earth Syst. Dynam., 7, 151–165, https://doi.org/10.5194/esd-7-151-2016, https://doi.org/10.5194/esd-7-151-2016, 2016
Short summary
Short summary
A prototype model LandPro was developed to study climate change impact on land use in West Africa. LandPro considers climate and socioeconomic factors in projecting anthropogenic future land use change (LULCC). The model projections reflect that relative impact of climate change on LULCC in West Africa is region dependent. Results from scenario analysis suggest that science-informed decision-making by the farmers in agricultural land use can potentially reduce crop area expansion in the region.
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
E. Teferi, S. Uhlenbrook, and W. Bewket
Earth Syst. Dynam., 6, 617–636, https://doi.org/10.5194/esd-6-617-2015, https://doi.org/10.5194/esd-6-617-2015, 2015
Short summary
Short summary
This study concludes that integrated analysis of course and fine-scale, inter-annual and intra-annual trends enables a more robust identification of changes in vegetation condition. Seasonal trend analysis was found to be very useful in identifying changes in vegetation condition that could be masked if only inter-annual vegetation trend analysis were performed. The finer-scale intra-annual trend analysis revealed trends that were more linked to human activities.
D. S. Ward and N. M. Mahowald
Earth Syst. Dynam., 6, 175–194, https://doi.org/10.5194/esd-6-175-2015, https://doi.org/10.5194/esd-6-175-2015, 2015
Short summary
Short summary
The radiative forcing of land use and land cover change activities has recently been computed for a set of forcing agents including long-lived greenhouse gases, short-lived agents (ozone and aerosols), and land surface albedo change. Here we address where the global forcing comes from and what land use activities, such as deforestation or agriculture, contribute the most forcing. We find that changes in forest and crop area can be used to predict the land use radiative forcing in some regions.
E. T. N'Datchoh, A. Konaré, A. Diedhiou, A. Diawara, E. Quansah, and P. Assamoi
Earth Syst. Dynam., 6, 161–174, https://doi.org/10.5194/esd-6-161-2015, https://doi.org/10.5194/esd-6-161-2015, 2015
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015, https://doi.org/10.5194/esd-6-83-2015, 2015
J. Pongratz, C. H. Reick, R. A. Houghton, and J. I. House
Earth Syst. Dynam., 5, 177–195, https://doi.org/10.5194/esd-5-177-2014, https://doi.org/10.5194/esd-5-177-2014, 2014
M. D. A. Rounsevell, A. Arneth, P. Alexander, D. G. Brown, N. de Noblet-Ducoudré, E. Ellis, J. Finnigan, K. Galvin, N. Grigg, I. Harman, J. Lennox, N. Magliocca, D. Parker, B. C. O'Neill, P. H. Verburg, and O. Young
Earth Syst. Dynam., 5, 117–137, https://doi.org/10.5194/esd-5-117-2014, https://doi.org/10.5194/esd-5-117-2014, 2014
M. Lindeskog, A. Arneth, A. Bondeau, K. Waha, J. Seaquist, S. Olin, and B. Smith
Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, https://doi.org/10.5194/esd-4-385-2013, 2013
Q. Zhang, A. J. Pitman, Y. P. Wang, Y. J. Dai, and P. J. Lawrence
Earth Syst. Dynam., 4, 333–345, https://doi.org/10.5194/esd-4-333-2013, https://doi.org/10.5194/esd-4-333-2013, 2013
T. Gasser and P. Ciais
Earth Syst. Dynam., 4, 171–186, https://doi.org/10.5194/esd-4-171-2013, https://doi.org/10.5194/esd-4-171-2013, 2013
G. Modica, M. Vizzari, M. Pollino, C. R. Fichera, P. Zoccali, and S. Di Fazio
Earth Syst. Dynam., 3, 263–279, https://doi.org/10.5194/esd-3-263-2012, https://doi.org/10.5194/esd-3-263-2012, 2012
A. J. Pitman, N. de Noblet-Ducoudré, F. B. Avila, L. V. Alexander, J.-P. Boisier, V. Brovkin, C. Delire, F. Cruz, M. G. Donat, V. Gayler, B. van den Hurk, C. Reick, and A. Voldoire
Earth Syst. Dynam., 3, 213–231, https://doi.org/10.5194/esd-3-213-2012, https://doi.org/10.5194/esd-3-213-2012, 2012
M. Cerreta and P. De Toro
Earth Syst. Dynam., 3, 157–171, https://doi.org/10.5194/esd-3-157-2012, https://doi.org/10.5194/esd-3-157-2012, 2012
M. P. McCarthy, J. Sanjay, B. B. B. Booth, K. Krishna Kumar, and R. A. Betts
Earth Syst. Dynam., 3, 87–96, https://doi.org/10.5194/esd-3-87-2012, https://doi.org/10.5194/esd-3-87-2012, 2012
Cited articles
Bathiany, S., Claussen, M., and Brovkin, V.: CO2-induced sahel greening in three CMIP5 Earth System Models, J. Climate, 27, 7163–7184, https://doi.org/10.1175/JCLI-D-13-00528.1, 2014.
Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo, R., and Yanda, P.: Africa, in: Africa, Cambridge University Press, Cambridge, UK and New York, NY, USA, 433–467, 2007.
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global biogeophysical interactions between forest and climate, Geophys. Res. Lett., 36, L07405, https://doi.org/10.1029/2009GL037543, 2009.
Busby, J. W., Cook, K. H., Vizy, E. K., Smith, T. G., and Bekalo, M.: Identifying hot spots of security vulnerability associated with climate change in Africa, Clim. Change, 124, 717–731, https://doi.org/10.1007/s10584-014-1142-z, 2014.
Claussen, M.: Modeling bio-geophysical feedback in the African and Indian monsoon region, Clim. Dynam., 13, 247–257, https://doi.org/10.1007/s003820050164, 1997.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Clim. Change, 109, 117–161, https://doi.org/10.1007/s10584-011-0153-2, 2011.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and Núñez Riboni, I.: Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5, 287–315, https://doi.org/10.1029/2012MS000178, 2013.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and Von Storch, J. S.: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model, J. Adv. Model. Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models, Global Change Biol., 15, 976–991, https://doi.org/10.1111/j.1365-2486.2008.01744.x, 2009.
Koster, R., Dirmeyer, P., Guo, Z., and Bonan, G.: Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138–1140, 2004.
Lobell, D. B., Field, C. B., Cahill, K. N., and Bonfils, C.: Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties, Agr. Forest Meteorol., 141, 208–218, https://doi.org/10.1016/j.agrformet.2006.10.006, 2006.
Lobell, D., Cahill, K., and Field, C.: Historical effects of temperature and precipitation on California crop yields, Clim. Change, 81, 187–203, https://doi.org/10.1007/s10584-006-9141-3, 2007.
Low, P. S.: Climate Change and Africa, Cambridge University Press, Cambridge, 412 pp., 2005.
Patricola, C. M. and Cook, K. H.: Northern African climate at the end of the twenty-first century: An integrated application of regional and global climate models, Clim. Dynam., 35, 193–212, https://doi.org/10.1007/s00382-009-0623-7, 2010.
Pongratz, J., Caldeira, K., Reick, C. H., and Claussen, M.: Coupled climate-carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO2 between AD 800 and 1850, Holocene, 21, 843–851, https://doi.org/10.1177/0959683610386981, 2011.
Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K. G., Wetzel, P., and Jungclaus, J.: Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century?, Clim. Dynam., 29, 565–574, https://doi.org/10.1007/s00382-007-0247-8, 2007.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Scheffran, J. and BenDor, T.: Bioenergy and land use: a spatial-agent dynamic model of energy crop production in Illinois, Int. J. Environ. Pollut., 4–27, https://doi.org/10.1002/jame.20038, 2009.
Scheffran, J., Brzoska, M., Kominek, J., Link, P. M., and Schilling, J.: Climate change and violent conflict, Science, 336, 869–71, https://doi.org/10.1126/science.1221339, 2012.
Schneck, R., Reick, C. H., and Raddatz, T.: Land contribution to natural CO2 variability on time scales of centuries, J. Adv. Model. Earth Syst., 5, 354–365, https://doi.org/10.1002/jame.20029, 2013.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M earth system model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.
Taylor, C. M., Lambin, E. F., Stephenne, N., Harding, R. J., and Essery, R. L. H.: The influence of land use change on climate in the Sahel, J. Climate, 15, 3615–3629, 2002.
Vamborg, F. S. E., Brovkin, V., and Claussen, M.: The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene, Clim. Past, 7, 117–131, https://doi.org/10.5194/cp-7-117-2011, 2011.
Veron, S., de Abelleyra, D., and Lobell, D.: Impacts of precipitation and temperature on crop yields in the Pampas, Clim. Change, 130, 235–245, https://doi.org/10.1007/s10584-015-1350-1, 2015.
Xue, Y. and Shukla, J.: The influence of land surface properties on Sahel climate. Part I: Desertification, https://doi.org/10.1175/1520-0442(1993)006<2232;ATIOLSP>2.0.CO;B2, 1993.
Zeng, N., Neelin, J. D., Lau, K. M., and Tucker, C. J.: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286, 1537–1540, 1999.
Short summary
A major link between climate and humans in northern Africa, and the Sahel in particular, is land use. We assess possible feedbacks between the type of land use and harvest intensity and climate by analysing a series of idealized GCM experiments using the MPI-ESM. Our study suggests marginal feedback between land use changes and climate changes triggered by strong greenhouse gas emissions.
A major link between climate and humans in northern Africa, and the Sahel in particular, is land...
Special issue
Altmetrics
Final-revised paper
Preprint