Articles | Volume 5, issue 1
https://doi.org/10.5194/esd-5-117-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-5-117-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Towards decision-based global land use models for improved understanding of the Earth system
M. D. A. Rounsevell
School of GeoSciences, University of Edinburgh, Edinburgh, UK
A. Arneth
Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany
P. Alexander
School of GeoSciences, University of Edinburgh, Edinburgh, UK
D. G. Brown
School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, USA
N. de Noblet-Ducoudré
Laboratoire des Sciences du Climat et de l'Environnement, Unité mixte CEA-CNRS-UVSQ, Gif-sur-Yvette, France
E. Ellis
Department of Geography and Environmental Systems, University of Maryland, Baltimore County, MD, USA
J. Finnigan
The Centre for Australian Weather and Climate Research – A partnership between CSIRO and the Bureau of Meteorology, CSIRO Marine and Atmospheric Research, Canberra, Australia
K. Galvin
Department of Anthropology, Colorado State University, Fort Collins, CO, USA
CSIRO Land and Water, Canberra, Australia
I. Harman
The Centre for Australian Weather and Climate Research – A partnership between CSIRO and the Bureau of Meteorology, CSIRO Marine and Atmospheric Research, Canberra, Australia
J. Lennox
Fondazione Eni Enrico Mattei (FEEM), Venice, Italy
N. Magliocca
Department of Geography and Environmental Systems, University of Maryland, Baltimore County, MD, USA
D. Parker
School of Planning, Faculty of Environment, University of Waterloo, Waterloo, Canada
B. C. O'Neill
Climate and Global Dynamics Division & Integrated Science Program, National Center for Atmospheric Research (NCAR), Boulder, CO, USA
P. H. Verburg
Institute for Environmental Studies, Amsterdam Global Change Institute, VU University Amsterdam, Amsterdam, the Netherlands
O. Young
Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
Related authors
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
C. J. Hardacre, P. I. Palmer, K. Baumanns, M. Rounsevell, and D. Murray-Rust
Atmos. Chem. Phys., 13, 5451–5472, https://doi.org/10.5194/acp-13-5451-2013, https://doi.org/10.5194/acp-13-5451-2013, 2013
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Raia Silvia Massad, Juliette Lathière, Susanna Strada, Mathieu Perrin, Erwan Personne, Marc Stéfanon, Patrick Stella, Sophie Szopa, and Nathalie de Noblet-Ducoudré
Biogeosciences, 16, 2369–2408, https://doi.org/10.5194/bg-16-2369-2019, https://doi.org/10.5194/bg-16-2369-2019, 2019
Short summary
Short summary
Human activities strongly interfere in the land–atmosphere interactions through changes in land use and land cover changes and land management. The objectives of this review are to synthesize the existing experimental and modelling works that investigate physical, chemical, and biogeochemical interactions between land surface and the atmosphere. Greater consideration of atmospheric chemistry, through land–atmosphere interactions, as a decision parameter for land management is essential.
Derek T. Robinson, Alan Di Vittorio, Peter Alexander, Almut Arneth, C. Michael Barton, Daniel G. Brown, Albert Kettner, Carsten Lemmen, Brian C. O'Neill, Marco Janssen, Thomas A. M. Pugh, Sam S. Rabin, Mark Rounsevell, James P. Syvitski, Isaac Ullah, and Peter H. Verburg
Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, https://doi.org/10.5194/esd-9-895-2018, 2018
Short summary
Short summary
Understanding the complexity behind the rapid use of Earth’s resources requires modelling approaches that couple human and natural systems. We propose a framework that comprises the configuration, frequency of interaction, and coordination of communication between models along with eight lessons as guidelines to increase the success of coupled human–natural systems modelling initiatives. We also suggest a way to expedite model coupling and increase the longevity and interoperability of models.
Gordon B. Bonan, Edward G. Patton, Ian N. Harman, Keith W. Oleson, John J. Finnigan, Yaqiong Lu, and Elizabeth A. Burakowski
Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, https://doi.org/10.5194/gmd-11-1467-2018, 2018
Short summary
Short summary
Land surface models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer parameterization in a multilayer canopy model to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. The multilayer canopy improves simulations compared with the Community Land Model (CLM4.5) while also advancing the theoretical basis for surface flux parameterizations.
Nicola Grigg, Tira Foran, Toni Darbas, Mac Kirby, Matthew J. Colloff, Mobin-ud-Din Ahmad, and Geoff Podger
Proc. IAHS, 376, 9–13, https://doi.org/10.5194/piahs-376-9-2018, https://doi.org/10.5194/piahs-376-9-2018, 2018
Short summary
Short summary
We draw on previous work examining likely future water use and food availability in Pakistan and extend the analysis to consider hydropower generation and energy demand in food production. The biophysical limits of the water-energy-food nexus are just one piece of the picture. We also draw on critical social science and resilience or adaptation-oriented perspectives to consider options usually deemed out of scope for biophysical scientists or water, energy and agricultural authorities.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Brian C. O'Neill, Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurtt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, Gerald A. Meehl, Richard Moss, Keywan Riahi, and Benjamin M. Sanderson
Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, https://doi.org/10.5194/gmd-9-3461-2016, 2016
Short summary
Short summary
The Scenario Model Intercomparison Project (ScenarioMIP) will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. The design consists of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions. Climate model projections will facilitate integrated studies of climate change as well as address targeted scientific questions.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
Wolfgang Knorr, Frank Dentener, Stijn Hantson, Leiwen Jiang, Zbigniew Klimont, and Almut Arneth
Atmos. Chem. Phys., 16, 5685–5703, https://doi.org/10.5194/acp-16-5685-2016, https://doi.org/10.5194/acp-16-5685-2016, 2016
Short summary
Short summary
Wildfires are generally expected to increase in frequency and severity due to climate change. For Europe this could mean increased air pollution levels during the summer. Until 2050, predicted changes are moderate, but under a scenario of strong climate change, these may increase considerably during the later part of the current century. In Portugal and several parts of the Mediterranean, emissions may become relevant for meeting WHO concentration targets.
Yan Li, Nathalie De Noblet-Ducoudré, Edouard L. Davin, Safa Motesharrei, Ning Zeng, Shuangcheng Li, and Eugenia Kalnay
Earth Syst. Dynam., 7, 167–181, https://doi.org/10.5194/esd-7-167-2016, https://doi.org/10.5194/esd-7-167-2016, 2016
Short summary
Short summary
The impact of deforestation is to warm the tropics and cool the extratropics, and the magnitude of the impact depends on the spatial extent and the degree of forest loss. That also means location matters for the impact of deforestation on temperature because such an impact is largely determined by the climate condition of that region. For example, under dry and wet conditions, deforestation can have quite different climate impacts.
X. Wu, N. Vuichard, P. Ciais, N. Viovy, N. de Noblet-Ducoudré, X. Wang, V. Magliulo, M. Wattenbach, L. Vitale, P. Di Tommasi, E. J. Moors, W. Jans, J. Elbers, E. Ceschia, T. Tallec, C. Bernhofer, T. Grünwald, C. Moureaux, T. Manise, A. Ligne, P. Cellier, B. Loubet, E. Larmanou, and D. Ripoche
Geosci. Model Dev., 9, 857–873, https://doi.org/10.5194/gmd-9-857-2016, https://doi.org/10.5194/gmd-9-857-2016, 2016
Short summary
Short summary
The response of crops to changing climate and atmospheric CO2 could have large effects on food production, terrestrial carbon, water, energy fluxes and the climate feedbacks. We developed a new process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module into the land surface model ORCHIDEE. Our model has good ability to capture the spatial gradients of crop phenology, carbon and energy-related variables across Europe.
T. Verbeke, J. Lathière, S. Szopa, and N. de Noblet-Ducoudré
Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, https://doi.org/10.5194/acp-15-13555-2015, 2015
Short summary
Short summary
Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species and strongly driven by meteorological factors, chemical properties of the trace gas considered and land surface properties. The objective of our study is to investigate the impact of vegetation distribution change, which is still not very well quantified, on the dry deposition of key atmospheric species: ozone and nitric acid vapor.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
L. R. Boysen, V. Brovkin, V. K. Arora, P. Cadule, N. de Noblet-Ducoudré, E. Kato, J. Pongratz, and V. Gayler
Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, https://doi.org/10.5194/esd-5-309-2014, 2014
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Hydrol. Earth Syst. Sci., 18, 3571–3590, https://doi.org/10.5194/hess-18-3571-2014, https://doi.org/10.5194/hess-18-3571-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
M. Lindeskog, A. Arneth, A. Bondeau, K. Waha, J. Seaquist, S. Olin, and B. Smith
Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, https://doi.org/10.5194/esd-4-385-2013, 2013
C. J. Hardacre, P. I. Palmer, K. Baumanns, M. Rounsevell, and D. Murray-Rust
Atmos. Chem. Phys., 13, 5451–5472, https://doi.org/10.5194/acp-13-5451-2013, https://doi.org/10.5194/acp-13-5451-2013, 2013
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Biogeosciences, 10, 1501–1516, https://doi.org/10.5194/bg-10-1501-2013, https://doi.org/10.5194/bg-10-1501-2013, 2013
Related subject area
Earth system interactions with the biosphere: landuse
The biogeophysical effects of idealized land cover and land management changes in Earth system models
The response of the regional longwave radiation balance and climate system in Europe to an idealized afforestation experiment
Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation
Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches
Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing
Impact of environmental changes and land management practices on wheat production in India
Impacts of future agricultural change on ecosystem service indicators
Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison
A multi-model analysis of teleconnected crop yield variability in a range of cropping systems
Different response of surface temperature and air temperature to deforestation in climate models
Changes in crop yields and their variability at different levels of global warming
A global assessment of gross and net land change dynamics for current conditions and future scenarios
Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River basin, China
Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era
Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia
Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments
Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions
Continuous and consistent land use/cover change estimates using socio-ecological data
Vulnerability to climate change and adaptation strategies of local communities in Malawi: experiences of women fish-processing groups in the Lake Chilwa Basin
Deforestation in Amazonia impacts riverine carbon dynamics
Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework
Ocean–atmosphere interactions modulate irrigation's climate impacts
Impacts of land-use history on the recovery of ecosystems after agricultural abandonment
Actors and networks in resource conflict resolution under climate change in rural Kenya
Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada
The role of spatial scale and background climate in the latitudinal temperature response to deforestation
Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa
Implications of land use change in tropical northern Africa under global warming
Quantifying differences in land use emission estimates implied by definition discrepancies
Inter-annual and seasonal trends of vegetation condition in the Upper Blue Nile (Abay) Basin: dual-scale time series analysis
Local sources of global climate forcing from different categories of land use activities
Effects of climate variability on savannah fire regimes in West Africa
Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
Terminology as a key uncertainty in net land use and land cover change carbon flux estimates
Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa
The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr
A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"
Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)
Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations
Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use
The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Marcus Breil, Felix Krawczyk, and Joaquim G. Pinto
Earth Syst. Dynam., 14, 243–253, https://doi.org/10.5194/esd-14-243-2023, https://doi.org/10.5194/esd-14-243-2023, 2023
Short summary
Short summary
We provide evidence that biogeophysical effects of afforestation can counteract the favorable biogeochemical climate effect of reduced CO2 concentrations. By changing the land surface characteristics, afforestation reduces vegetation surface temperatures, resulting in a reduced outgoing longwave radiation in summer, although CO2 concentrations are reduced. Since forests additionally absorb a lot of solar radiation due to their dark surfaces, afforestation has a total warming effect.
Ana Bastos, Kerstin Hartung, Tobias B. Nützel, Julia E. M. S. Nabel, Richard A. Houghton, and Julia Pongratz
Earth Syst. Dynam., 12, 745–762, https://doi.org/10.5194/esd-12-745-2021, https://doi.org/10.5194/esd-12-745-2021, 2021
Short summary
Short summary
Fluxes from land-use change and management (FLUC) are a large source of uncertainty in global and regional carbon budgets. Here, we evaluate the impact of different model parameterisations on FLUC. We show that carbon stock densities and allocation of carbon following transitions contribute more to uncertainty in FLUC than response-curve time constants. Uncertainty in FLUC could thus, in principle, be reduced by available Earth-observation data on carbon densities at a global scale.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Shilpa Gahlot, Tzu-Shun Lin, Atul K. Jain, Somnath Baidya Roy, Vinay K. Sehgal, and Rajkumar Dhakar
Earth Syst. Dynam., 11, 641–652, https://doi.org/10.5194/esd-11-641-2020, https://doi.org/10.5194/esd-11-641-2020, 2020
Short summary
Short summary
Spring wheat, a staple for millions of people in India and the world, is vulnerable to changing environmental and management factors. Using a new spring wheat model, we find that over the 1980–2016 period elevated CO2 levels, irrigation, and nitrogen fertilizers led to an increase of 30 %, 12 %, and 15 % in countrywide production, respectively. In contrast, rising temperatures have reduced production by 18 %. These effects vary across the country, thereby affecting production at regional scales.
Sam S. Rabin, Peter Alexander, Roslyn Henry, Peter Anthoni, Thomas A. M. Pugh, Mark Rounsevell, and Almut Arneth
Earth Syst. Dynam., 11, 357–376, https://doi.org/10.5194/esd-11-357-2020, https://doi.org/10.5194/esd-11-357-2020, 2020
Short summary
Short summary
We modeled how agricultural performance and demand will shift as a result of climate change and population growth, and how the resulting adaptations will affect aspects of the Earth system upon which humanity depends. We found that the impacts of land use and management can have stronger impacts than climate change on some such
ecosystem services. The overall impacts are strongest in future scenarios with more severe climate change, high population growth, and/or resource-intensive lifestyles.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Matias Heino, Joseph H. A. Guillaume, Christoph Müller, Toshichika Iizumi, and Matti Kummu
Earth Syst. Dynam., 11, 113–128, https://doi.org/10.5194/esd-11-113-2020, https://doi.org/10.5194/esd-11-113-2020, 2020
Short summary
Short summary
In this study, we analyse the impacts of three major climate oscillations on global crop production. Our results show that maize, rice, soybean, and wheat yields are influenced by climate oscillations to a wide extent and in several important crop-producing regions. We observe larger impacts if crops are rainfed or fully fertilized, while irrigation tends to mitigate the impacts. These results can potentially help to increase the resilience of the global food system to climate-related shocks.
Johannes Winckler, Christian H. Reick, Sebastiaan Luyssaert, Alessandro Cescatti, Paul C. Stoy, Quentin Lejeune, Thomas Raddatz, Andreas Chlond, Marvin Heidkamp, and Julia Pongratz
Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, https://doi.org/10.5194/esd-10-473-2019, 2019
Short summary
Short summary
For local living conditions, it matters whether deforestation influences the surface temperature, temperature at 2 m, or the temperature higher up in the atmosphere. Here, simulations with a climate model show that at a location of deforestation, surface temperature generally changes more strongly than atmospheric temperature. Comparison across climate models shows that both for summer and winter the surface temperature response exceeds the air temperature response locally by a factor of 2.
Sebastian Ostberg, Jacob Schewe, Katelin Childers, and Katja Frieler
Earth Syst. Dynam., 9, 479–496, https://doi.org/10.5194/esd-9-479-2018, https://doi.org/10.5194/esd-9-479-2018, 2018
Short summary
Short summary
It has been shown that regional temperature and precipitation changes in future climate change scenarios often scale quasi-linearly with global mean temperature change (∆GMT). We show that an important consequence of these physical climate changes, namely changes in agricultural crop yields, can also be described in terms of ∆GMT to a large extent. This makes it possible to efficiently estimate future crop yield changes for different climate change scenarios without need for complex models.
Richard Fuchs, Reinhard Prestele, and Peter H. Verburg
Earth Syst. Dynam., 9, 441–458, https://doi.org/10.5194/esd-9-441-2018, https://doi.org/10.5194/esd-9-441-2018, 2018
Short summary
Short summary
We analysed current global land change dynamics based on high-resolution (30–100 m) remote sensing products. We integrated these empirical data into a future simulation model to assess global land change dynamics in the future (2000 to 2040). The consideration of empirically derived land change dynamics in future models led globally to ca. 50 % more land changes than currently assumed in state-of-the-art models. This impacts the results of other global change studies (e.g. climate change).
Xingran Liu and Yanjun Shen
Earth Syst. Dynam., 9, 211–225, https://doi.org/10.5194/esd-9-211-2018, https://doi.org/10.5194/esd-9-211-2018, 2018
Short summary
Short summary
The impacts of climate change and human activities on oasis water requirements in Heihe River basin were quantified with the methods of partial derivative and slope in this study. The results showed that the oasis water requirement increased sharply from 10.8 × 108 to 19.0 × 108 m3 during 1986–2013. Human activities were the dominant driving forces. Changes in climate, land scale and structure contributed to the increase in water requirement at rates of 6.9, 58.1, and 25.3 %, respectively.
Ben Parkes, Dimitri Defrance, Benjamin Sultan, Philippe Ciais, and Xuhui Wang
Earth Syst. Dynam., 9, 119–134, https://doi.org/10.5194/esd-9-119-2018, https://doi.org/10.5194/esd-9-119-2018, 2018
Short summary
Short summary
We present an analysis of three crops in West Africa and their response to short-term climate change in a world where temperatures are 1.5 °C above the preindustrial levels. We show that the number of crop failures for all crops is due to increase in the future climate. We further show the difference in yield change across several West African countries and show that the yields are not expected to increase fast enough to prevent food shortages.
Praveen Noojipady, Douglas C. Morton, Wilfrid Schroeder, Kimberly M. Carlson, Chengquan Huang, Holly K. Gibbs, David Burns, Nathalie F. Walker, and Stephen D. Prince
Earth Syst. Dynam., 8, 749–771, https://doi.org/10.5194/esd-8-749-2017, https://doi.org/10.5194/esd-8-749-2017, 2017
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Anita D. Bayer, Mats Lindeskog, Thomas A. M. Pugh, Peter M. Anthoni, Richard Fuchs, and Almut Arneth
Earth Syst. Dynam., 8, 91–111, https://doi.org/10.5194/esd-8-91-2017, https://doi.org/10.5194/esd-8-91-2017, 2017
Short summary
Short summary
We evaluate the effects of land-use and land-cover changes on carbon pools and fluxes using a dynamic global vegetation model. Different historical reconstructions yielded an uncertainty of ca. ±30 % in the mean annual land use emission over the last decades. Accounting for the parallel expansion and abandonment of croplands on a sub-grid level (tropical shifting cultivation) substantially increased the effect of land use on carbon stocks and fluxes compared to only accounting for net effects.
Michael Marshall, Michael Norton-Griffiths, Harvey Herr, Richard Lamprey, Justin Sheffield, Tor Vagen, and Joseph Okotto-Okotto
Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, https://doi.org/10.5194/esd-8-55-2017, 2017
Short summary
Short summary
The transition of land from one cover type to another can adversely affect the Earth system. A growing body of research aims to map these transitions in space and time to better understand the impacts. Here we develop a statistical model that is parameterized by socio-ecological geospatial data and extensive aerial/ground surveys to visualize and interpret these transitions on an annual basis for 30 years in Kenya. Future work will use this method to project land suitability across Africa.
Hanne Jørstad and Christian Webersik
Earth Syst. Dynam., 7, 977–989, https://doi.org/10.5194/esd-7-977-2016, https://doi.org/10.5194/esd-7-977-2016, 2016
Short summary
Short summary
This research is about climate change adaptation. It demonstrates how adaptation to climate change can avoid social tensions if done in a sustainable way. Evidence is drawn from Malawi in southern Africa.
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
Andreas Krause, Thomas A. M. Pugh, Anita D. Bayer, Mats Lindeskog, and Almut Arneth
Earth Syst. Dynam., 7, 745–766, https://doi.org/10.5194/esd-7-745-2016, https://doi.org/10.5194/esd-7-745-2016, 2016
Short summary
Short summary
We used a vegetation model to study the legacy effects of different land-use histories on ecosystem recovery in a range of environmental conditions. We found that recovery trajectories are crucially influenced by type and duration of former agricultural land use, especially for soil carbon. Spatially, we found the greatest sensitivity to land-use history in boreal forests and subtropical grasslands. These results are relevant for measurements, climate modeling and afforestation projects.
Grace W. Ngaruiya and Jürgen Scheffran
Earth Syst. Dynam., 7, 441–452, https://doi.org/10.5194/esd-7-441-2016, https://doi.org/10.5194/esd-7-441-2016, 2016
Short summary
Short summary
Climate change complicates rural conflict resolution dynamics and institutions. There is urgent need for conflict-sensitive adaptation in Africa. The study of social network data reveals three forms of fused conflict resolution arrangements in Loitoktok, Kenya. Where, extension officers, council of elders, local chiefs and private investors are potential conduits of knowledge. Efficiency of rural conflict resolution can be enhanced by diversification in conflict resolution actors and networks.
Daniel Paradis, Harold Vigneault, René Lefebvre, Martine M. Savard, Jean-Marc Ballard, and Budong Qian
Earth Syst. Dynam., 7, 183–202, https://doi.org/10.5194/esd-7-183-2016, https://doi.org/10.5194/esd-7-183-2016, 2016
Short summary
Short summary
According to groundwater flow and mass transport simulations, nitrate concentration for year 2050 would increase mainly due to the attainment of equilibrium conditions of the aquifer system related to actual nitrogen loadings, and to the increase in nitrogen loadings due to changes in agricultural practices. Impact of climate change on the groundwater recharge would contribute only slightly to that increase.
Yan Li, Nathalie De Noblet-Ducoudré, Edouard L. Davin, Safa Motesharrei, Ning Zeng, Shuangcheng Li, and Eugenia Kalnay
Earth Syst. Dynam., 7, 167–181, https://doi.org/10.5194/esd-7-167-2016, https://doi.org/10.5194/esd-7-167-2016, 2016
Short summary
Short summary
The impact of deforestation is to warm the tropics and cool the extratropics, and the magnitude of the impact depends on the spatial extent and the degree of forest loss. That also means location matters for the impact of deforestation on temperature because such an impact is largely determined by the climate condition of that region. For example, under dry and wet conditions, deforestation can have quite different climate impacts.
Kazi Farzan Ahmed, Guiling Wang, Liangzhi You, and Miao Yu
Earth Syst. Dynam., 7, 151–165, https://doi.org/10.5194/esd-7-151-2016, https://doi.org/10.5194/esd-7-151-2016, 2016
Short summary
Short summary
A prototype model LandPro was developed to study climate change impact on land use in West Africa. LandPro considers climate and socioeconomic factors in projecting anthropogenic future land use change (LULCC). The model projections reflect that relative impact of climate change on LULCC in West Africa is region dependent. Results from scenario analysis suggest that science-informed decision-making by the farmers in agricultural land use can potentially reduce crop area expansion in the region.
T. Brücher, M. Claussen, and T. Raddatz
Earth Syst. Dynam., 6, 769–780, https://doi.org/10.5194/esd-6-769-2015, https://doi.org/10.5194/esd-6-769-2015, 2015
Short summary
Short summary
A major link between climate and humans in northern Africa, and the Sahel in particular, is land use. We assess possible feedbacks between the type of land use and harvest intensity and climate by analysing a series of idealized GCM experiments using the MPI-ESM. Our study suggests marginal feedback between land use changes and climate changes triggered by strong greenhouse gas emissions.
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
E. Teferi, S. Uhlenbrook, and W. Bewket
Earth Syst. Dynam., 6, 617–636, https://doi.org/10.5194/esd-6-617-2015, https://doi.org/10.5194/esd-6-617-2015, 2015
Short summary
Short summary
This study concludes that integrated analysis of course and fine-scale, inter-annual and intra-annual trends enables a more robust identification of changes in vegetation condition. Seasonal trend analysis was found to be very useful in identifying changes in vegetation condition that could be masked if only inter-annual vegetation trend analysis were performed. The finer-scale intra-annual trend analysis revealed trends that were more linked to human activities.
D. S. Ward and N. M. Mahowald
Earth Syst. Dynam., 6, 175–194, https://doi.org/10.5194/esd-6-175-2015, https://doi.org/10.5194/esd-6-175-2015, 2015
Short summary
Short summary
The radiative forcing of land use and land cover change activities has recently been computed for a set of forcing agents including long-lived greenhouse gases, short-lived agents (ozone and aerosols), and land surface albedo change. Here we address where the global forcing comes from and what land use activities, such as deforestation or agriculture, contribute the most forcing. We find that changes in forest and crop area can be used to predict the land use radiative forcing in some regions.
E. T. N'Datchoh, A. Konaré, A. Diedhiou, A. Diawara, E. Quansah, and P. Assamoi
Earth Syst. Dynam., 6, 161–174, https://doi.org/10.5194/esd-6-161-2015, https://doi.org/10.5194/esd-6-161-2015, 2015
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015, https://doi.org/10.5194/esd-6-83-2015, 2015
J. Pongratz, C. H. Reick, R. A. Houghton, and J. I. House
Earth Syst. Dynam., 5, 177–195, https://doi.org/10.5194/esd-5-177-2014, https://doi.org/10.5194/esd-5-177-2014, 2014
M. Lindeskog, A. Arneth, A. Bondeau, K. Waha, J. Seaquist, S. Olin, and B. Smith
Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, https://doi.org/10.5194/esd-4-385-2013, 2013
Q. Zhang, A. J. Pitman, Y. P. Wang, Y. J. Dai, and P. J. Lawrence
Earth Syst. Dynam., 4, 333–345, https://doi.org/10.5194/esd-4-333-2013, https://doi.org/10.5194/esd-4-333-2013, 2013
T. Gasser and P. Ciais
Earth Syst. Dynam., 4, 171–186, https://doi.org/10.5194/esd-4-171-2013, https://doi.org/10.5194/esd-4-171-2013, 2013
G. Modica, M. Vizzari, M. Pollino, C. R. Fichera, P. Zoccali, and S. Di Fazio
Earth Syst. Dynam., 3, 263–279, https://doi.org/10.5194/esd-3-263-2012, https://doi.org/10.5194/esd-3-263-2012, 2012
A. J. Pitman, N. de Noblet-Ducoudré, F. B. Avila, L. V. Alexander, J.-P. Boisier, V. Brovkin, C. Delire, F. Cruz, M. G. Donat, V. Gayler, B. van den Hurk, C. Reick, and A. Voldoire
Earth Syst. Dynam., 3, 213–231, https://doi.org/10.5194/esd-3-213-2012, https://doi.org/10.5194/esd-3-213-2012, 2012
M. Cerreta and P. De Toro
Earth Syst. Dynam., 3, 157–171, https://doi.org/10.5194/esd-3-157-2012, https://doi.org/10.5194/esd-3-157-2012, 2012
M. P. McCarthy, J. Sanjay, B. B. B. Booth, K. Krishna Kumar, and R. A. Betts
Earth Syst. Dynam., 3, 87–96, https://doi.org/10.5194/esd-3-87-2012, https://doi.org/10.5194/esd-3-87-2012, 2012
Cited articles
Acosta-Michlik, L. and Rounsevell, M. D. A.: An agent-based framework for assessing vulnerability futures, in: Chapter 9, Assessing Vulnerability to Global Environmental Change – making research useful for adaptation decision making and policy, edited by: Patt, A. G., Schroeter, D., Klein, R. J. T., and de la Vega-Leinert, A. C., Earthscan, London, 147–171, 2009.
Agrawal, A., Brown, D. G., Rao, G., Riolo, R., Robinson, D. T., and Bommarito, M.: Interactions between Organizations and Networks in Common-Pool Resource Governance, Environ. Sci. Policy, 25, 138–146, 2013.
Alexander, P. and Moran, D.: Impact of perennial energy crops income variability on the crop selection of risk averse farmers, Energy Policy, 52, 587–596, 2013.
An, L.: Modeling human decisions in coupled human and natural systems: review of agent-based models, Ecol. Model., 229, 25–36, 2012.
Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A., and Robalino, J. A.: Measuring the effectiveness of protected area networks in reducing deforestation, P. Natl. Acad. Sci. USA, 105, 16089–16094, 2008.
Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, Nat. Geosci., 3, 525–532, 2010a.
Arneth, A., Sitch, S., Bondeau, A., Butterbach-Bahl, K., Foster, P., Gedney, N., de Noblet-Ducoudré, N., Prentice, I. C., Sanderson, M., Thonicke, K., Wania, R., and Zaehle, S.: From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere, Biogeosciences, 7, 121–149, https://doi.org/10.5194/bg-7-121-2010, 2010b.
Arora, V. K. and Montenegro, A.: Small temperature benefits provided by realistic afforestation efforts, Nat. Geosci., 4, 514–518, 2011.
Barabasi, A.-L.: Linked, the new science of networks, Perseus Publishing, Cambridge, Mass., 280 pp., 2002.
Bell, A. R., Riolo, R. L., Doremus, J., Brown, D. G., Lyon, T. P., Vandermeer, J., and Agrawal, A.: Fragmenting forests: The double edge of effective forest monitoring, Environ. Sci. Policy, 16, 20–30, 2012.
Berger, T.: Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes, and policy analysis, Agricult. Econ., 25, 245–260, 2001.
Betts, R. A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187–190, 2000.
Bithell, M., Brasington, J., and Richards, K.: Discrete-element, individual-based and agent-based models: Tools for interdisciplinary enquiry in geography?, Geoforum, 39, 625–642, 2008.
Bobenrieth, E. S. and Wright, B. D.: The food price crisis of 2007/2008: Evidence and implications, University of Concepcion, Chile, and University of California, Berkeley joint meeting of intergovernmental group on oilseeds, oils and fats (30th session), intergovernmental group on grains (32nd session), Intergovernmental group on rice (43rd session) and symposium on Value chains for oilseeds, oils and fats, grains and rice: Status and outlook, 4–6 November 2009, Santiago, Chile, 2009.
Boisier, J.-P., De Noblet-Ducoudré, N., Pitman, A., Cruz, F. T., Delire, C., van den Hurk, B. J. J. M., Van der Molen, M. K., Müller, C., and Voldoire, A.: Attributing the impacts of Land-Cover Changes in temperate regions on surface temperature and heat fuxes to specifc causes. Results from the first LUCID set of simulations, J. Geophys. Res., 117, D12116, https://doi.org/10.1029/2011JD017106 2012.
Boone, R. B., Galvin, K. A., Burn Silver, S. B., Thornton, P. K., Ojima, D. S., and Jawson, J. R.: Using coupled simulation models to link pastoral decision making and ecosystem services, http://www.ecologyandsociety.org/vol16/iss2/art6/, Ecol. Soc., 16, 6, 2011.
Bousquet, F. and Le Page, C.: Multi-agent simulations and ecosystem management: a review, Ecol. Model., 176, 313–332, 2004.
Bouwman, A. F., Kram, T., and Klein Goldewijk, K.: Integrated modelling of global environmental change, An overview of IMAGE 2.4, Netherlands Environmental Assessment Agency, Bilthoven, 1996.
Brede, M. and Boschetti, F.: Analyzing weighted networks: An approach via maximum flows, Lect. Not. Inst. Comput. Sci., 1, 1093–1104, 2009a.
Britz, W. and Hertel, T. W.: Impacts of EU biofuels directives on global markets and EU environmental quality: An integrated PE, global CGE analysis, Agr. Ecosyst. Environ., 142, 102–109, 2011.
Bröcker, J.: Operational spatial computable general equilibrium modeling, Ann. Reg. Sci., 32, 367–387, 1998.
Brovkin, V., Sitch, S., von Bloh, W., Claussen, M., Bauer, E., and Cramer, W.: Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years, Global Change Biol., 10, 1253–1266, 2004.
Brovkin, V., Claussen, M., Drieschaert, E., Fichefet, T., Kicklighter, D. W., Loutre, M. F., Matthews, H. D., Ramankutty, N., Schaeffer, M., and Sokoloy, A.: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity, Clim. Dynam., 26, 587–600, https://doi.org/10.1007/s00382-005-0092-6, 2006.
Brown, D. G. and Robinson, D. T.: Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl, Ecol. Soc., 11, 46, 2006.
Brown, D. G., Riolo, R. L., Robinson, D., North, M., and Rand, W.: Spatial process and data models: Toward integration of agent-based models and GIS, J. Geogr. Syst., 7, 1–23, 2005.
Brown, D. G., Robinson, D. T., An, L., Nassauer, J. I., Zellner, M., Rand, W., Riolo, R., Page, S. E., and Low, B.: Exurbia from the bottom-up: Confronting empirical challenges to characterizing complex systems, GeoForum, 39, 805–818, 2008.
Brown, M. E. and Funk, C. C.: CLIMATE: Food Security Under Climate Change, Science, 319, 580–581, https://doi.org/10.1126/science.1154102, 2008.
Calzadilla, A., Rehdanz, K., and Tol, R. S. J.: Trade liberalization and climate change: A computable general equilibrium analysis of the impact on global agriculture, Water, 3, 526–550, 2011.
Castella, J. C. and Verburg, P. H.: Combination of process-oriented and pattern-oriented models of land use change in a mountain area of Vietnam, Ecol. Model., 202, 410–420, 2007.
Chapin III, F. S., Carpenter, S. R., Kofinas, G. P., Folke, C., Abel, N., Clark, W. C., Olsson, P., Stafford Smith, D. M., Walker, B., Young, O. R., Berkes, F., Biggs, R., Grove, J. M., Naylor, R. L., Pinkerton, E., Steffen, W., and Swanson, F.J.: Ecosystem stewardship: Sustainability strategies for a rapidly changing planet, Trends Ecol. Evol., 25, 241–249, 2010.
Chiew, F. H. S., Young, W. J., Cai, W., and Teng, J.: Current drought and future hydroclimate projections in southeast Australia and implications for water resources management, Stoch. Environ. Res. Risk A., 25, 601–612, 2011.
Collier, P. and Dollar, D.: Aid Allocation and Poverty Reduction, Eur. Econ. Rev., 46, 1475–1500, 2002.
Collins, S. L., Carpenter, S. R., Swinton, S. M., Orenstein, D. E., Childers, D. L., Gragson, T. L., Grimm, N. B., Grove, J. M., Harlan, S. L., Kaye, J. P., Knapp, A. K., Kofinas, G. P., Magnuson, J. J., McDowell, W. H., Melack, J. M., Ogden, L. A., Robertson, G. P., Smith, M. D., and Whitmer, A. C.: An integrated conceptual framework for long-term social-ecological research, Front. Ecology Environ., 9, 351–357, 2011.
Conrad, K.: Computable General Equilibrium Models in Environmental and Resource Economics, in: The International Yearbook of Environmental and Resource Economics 2002/2003: A Survey of Current Issues, edited bY: Tietenberg, T. and Folmer, H., Edward Elgar Publishing Ltd, Cheltenham, UK, 2003
Costanza, R., Leemans, R., Boumans, R., and Gaddis, E.: Integrated Global Models, in: Sustainability or Collapse: An Integrated History and future Of People on Earth, Dahlem Workshop Report 96, edited by: Costanza, R., Graumlich, L. J., and Steffen, W., MIT press, Cambridge, MA, 417–446, 2007.
Cui, X., Graf, H.-F., Langmann, B., Chen, W. W., and Huang, R.: Climate impacts of anthropogenic land use changes on the Tibetan Plateau, Global Planet. Change, 54, 33–56, 2006.
Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., and Rodriguex-Iturbe, I.: Evolution of the global water trade network, P. Natl. Acad. Sci., 109, 5989–5994, 2012.
Davin, E. L. and de Noblet-Ducoudre, N.: Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes, J. Climate, 23, 97–112, https://doi.org/10.1175/2009JCLI3102.1, 2010.
Davin, E. L., de Noblet-Ducoudre, N., and Friedlingstein, P.: Impact of land cover change on surface climate: Relevance of the radiative forcing concept, Geophys. Res. Lett., 34, L13702, https://doi.org/10.1029/2007GL029678, 2007.
De Chazal, J. and Rounsevell, M. D. A.: Land use and climate change within assessments of biodiversity loss: a review, Global Environ. Change, 19, 306–315, 2009.
de Noblet-Ducoudré, N., Boisier, J.-P., Pitman, A., Bonan, G. B., Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C., Strengers, B. J., and Voldoire, A.: Determining robust impacts of land-use induced land-cover changes on surface climate over North America and Eurasia; Results from the first set of LUCID experiments, J. Climate, 25, 3261–3281, https://doi.org/10.1175/JCLI-D-11-00338.1, 2012.
Eboli, F., Parrado, R., and Roson, R.: Climate Change Feedback on Economic Growth: Explorations with a Dynamic General Equilibrium Model, Environ. Develop. Econ., 15, 515–533, 2010.
Ellis, E. C., Neerchal, N., Peng, K., Xiao, H. S., Wang, H., Yan, Z., Li, S. C., Wu, J. X., Jiao, J. G., Ouyang, H., Cheng, X., and Yang, L. Z.: Estimating long-term changes in China's village landscapes, Ecosystems, 12, 279–297, 2009.
Evans, T. P. and Kelley, H.: Assessing the transition from deforestation to forest regrowth with an agent-based model of land cover change for south-central Indiana (USA), Geoforum, 39, 819–832, 2008.
Evans, T. P., Ostrom, E., and Gibson, C.: Scaling Issues with social data in integrated assessment modeling, Integr. Assess., 3, 135–150, 2003.
Evans, T. P., Phanvilay, K., Fox, J., and Vogler, J.: An agent-based model of agricultural innovation, land-cover change and household inequality: The transition from swidden cultivation to rubber plantations in Laos PDR, J. Land Use Sci., 6, 151–173, 2011.
Fagiolo, G., Reyes, J., and Schiavo, S.: World Trade Web: Topological Properties, Dynamics and Evolution, Phys. Rev. E, 036115, 1–19, 2009.
FAO: Food Price Index, http://www.fao.org/worldfoodsituation/wfs-home/foodpricesindex/en/ (last access: January 2013), 2012.
Filatova, T., Parker, D. C., and van der Veen, A.: Agent-based urban land markets: Agent's pricing behavior, land prices and urban land use change, Journal of Artificial Societies and Social Simulation, 12, http://jasss.soc.surrey.ac.uk/12/1/3.html, 2009.
Finnigan, J., Grigg, N., and Brede, M.: Quantitative modelling of the human-Earth system, in: Negotiating Our Future: Living scenarios for Australia to 2050, edited by: Raupach, M. R., McMichael, A. J., Finnigan, J. J., Manderson, L., Walker, B. H., Vol. 2., Australian Academy of Science, 2012.
Fischer, G., Shah, M., Tubiello, F. N., and van Velhuizen, H.: Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080, Philos. T. Roy. Soc. B, 360, 2067–2083, https://doi.org/10.1098/rstb.2005.1744, 2005.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global Consequences of Land use, Science, 309, 570–574, https://doi.org/10.1126/science.1111772, 2005.
Forrester, J. W.: World dynamics, Wright-Allen Press, Cambridge, MA, USA, 1971.
Forster, P., Ramaswamy, V., Artaxo, P., Bernsten, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Doorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison, J. Climate, 19, 3337–3353, 2006.
Fulton, E. A., Finnigan, J. J., Adams, P., Bradbury, R., Pearman, G. I., Sewell, R., Steffen, W., and Syme, G. J.: Exploring Futures with Quantitative Models, in: Negotiating the Future, Vol 1, edited by: Raupach, M. R., McMichael, A. J., Finnigan, J. J., Manderson, L., and Walker, B. H., Australian Academy of Science, Canberra, 152–187, 2012.
Geist, H. and Lambin, E. (Eds.): Land use and Land-Cover Change: Local Processes And Global Impacts, Springer, 222 pp., 2006.
Germann, T. C., Kadau, K., Longini, I. M., and Macken, C. A.: Mitigation Strategies for Pandemic Influenza in the United States, P. Natl. Acad. Sci., 103, 5935–5940, https://doi.org/10.1073/pnas.0601266103, 2006.
Gerten, D., Lucht, W., Schaphoff, S., Cramer, W., and Wagner, W.: Hydrologic resilience of the terrestrial biosphere, Geophys. Res. Lett., 32, L21408, https://doi.org/10.21029/22005GL024247, 2005.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.: Food Security: The Challenge of Feeding 9 Billion People, Science, 327, 812–818, https://doi.org/10.1126/science.1185383, 2010.
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., and Wiltshire, A.: Implications of climate change for agricultural productivity in the early twenty-first century, Philos. T. Roy. Soc. B, 365, 2973–2989, https://doi.org/10.1098/rstb.2010.0158, 2010.
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe'er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U., and DeAngelis, D. L.: A standard protocol for describing individual-based and agent-based models, Ecol. Model., 198, 115–126, 2006
Guillem, E. E., Barnes, A. P., Rounsevell, M. D. A., and Renwick, A.: Refining perception-based farmer typologies with the analysis of past census data, J. Environ. Manage., 110, 226–235, 2012.
Happe, K., Kellermann, K., and Balmann, A.: Agent-based Analysis of Agricultural Policies: an Illustration of the Agricultural Policy Simulator AgriPoliS, its Adaptation and Behavior, Ecol. Soc., 11, 49, 2006.
Hersperger, A. M., Gennaio, M.-P., Verburg, P. H., and Bürgi, M.: Linking land change with driving forces and actors: four conceptual models, Ecol. Soc., 15, 1, 2010.
Hertel, T. W. (Ed.): Global trade analysis: modelling and applications, Cambridge University Press, 379 pp., 1997.
Hertel, T. W. and Villoria, N. B.: GEOSHARE: Geospatial Open Source Hosting of Agriculture, Resource & Environmental Data for Discovery and Decision Making, White Paper, Purdue University, West Lafayette, IN, USA, 2012.
Hertel, T. W., Rose, S., and Tol, R. S. J. (Eds.): Economic Analysis of Land use in Global Climate Change Policy, Routledge, Abingdon, UK, 2009a.
Hertel, T. W., Lee, H.-L., Rose, S., and Sohngen, B.: Modeling Land use Related Greenhouse Gas Sources and Sinks and their Mitigation Potential, in: Economic Analysis of Land use in Global Climate Change Policy, edited by: Hertel, T. W., Rose, S., and Tol, R. S. J., Routledge, Abingdon, UK, 2009b.
Hertel, T. W., Golub, A. A., Jones, A. D., O'Hare, M., Plevin, R. J., and Kammen, D. M.: Effects of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market-Mediated Responses, Bioscience, 60, 223–231, 2010.
Holland, J. H.: Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, 1975.
Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus B, 55, 378–390, 2003.
Huang, Q., Parker, D., Sun, S., and Filatova, T.: Effects of agent heterogeneity in the presence of a land-market: a systematic test in an agent-based laboratory, Comput. Environ. Urban Syst., 41, 188–203, 2013.
Hulme, M.: Meet the humanities, Nat. Clim. Change, 1, 177–179, 2011.
Hunter, M. C. and Brown, D. G.: Spatial contagion: Gardening along the street in residential neighborhoods, Landscape Urban Plan., 105, 406–416, 2012.
Isham, J.: The effect of social capital on fertiliser adoption: Evidence from rural Tanzania, J. Afr. Econ., 11, 39–60, 2002.
Jakeman, A. J. and Letcher, R. A.: Integrated assessment and modelling: features, principles and examples for catchment management, Environ. Model. Softw., 18, 491–501, 2003.
Janssen, M.: Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Approaches, Edward Elgar Publishers, Chettenham, UK, 2003.
Jones, N. A., Perez, P., Measham, T. G., Kelly, G. J., D'Aquino, P., Daniell, K., Dray, A., and Ferrand, N.: Evaluating participatory modeling: Developing a framework for cross-case analysis, Environ. Manage., 44, 1180–1195, 2009.
Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river and coastal flooding: Long term trends and changes, Global Environ. Change, 22, 823–835, https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012.
Kala, J., Lyons, T. J., and Nair, U. S.: Numerical Simulations of the Impacts of Land-Cover Change on Cold Fronts in South-West Western Australia, Bound.-Lay. Meteorol., 138, 121–138, https://doi.org/10.1007/s10546-010-9547-3, 2011.
Lambin, E. F. and Geist, H. J.: Regional Differences in Tropical Deforestation, Environment, 45, 22–36, 2003.
Lambin, E. F. and Meyfroidt, P.: Global land use change, economic globalization, and the looming land scarcity, P. Natl. Acad. Sci., 108, 3465–3472, 2011.
Lambin, E. F., Geist, H. J., and Rindfuss, R. R.: Introduction: Local Processes with Global Impacts, edited by: Lambin, E. F. and Geist, H. J., Springer-Verlag, Berlin, Heidelberg, 2006.
Lawrence, P. J. and Chase, T. N.: Investigating the climate impacts of global land cover change in the community climate system model, Int. J. Climatol., 30, 2066–2087, 2010.
Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, https://doi.org/10.1038/ngeo1689, 2009.
Letourneau, A., Verburg, P. H., and Stehfest, E.: A land-use systems approach to represent land-use dynamics at continental and global scales, Environ. Model. Softw., 33, 61–79, 2012.
Lim, Y. K., Cai, M., Kalnay, E., and Zhou, L. M.: Observational evidence of sensitivity of surface climate changes to land types and urbanization, Geophys. Res. Lett., 32, L22712, https://doi.org/10.1029/2005gl024267, 2005.
Liverman, D. M. and Cuesta, R. M. R.: Human interactions with the Earth system: people and pixels revisited, Earth Surf. Proc. Land., 33, 1458–1471, 2008.
Lobell, D. B. and Bonfils, C.: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002, J. Climate, 21, 2063–2071, https://doi.org/10.1175/2007jcli1755.1, 2008.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., and Naylor, R. L.: Prioritizing climate change adaptation needs for food security in 2030, Science, 319, 607–610, 2008.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate Trends and Global Crop Production Since 1980, Science, 333, 616–620, https://doi.org/10.1126/science.1204531, 2011.
Löfgren, H. and Robinson, S.: To trade or not to trade: non-separable farm household models in partial and general equilibrium, TMD discussion paper no. 37, International Food Policy Research Institute, Washington, D.C., 1999.
Lotze-Campen, H., Mueller, C., Bondeau, A., Rost, S., Popp, A.,and Lucht, W.: Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach, Agricult. Econ., 39, 325–338, 2008.
Lubowski, R. N., Plantinga, A. J., and Stavins, R. N.: What Drives Land-Use Changes in the United States? A National Analysis of Landowner Decisions, Land Econ., 84, 529–550, 2008.
Lysenko, M. and D'Souza, R. M.: A Framework for Mega-scale Agent Based Model Simulations on Graphics Processing Units, J. Art. Soc. Social Simul., 11, 10, 2008.
Mackey, B., Prentice, C. I., Steffen, W., House, J. I., Lindenmayer, D., Keith, H., and Berry, S.: Untangling the confusion around land carbon science and climate change mitigation policy, Nat. Clim. Change, 3, 552–557, 2013.
Magliocca, N., Safirova, E., McConnell, V., and Walls, M.: An economic agent based model of coupled housing and land markets (CHALMS), Comput. Environ. Urban Syst., 35, 183–191, 2011.
Mahrt, L.: The bulk aerodynamic formulation over heterogeneous surfaces. Bound.-Lay. Meteorol., 78, 87–119, 1996.
Manson, S. M.: Bounded rationality in agent-based models: Experiments with evolutionary programs, Int. J. Geogr. Inf. Sci., 20, 991–1012, 2006.
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., and Gotts, N. M.: Agent-based land use models: a review of applications, Landscape Ecol., 22, 1447–1459, https://doi.org/10.1007/s10980-007-9135-1, 2007.
May, R. M., Levin, S. A., and Sugihara, G:. Ecology for bankers, Nature, 451, 893–895, 2008.
McAllister, R. R. J., Tisdell, J. G., Reeson, A. F., and Gordon, I. J.: Economic behavior in the face of resource variability and uncertainty, Ecol. Soc., 16, 6, 2011.
Meijl, H. V., van Rheenen, T., Tabeau, A., and Eickhout, B.: The impact of different policy environments on agricultural land use in Europe, Agr. Ecosyst. Environ., 114, 21–38, 2006.
Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., Felzer, B. S., Wang, X., Sokolov, A. P., and Schlosser, C. A.: Indirect Emissions from Biofuels: How Important?, Science, 5958, 1397–1399, https://doi.org/10.1126/science.1180251, 2009.
Melnikov, N., O'Neill, B. C., and Dalton, M. G.: Accounting for household heterogeneity in general equilibrium economic growth models, Energy Econ., 34, 1475–1483, 2012.
Messerli, P., Heinimann, A., and Epprecht, M.: Finding homogeneity in heterogeneity: a new approach to quantifying landscape mosaics developed for the Lao PDR, Human Ecol., 37, 291–304, 2009.
Meyfroidt, P.: Environmental cognitions, land change and social-ecological feedbacks: an overview, J. Land Use Sci., 8, 341–367, https://doi.org/10.1080/1747423X.2012.667452, 2013.
Meyfroidt, P., Rudel, T. K., and Lambin, E. F.: Forest transitions, trade and the global displacement of land use, P. Natl. Acad. Sci., 107, 20917–20922, https://doi.org/10.1073/pnas.1014773107, 2010.
Minnesota Population Center: Integrated Public Use Microdata Series, International: Version 6.2 [Machine-readable database], University of Minnesota, Minneapolis, 2013.
Moran, E. F.: Environmental social science: human-environment interactions and sustainability, John Wiley & Sons, Chichester, UK, 2010.
Murray-Rust, D., Dendoncker, N., Dawson, T., Acosta-Michlik, L., Karali, E., Guillem, E., and Rounsevell, M. D. A.: Conceptualising the analysis of socio-ecological systems through ecosystem services and agent based modelling, J. Land Use Sci., 6, 83–99, 2011.
Nassauer, J. I., Wang, Z., and Dayrell, E.: What will the neighbors think? Cultural norms and ecological design, Landscape Urban Plan., 92, 282–292, 2009.
Newth, D. and Gunasekera, D.: Climate Change and the Effects of Dengue upon Australia: An Integrated Analysis of Health Impacts and Costs, IOP Conference Series: Earth and Environmental Science, Vol. 11, https://doi.org/10.1088/1755-1315/11/1/012020, 2010.
Nolan, J., Parker, D., and van Kooten, G. C.: An Overview of Computational Modeling in Agricultural and Resource Economics, Can. J. Agr. Econ., 57, 417–429, 2009.
NRC: Advancing Land Change Modeling: Needs and Research Requirements, Board on Earth Sciences and Resources, National Academies Press, Washington, D.C., 2013.
Pahl-Wostl, C:. Polycentric Integrated Assessment, Integr. Assess., 3, 220–232, 2002.
Pahl-Wostl, C., Sendzimir, J., Jeffrey, P., Aerts, J. C. J. H., Berkamp, G., and Cross, K.: Managing change toward adaptive water management through social learning, Ecol. Soc., 12, 5, 2007.
Pant, H. M.: Global Trade and Environment Model (GTEM): A computable general equilibrium model of the global economy and environment, Australian Bureau of Agricultural and Resource Economics, Canberra, 2002.
Parker, D. C. and Filatova, T.: A theoretical design for a bilateral agent-based land market with heterogeneous economic agents, Comput. Environ. Urban Syst., 32, 454–463, 2008.
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., and Deadman, P.: Multi-agent systems for the simulation of land use and land-cover change: A review, Ann. Assoc. Am. Geogr., 93, 314–337, 2003.
Parker, D. C., Hessl, A., and Davis, S. C.: Complexity, land use modeling, and the human dimension: Fundamental challenges for mapping unknown outcome spaces, Geoforum, 39, 789–804, 2008.
Perez, P.: Agents, Idols, and Icons, in: Complex Science for a Complex World, Exploring Human Ecosystems with Agents, edited by: Perez, P. and Batten, D., ANU E Press, Canberra, Australia, 27–56, 2006.
Pielke Sr., R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., and de Noblet, N.: Land use/land cover changes and climate: modeling analysis and observational evidence, Interdis. Rev. Clim. Change, 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Piorr, A., Ungaro, F., Ciancaglini, A., Happe, K., Sahrbacher, A., Sattler, C., Uthes, S., and Zander, P.: Integrated assessment of future CAP policies: land use changes, spatial patterns and targeting, Environ. Sci. Policy, 12, 1122–1136, 2009.
Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bonan, G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Seneviratne, S. I., Strengers, B. J., and Voldoire, A.: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study, Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009gl039076, 2009.
Polhill, J. G., Gotts, N. M., and Law, A. N. R.: Imitative versus nonimitative strategies in a land use simulation, Cybernet. Syst., 32, 285–307, 2001.
Pontius, R., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C., McConnell, W., Mohd Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T., Veldkamp, A., and Verburg, P.: Comparing the input, output, and validation maps for several models of land change, Ann. Reg. Sci., 42, 11–37, 2008.
Porkka, M., Kummu, M., Siebert, S., and Flörke, M.: The role of virtual water flows in physical water scarcity: The case of Central Asia, Int. J. Water Resour. Develop., 28, 453–474, https://doi.org/10.1080/07900627.2012.684310, 2012.
Rausch, S., Metcalf, G. E., and Reilly, J. M.: Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households, Energy Econ., 33, S20–S33, https://doi.org/10.1016/j.eneco.2011.07.023, 2011.
Reenberg, A.: Land system science: handling complex series of natural and socio-economic processes, J. Land Use Sci., 4, 1–4, 2009.
Rindfuss, R. R., Walsh, S. J., Mishra, V., Fox, J., and Dolcemascolo, G. P.: Linking household and remotely sensed data, methodological and practical problems, edited by: Fox, J., Rindfuss, R. R., Walsh, S. J., and Mishra, V., Kluwer Academic Publishers, Boston, 2003.
Robinson, D. T. and Brown, D. G.: Evaluating the effects of land use development policies on ex-urban forest cover: An integrated agent-based GIS approach, Int. J. Geogr. Inf. Sci., 23, 1211–1232, 2009.
Robinson, D. T., Brown, D. G., Parker, D. C., Schreinemachers, P., Janssen, M. A., Huigen, M., Wittmer, H., Gotts, N., Promburom, P. Irwin, E., Berger, T., Gatzweiler, F., and Barnaud, C.: Comparison of empirical methods for building agent-based models of land and resource use, J. Land Use Sci., 2, 31–55, 2007.
Rothman, D. S., van Bers, C., Bakkes, J., and Pahl-Wostl, C.: How to make global assessments more effective: lessons from the assessment community, Curr. Opin. Environ. Sustain., 1, 214–218, 2009.
Rotmans, J. and Asselt, M.: Integrated assessment: A growing child on its way to maturity, Climatic Change, 34, 327–336, 1996.
Rounsevell, M. D. A. and Arneth, A.: Representing human behaviour and decisional processes in land system models as an integral component of the Earth system, Global Environ. Change, 21, 840–843, 2011.
Rounsevell, M. D. A., Annetts, J. E., Audsley, E., Mayr, T., and Reginster, I.: Modelling the spatial distribution of agricultural land use at the regional scale, Agr. Ecosyst. Environ., 95, 465–479, 2003.
Rounsevell, M. D. A., Reginster, I., Araújo, M. B., Carter, T. R., Dendoncker, N., Ewert, F., House, J. I., Kankaanpää, S., Leemans, R., Metzger, M. J., Schmit, C., Smith, P., and Tuck, G.: A coherent set of future land use change scenarios for Europe, Agr. Ecosys. Environ., 114, 57–68, 2006.
Rounsevell, M. D. A., Robinson, D., and Murray-Rust, D.: From actors to agents in socio-ecological systems models, Philos. T. Roy. Soc. B, 367, 259–269, 2012.
Rudel, T. K.: Meta-analyses of case studies: A method for studying regional and global environmental change, Global Environ. Change, 18, 18–25, 2008.
Schaldach, R. and Priess, J. A.: Integrated Models of the Land System: A Review of Modelling Approaches on the Regional to Global Scale, Living Rev. Landsc. Res., 2, 1, 2008.
Schaldach, R., Alcamo, J., Koch, J., Koelking, C., Lapola, D. M., Schungel, J., and Preiss, J. A.: An integrated approach to modelling land-use change on continental and global scales, Environ. Model. Softw., 26, 1041–1051, https://doi.org/10.1016/j.envsoft.2011.02.013, 2011.
Schreinemachers, P., Potchanasin, C., Berger, T., and Roygrong, S.: Agent-based modeling for ex ante assessment of tree crop innovations: litchis in northern Thailand, Agricult. Econ., 41, 519–536, 2010.
Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Arnell, A. W., Araújo, M. B., Bondeau, A., Bugmann, H., Carter, T., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Fritsch, U., Friedlingstein, P., Glendining, M., Gracia, C. A., Hickler, T., House, J., Hulme, M., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Lindner, M., Liski, J., Metzger, M. J., Meyer, J., Mitchell, T., Morales, P., Reidsma, P., Pla, E., Pluimers, J., Pussinen, A., Reginster, I., Rounsevell, M., Sánchez, A., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., van der Werf, G., Vayreda, J., Wattenbach, M., Wilson, D. W., Woodward, F. I., Zaehle, S., Zierl, B., Zudin, S., Acosta-Michlik, L., Moreno, J. M., Espiñeira, G. Z., Mohren, F., Bakker, M., and Badeck, F.: Ecosystem service supply and vulnerability to global change in Europe, Science, 310, 1333–1337, 2005.
Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D., and Bacmeister, J. T.: On the cause of the 1930s Dust Bowl, Science, 303, 1855–1859, https://doi.org/10.1126/science.1095048, 2004.
Schweitzer, F., Fagiolo, G., Sornette, D., Vego-Redondo, F., Vespignani, A., and White, D. R.: Economic Networks: the New Challenges, Science, 325, 422–425, 2009.
Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., Marcotullio, P., Munroe, D. K., Olah, B., and Simon, D.: Urban land teleconnections and sustainability, P. Natl. Acad. Sci., 109, 7687–7692, 2012.
Sitch, S., Brovkin, V., von Bloh, W., van Vuuren, D., Assessment, B., and Ganopolski, A.: Impacts of future land cover changes on atmospheric CO2 and climate, Global Biogeochem. Cy., 19, GB2013, https://doi.org/10.1029/2004GB002311, Gb2013, 2005.
Smajgl, A., Brown, D. G., Valbuena, D., and Huigen, M. G. A.: Empirical characterisation of agent behaviours in socioecological systems, Environ. Model. Softw., 26, 837–844, 2011.
Sokolov, A. P., Schlosser, C. A., Dutkiewicz, S., Paltsev, S., Kicklighter, D. W., Jacoby, H. D., Prinn, R. G., Forest, C. E., Reilly, J. M., Wang, C., Felzer, B. S., Sarofim, M. C., Scott, J., Stone, P. H., Melillo, J. M., and Cohen, J. B.: MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation, Report no. 124, July 2005, http://hdl.handle.net/1721.1/29789, MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA, 2005.
Strengers, B. J., Mueller, C., Schaeffer, M., Haarsma, R. J., Severijns, C., Gerten, D., Schaphoff, S., van den Houdt, R. and Oostenrijk, R.: Assessing 20th century climate-vegetation feedbacks of land use change and natural vegetation dynamics in a fully coupled vegetation-climate model, Int. J. Climatol., 30, 2055–2065, 2010.
Tallis, H. M. and Kareiva, P.: Shaping global environmental decisions using socio-ecological models, Trends Ecol. Evol., 21, 562–568, 2006.
Tiebout, C.: A Pure Theory of Local Expenditures, J. Polit. Econ., 64, 416–424, 1956.
Tilman, D., Balzer, C., Hill, J., and Befort, B. L.: Global food demand and the sustainable intensification of agriculture, P. Natl. Acad. Sci., 108, 20260–20264, https://doi.org/10.1073/pnas.1116437108, 2011.
Turner II, B. L., Kasperson, R. E., Meyer, W. B., Dow, K. M., Golding, D., Kasperson, J. X., Mitchell, R. C., and Ratick, S. J.: Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions, Global Environ. Change, 1, 14–22, 1990.
Turner II, B. L., Lambin, E. F., and Reenberg, A.: The emergence of land change science for global environmental change and sustainability, P. Natl. Acad. Sci., 104, 20666–20671, 2007.
Valbuena, D., Verburg, P. H., and Bregt, A. K.: A method to define a typology for agent-based analysis in regional land use research, Agr. Ecosyst. Environ., 128, 27–36, 2008.
Valbuena, D., Bregt, A. K., McAlpine, C., Verburg, P. H., and Seabrook, L.: An agent-based approach to explore the effect of voluntary mechanisms on land use change: A case in rural Queensland, Australia, J. Environ. Manage., 91, 2615–2625, 2010b.
Valbuena, D., Verburg, P. H., Bregt, A. K., and Ligtenberg, A.: An agent-based approach to model land use change at a regional scale, Landscape Ecol., 25, 185–199, 2010a.
Van Asselen, S. and Verburg, P. H.: A Land System representation for global assessments and land use modeling, Global Change Biol., 18, 3125–3148, https://doi.org/10.1111/j.1365-2486.2012.02759.xvan, 2012.
Veldkamp, A., Verburg, P. H., Kok, K., de Koning, G. H. J., Priess, J., and Bergsma, A. R.: The need for scale sensitive approaches in spatially explicit land use change modeling, Environ. Monit. Assess., 6, 111–121, 2001.
Verburg, P. H., Eickhout, B., and van Meijl, H.: A multi-scale, multi-model approach for analyzing the future dynamics of European land use, Ann. Reg. Sci., 42, 57–77, 2008.
Verburg, P. H.: Simulating feedbacks in land use and land cover change models, Landscape Ecol., 21, 1171–1183, 2006.
Verburg, P. H. and Chen, Y. Q.: Multi-scale characterization of land-use patterns in China, Ecosystems, 3, 369–385, 2000.
Verburg, P. H., Schot, P., Dijst, M., and Veldkamp, A.: Land use change modelling: current practice and research priorities, GeoJournal, 61, 309–324, 2004.
Verburg, P. H., Neumann, K., and Nol, L.: Challenges in using land use and land cover data for global change studies, Global Change Biol., 17, 974–989, 2011.
Verburg, P. H., Koomen, E., Hilferink, M., Pérez-Soba, M., and Lesschen, J.-P.: An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services, Landscape Ecol., 27, 473–486, https://doi.org/10.1007/s10980-012-9715-6, 2012.
Verburg, P. H., Zanden, E. M., van der Asselen, S., and Stehfest, E.: The representation of landscapes in global scale assessments of environmental change, Landsc. Ecol., 28, 1067–1080, https://doi.org/10.1007/s10980-10012-19745-10980, 2013.
Vliet, N., Mertz, O., Heinimann, A., Langanke, T., Pascual, U., Schmook, B., Adams, C., Schmidt-Vogt, D., Messerli, P., Leisz, S., Castella, J.-C., Jørgensen, L., Birch-Thomsen, T., Hett, C., Bech-Bruun, T., Ickowitz, A., Vu, K. C., Yasuyuki, K., Fox, J., Padoch, C., Dressler, W., and Ziegler, A. D.: Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment, Global Environ. Change, 22, 418–429, 2012.
Walters, B. B., Sabogal, C., Snook, L. K., and Almeida, E. D.: Constraints and opportunities for better silvicultural practice in tropical forestry: an interdisciplinary approach, Forest Ecol. Manage., 209, 3–18, 2005.
Wilbanks, T. J.: Geographic Scaling Issues in Integrated Assessments of Climate Change, Integr. Assess., 3, 100–114, 2002.
Wouterse, F., Deininger, K., Selod, H., Badiane, O., Swinnen, J., von Braun, L., and Zilberman, J.: Foreign Direct Investment in Land in West Africa; the Status Quo, Lessons from Other Regions, Implications for Research, http://www.ifpri.org/sites/default/files/publications/wcaotn01.pdf, International Food Policy Research Institute, Washington, D.C., USA, 2011.
Young, O. R., Lambin, E. F., Alcock, F., Haberl, H., Karlsson, S. I., McConnell, W. J., Myint, T., Pahl-Wostl, C., Polsky, C., Ramakrishnan, P. S., Schroeder, H., Scouvart, M., and Verburg, P. H.: A portfolio approach to analyzing complex human-environment interactions: Institutions and land change, Ecol. Soc., 11, 31, 2006.
Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601–605, https://doi.org/10.1038/NGEO1207, 2011.
Zellner, M. L., Page, S. E., Rand, W., Brown, D. G., Robinson, D. T., Nassauer, J., and Low, B.: The emergence of zoning policy games in exurban jurisdictions: Informing collective action theory, Land Use Policy, 26, 256–367, 2009.
Zellner, M. L., Riolo, R. L., Rand, W., Brown, D. G., Page, S. E., and Fernandez, L. E.: The problem with zoning: Nonlinear effects of interactions between location preferences and externalities on land use and utility, Enviro. Plan. B, 37, 408–428, 2010.
Altmetrics
Final-revised paper
Preprint