Articles | Volume 16, issue 2
https://doi.org/10.5194/esd-16-423-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-423-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the opportunities and challenges of using large language models to represent institutional agency in land system modelling
Yongchao Zeng
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
Calum Brown
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
Highlands Rewilding Limited, The Old School House, Bunloit, Drumnadrochit IV63 6XG, UK
Joanna Raymond
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
Mohamed Byari
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
Ronja Hotz
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
Mark Rounsevell
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
Institute of Geography and Geo-ecology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
Related authors
Yongchao Zeng, Calum Brown, Mohamed Byari, Joanna Raymond, Thomas Schmitt, and Mark Rounsevell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2661, https://doi.org/10.5194/egusphere-2024-2661, 2024
Short summary
Short summary
Understanding environmental policy interventions is challenging due to complex institutional actor interactions. Large language models (LLMs) offer new solutions by mimicking the actors. We present InsNet-CRAFTY v1.0, a multi-LLM-agent model coupled with a land system model, simulating competing policy priorities. The model shows how LLM agents can simulate decision-making in institutional networks, highlighting both their potential and limitations in advancing land system modelling.
Yongchao Zeng, Calum Brown, Mohamed Byari, Joanna Raymond, Thomas Schmitt, and Mark Rounsevell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2661, https://doi.org/10.5194/egusphere-2024-2661, 2024
Short summary
Short summary
Understanding environmental policy interventions is challenging due to complex institutional actor interactions. Large language models (LLMs) offer new solutions by mimicking the actors. We present InsNet-CRAFTY v1.0, a multi-LLM-agent model coupled with a land system model, simulating competing policy priorities. The model shows how LLM agents can simulate decision-making in institutional networks, highlighting both their potential and limitations in advancing land system modelling.
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Sam S. Rabin, Peter Alexander, Roslyn Henry, Peter Anthoni, Thomas A. M. Pugh, Mark Rounsevell, and Almut Arneth
Earth Syst. Dynam., 11, 357–376, https://doi.org/10.5194/esd-11-357-2020, https://doi.org/10.5194/esd-11-357-2020, 2020
Short summary
Short summary
We modeled how agricultural performance and demand will shift as a result of climate change and population growth, and how the resulting adaptations will affect aspects of the Earth system upon which humanity depends. We found that the impacts of land use and management can have stronger impacts than climate change on some such
ecosystem services. The overall impacts are strongest in future scenarios with more severe climate change, high population growth, and/or resource-intensive lifestyles.
Calum Brown, Bumsuk Seo, and Mark Rounsevell
Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019, https://doi.org/10.5194/esd-10-809-2019, 2019
Short summary
Short summary
Concerns are growing that human activity will lead to social and environmental breakdown, but it is hard to anticipate when and where such breakdowns might occur. We developed a new model of land management decisions in Europe to explore possible future changes and found that decision-making that takes into account social and environmental conditions can produce unexpected outcomes that include societal breakdown in challenging conditions.
Derek T. Robinson, Alan Di Vittorio, Peter Alexander, Almut Arneth, C. Michael Barton, Daniel G. Brown, Albert Kettner, Carsten Lemmen, Brian C. O'Neill, Marco Janssen, Thomas A. M. Pugh, Sam S. Rabin, Mark Rounsevell, James P. Syvitski, Isaac Ullah, and Peter H. Verburg
Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, https://doi.org/10.5194/esd-9-895-2018, 2018
Short summary
Short summary
Understanding the complexity behind the rapid use of Earth’s resources requires modelling approaches that couple human and natural systems. We propose a framework that comprises the configuration, frequency of interaction, and coordination of communication between models along with eight lessons as guidelines to increase the success of coupled human–natural systems modelling initiatives. We also suggest a way to expedite model coupling and increase the longevity and interoperability of models.
Cited articles
Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J. R., Rytting, C., and Wingate, D.: Out of One, Many: Using Language Models to Simulate Human Samples, Polit. Anal., 31, 337–351, https://doi.org/10.1017/pan.2023.2, 2023.
Arneth, A., Brown, C., and Rounsevell, M. D. A.: Global models of human decision-making for land-based mitigation and adaptation assessment, Nat. Clim. Change, 4, 550–557, https://doi.org/10.1038/nclimate2250, 2014.
Blanco, V., Holzhauer, S., Brown, C., Lagergren, F., Vulturius, G., Lindeskog, M., and Rounsevell, M. D. A.: The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden, Ecosyst. Serv., 23, 174–208, https://doi.org/10.1016/j.ecoser.2016.12.003, 2017.
Brown, C., Alexander, P., Holzhauer, S., and Rounsevell, M.: Behavioral models of climate change adaptation and mitigation in land-based sectors, WIRES Clim. Change, 8, e448, https://doi.org/10.1002/wcc.448, 2017.
Brown, C., Holzhauer, S., Metzger, M. J., Paterson, J. S., and Rounsevell, M.: Land managers' behaviours modulate pathways to visions of future land systems, Reg. Environ. Change, 18, 831–845, https://doi.org/10.1007/s10113-016-0999-y, 2018.
Brown, C., Seo, B., and Rounsevell, M.: Societal breakdown as an emergent property of large-scale behavioural models of land use change, Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019, 2019a.
Brown, C., Alexander, P., Arneth, A., Holman, I., and Rounsevell, M.: Achievement of Paris climate goals unlikely due to time lags in the land system, Nat. Clima. Change, 9, 203–208, https://doi.org/10.1038/s41558-019-0400-5,2019b.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., and Askell, A.: Language models are few-shot learners, Adv. Neur. In., 33, 1877–1901, 2020.
Brown, C., Holman, I., and Rounsevell, M.: How modelling paradigms affect simulated future land use change, Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, 2021.
Caverni, J.-P., Fabre, J.-M., and Gonzalez, M.: Cognitive biases, Vol. 68, Elsevier, 1990.
Chen, H., Jiao, F., Li, X., Qin, C., Ravaut, M., Zhao, R., Xiong, C., and Joty, S.: ChatGPT's One-year Anniversary: Are Open-Source Large Language Models Catching up?, arXiv, https://doi.org/10.48550/arXiv.2311.16989, 2023.
Coglianese, C. and D'Ambrosio, J.: Policymaking under pressure: the perils of incremental responses to climate change, Conn. L. Rev., 40, 1411, https://scholarship.law.upenn.edu/faculty_scholarship/223/ (last access: 8 January 2025) 2007.
DeepSeek-AI, Liu, A., Feng, B., and Xue, B.: DeepSeek-V3 Technical Report, arXiv preprint, https://doi.org/10.48550/arXiv.2412.19437, 2024.
DeepSeek Platform: Rate limits, Github, https://github.com/deepseek-ai/DeepSeek-V3.git (last access: 7 January 2025), 2025a.
DeepSeek Platform: Models and Pricing, Github, https://github.com/deepseek-ai/DeepSeek-V3.git (last access: 7 January 2025), 2025b.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arxiv preprint https://doi.org/10.48550/arXiv.1810.04805, 2019.
Dryzek, J. S.: Institutions for the Anthropocene: Governance in a Changing Earth System, Brit. J. Polit. Sci., 46, 937–956, https://doi.org/10.1017/S0007123414000453, 2016.
Dubash, N. K., Mitchell, C., Boasson, E. L., Córdova, M. J. B., Fifita, S., Haites, E., Jaccard, M., Jotzo, F., Naidoo, S., and Romero-Lankao, P.: National and sub-national policies and institutions, in: Climate Change 2022: Mitigation of Climate Change, Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_13.pdf (last access: 9 January 2025). 2022.
Ericsson, K. A. and Simon, H. A.: How to Study Thinking in Everyday Life: Contrasting Think-Aloud Protocols With Descriptions and Explanations of Thinking, Mind, Culture, and Activity, 5, 178–186, https://doi.org/10.1207/s15327884mca0503_3, 1998.
Fiorino, D. J.: The new environmental regulation, Mit Press, 2006.
Fokas, A. S.: Can artificial intelligence reach human thought?, PNAS Nexus, 2, pgad409, https://doi.org/10.1093/pnasnexus/pgad409, 2023.
Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., and Ahmed, N. K.: Bias and fairness in large language models: A survey, Comput. Linguist., 50, 1097–1179, https://doi.org/10.1162/coli_a_00524, 2024.
Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., and Jebb, S. A.: Meat consumption, health, and the environment, Science, 361, eaam5324, https://doi.org/10.1126/science.aam5324, 2018.
Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A., Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, W., Friedman, D., Dugan, P., Melloni, L., Reichart, R., Devore, S., Flinker, A., Hasenfratz, L., Levy, O., Hassidim, A., Brenner, M., Matias, Y., Norman, K. A., Devinsky, O., and Hasson, U.: Shared computational principles for language processing in humans and deep language models, Nat. Neurosci., 25, 369–380, https://doi.org/10.1038/s41593-022-01026-4, 2022.
González, V. B.: Modelling adaptation strategies for Swedish forestry under climate and global change, University of Edinburgh, https://core.ac.uk/download/pdf/429715898.pdf (last access: 8 January 2025), 2017.
Greenwood, R., Hinings, C., Ranson, S., and Walsh, K.: Incremental budgeting and the assumption of growth: the experience of local government, in: Public spending decisions, Routledge, 25–48, 2022.
Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., and Schwarz, N.: Theoretical foundations of human decision-making in agent-based land use models – A review, Environ. Modell. Softw., 87, 39–48, https://doi.org/10.1016/j.envsoft.2016.10.008, 2017.
Hammond, A.: Comprehensive versus incremental budgeting in the department of agriculture, in: The Revolt Against the Masses, Routledge, 288–305, 2018.
Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A., and Rounsevell, M.: Improving the representation of adaptation in climate change impact models, Reg. Environ. Change, 19, 711–721, https://doi.org/10.1007/s10113-018-1328-4, 2019.
Horton, J. J.: Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?, arXiv preprint, https://doi.org/10.48550/arXiv.2301.07543, 2023.
Huang, J. and Chang, K. C.-C.: Towards Reasoning in Large Language Models: A Survey, arXiv preprint, https://doi.org/10.48550/arXiv.2212.10403, 2022.
Jones, B. D.: Bounded rationality and public policy: Herbert A. Simon and the decisional foundation of collective choice, Policy Sci., 35, 269–284, https://doi.org/10.1023/A:1021341309418, 2002.
Jones, B. D.: Bounded rationality and political science: Lessons from public administration and public policy, J. Publ. Adm. Res. Theor., 13, 395–412, https://doi.org/10.1093/jpart/mug028, 2003.
Keil, F. C.: Explanation and understanding, Annu. Rev. Psychol., 57, 227–254, https://doi.org/10.1146/annurev.psych.57.102904.190100, 2006.
Krawchenko, T. and Tomaney, J.: The Governance of Land Use: A Conceptual Framework, Land, 12, 608, https://doi.org/10.3390/land12030608, 2023.
Kremmydas, D., Athanasiadis, I. N., and Rozakis, S.: A review of Agent Based Modeling for agricultural policy evaluation, Agr. Syst., 164, 95–106, https://doi.org/10.1016/j.agsy.2018.03.010, 2018.
Kulovesi, K. and Oberthür, S.: Assessing the EU's 2030 Climate and Energy Policy Framework: Incremental change toward radical transformation?, Review of European, Comp. Int. Environ. Law, 29, 151–166, https://doi.org/10.1111/reel.12358, 2020.
Lindblom, C.: The science of “muddling through”, in: Classic readings in urban planning, Routledge, 31–40, 2018.
Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang, Y., Wang, J., Gao, X., Zhong, T., Pan, Y., Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu, X., Zhang, T., Qiang, N., Liu, T., and Ge, B.: Understanding LLMs: A comprehensive overview from training to inference, Neurocomputing, 620, 129190, https://doi.org/10.1016/j.neucom.2024.129190, 2025.
Liu, Z.: Cultural Bias in Large Language Models: A Comprehensive Analysis and Mitigation Strategies, J. Transcult. Commun., https://doi.org/10.1515/jtc-2023-0019, 2024.
Lu, C., Lu, C., Lange, R. T., Foerster, J., Clune, J., and Ha, D.: The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery, arXiv preprint, https://doi.org/10.48550/arXiv.2408.06292, 2024.
Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P.: Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity, arXiv preprint, https://doi.org/10.48550/arXiv.2104.08786, 2021.
Marvuglia, A., Gutiérrez, T. N., Baustert, P., and Benetto, E.: Implementation of Agent-Based Models to support Life Cycle Assessment: A review focusing on agriculture and land use, AIMS Agr. Food, 3, 535–560, https://doi.org/10.3934/agrfood.2018.4.535, 2018.
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., and Gotts, N. M.: Agent-based land-use models: a review of applications, Landscape Ecol., 22, 1447–1459, https://doi.org/10.1007/s10980-007-9135-1, 2007.
Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., and Gao, J.: Large Language Models: A Survey, arXiv preprint, https://doi.org/10.48550/arXiv.2402.06196, 2024.
Murray-Rust, D., Brown, C., van Vliet, J., Alam, S. J., Robinson, D. T., Verburg, P. H., and Rounsevell, M.: Combining agent functional types, capitals and services to model land use dynamics, Environ. Modell. Softw., 59, 187–201, https://doi.org/10.1016/j.envsoft.2014.05.019, 2014.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for climate change research: the concept of shared socioeconomic pathways, Climatic Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
OpenAI Platform: Rate limits, https://platform.openai.com/docs/guides/rate-limits (last access: 7 January 2025), 2025.
Pal, L. A.: Assessing incrementalism: Formative assumptions, contemporary realities, Policy Soc., 30, 29–39, https://doi.org/10.1016/j.polsoc.2010.12.004, 2011.
Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S.: Generative Agents: Interactive Simulacra of Human Behavior, arXiv preprint, https://doi.org/10.48550/arXiv.2304.03442, 2023.
Peeperkorn, M., Kouwenhoven, T., Brown, D., and Jordanous, A.: Is Temperature the Creativity Parameter of Large Language Models?, arXiv preprint, https://doi.org/10.48550/arXiv.2405.00492, 2024.
Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J. D. A., and Rounsevell, M.: Toward quantification of the feasible potential of land-based carbon dioxide removal, One Earth, 6, 1638–1651, https://doi.org/10.1016/j.oneear.2023.11.011, 2023.
Pydantic: Pydantic, Github, https://github.com/pydantic/pydantic.git (last access: 7 January 2025), 2025.
Qian, C., Cong, X., Liu, W., Yang, C., Chen, W., Su, Y., Dang, Y., Li, J., Xu, J., Li, D., Liu, Z., and Sun, M.: Communicative Agents for Software Development, arXiv preprint, http://arxiv.org/abs/2307.07924 (last access: 7 January 2025), 2023.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.: Language models are unsupervised multitask learners, OpenAI blog, 1, 9, https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf (last access: 8 January 2025), 2019.
Renze, M. and Guven, E.: Self-Reflection in LLM Agents: Effects on Problem-Solving Performance, arXiv preprint, https://doi.org/10.48550/arXiv.2405.06682, 2024a.
Renze, M. and Guven, E.: The Effect of Sampling Temperature on Problem Solving in Large Language Models, arXiv preprint, https://doi.org/10.48550/arXiv.2402.05201, 2024b.
Rounsevell, M. D. A., Arneth, A., Alexander, P., Brown, D. G., de Noblet-Ducoudré, N., Ellis, E., Finnigan, J., Galvin, K., Grigg, N., Harman, I., Lennox, J., Magliocca, N., Parker, D., O'Neill, B. C., Verburg, P. H., and Young, O.: Towards decision-based global land use models for improved understanding of the Earth system, Earth Syst. Dynam., 5, 117–137, https://doi.org/10.5194/esd-5-117-2014, 2014.
Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and Chadha, A.: A systematic survey of prompt engineering in large language models: Techniques and applications, arXiv preprint https://doi.org/10.48550/arXiv.2402.07927, 2024.
Seal, W.: Modernity, modernization and the deinstitutionalization of incremental budgeting in local government, Financ. Account. Manag., 19, 93–116, https://doi.org/10.1111/1468-0408.00165, 2003.
Seo, B.: CRAFTY land use model input/output data (EU), OSF [data set], https://doi.org/10.17605/OSF.IO/3THSM, 2022.
Si, C., Yang, D., and Hashimoto, T.: Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers, arXiv preprint, https://doi.org/10.48550/arXiv.2409.04109, 2024.
Simon, H. A.: Bounded Rationality, Utility and Probability, Palgrave Macmillan, London, https://doi.org/10.1007/978-1-349-20568-4_5, 1990.
Staccione, A., Brown, C., Arneth, A., Rounsevell, M., Hrast Essenfelder, A., Seo, B., and Mysiak, J.: Exploring the effects of protected area networks on the European land system, J. Environ. Manag., 337, 117741, https://doi.org/10.1016/j.jenvman.2023.117741, 2023.
Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L.: Cognitive architectures for language agents, arXiv preprint, https://doi.org/10.48550/arXiv.2309.02427, 2023.
Tao, Y., Viberg, O., Baker, R. S., and Kizilcec, R. F.: Cultural bias and cultural alignment of large language models, PNAS nexus, 3, 346, https://doi.org/10.1093/pnasnexus/pgae346, 2024.
Taubenfeld, A., Dover, Y., Reichart, R., and Goldstein, A.: Systematic biases in LLM simulations of debates, arXiv preprint https://doi.org/10.48550/arXiv.2402.04049, 2024.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention Is All You Need, arxiv preprint, https://doi.org/10.48550/arXiv.1706.03762, 2023.
Wang, L., Ma, C., Feng, X., and Zhang, Z.: A survey on large language model based autonomous agents, arXiv preprint, https://doi.org/10.48550/arXiv.2308.11432, 2023.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., and Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models, Adv. Neur. In., 35, 24824–24837, 2022.
Weng, L.: LLM Powered Autonomous Agents, https://lilianweng.github.io/posts/2023-06-23-agent/ (last access: 8 January 2025). 2023.
Xi, Z., Chen, W., Guo, X., and He, W.: The rise and potential of large language model based agents: A survey, arXiv preprint, https://doi.org/10.48550/arXiv.2309.07864, 2023.
Xiao, L., Zhao, G., Wang, X., Li, K., Lim, E., Wei, C., Yu, T., and Wang, X.: An empirical study on the usage of mocking frameworks in Apache software foundation, Empir. Softw. Eng., 29, 39, https://doi.org/10.1007/s10664-023-10410-y, 2024.
Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K.: Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Adv. Neur. In., 36, 11809–11822, https://proceedings.neurips.cc/paper_files/ (last access: 8 January 2025), 2024.
Ye, H., Liu, T., Zhang, A., Hua, W., and Jia, W.: Cognitive Mirage: A Review of Hallucinations in Large Language Models, arXiv preprint, http://arxiv.org/abs/2309.06794 (last access: 8 January 2025), 2023.
Young, O. R., Lambin, E. F., Alcock, F., Haberl, H., Karlsson, S. I., McConnell, W. J., Myint, T., Pahl-Wostl, C., Polsky, C., Ramakrishnan, P. S., Schroeder, H., Scouvart, M., and Verburg, P. H.: A Portfolio Approach to Analyzing Complex Human-Environment Interactions Institutions and Land Change, Ecol. Soc., 11, 31, https://www.jstor.org/stable/26266028 (last access: 8 January 2025), 2006.
Yu, F., Zhang, H., Tiwari, P., and Wang, B.: Natural Language Reasoning, A Survey, arXiv preprint, https://doi.org/10.48550/arXiv.2303.14725, 2023.
Zeng, Y.: LlmInstitution_CRAFTY_data, Zenodo [data set], https://doi.org/10.5281/zenodo.14622334, 2025a.
Zeng, Y.: LlmInstitution_CRAFTY (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.14622039, 2025b.
Zeng, Y., Raymond, J.,Brown, C., Byari, M., and Rounsevell, M.: Simulating Endogenous Institutional Behaviour and Policy Pathways within the Land System, SSRN preprint, https://doi.org/10.2139/ssrn.4814296, 2024a.
Zeng, Y., Brown, C., Byari, M., Raymond, J., Schmitt, T., and Rounsevell, M.: InsNet-CRAFTY v1.0: Integrating institutional network dynamics powered by large language models with land use change simulation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2661, 2024b.
Zhang, Y., Mao, S., Ge, T., Wang, X., Wynter, A. d., Xia, Y., Wu, W., Song, T., Lan, M., and Wei, F.: LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models, arXiv preprint, https://doi.org/10.48550/arXiv.2404.01230, 2024.
Zhang, Z., Zhang, A., Li, M., and Smola, A.: Automatic chain of thought prompting in large language models, arXiv preprint, https://doi.org/10.48550/arXiv.2210.03493, 2022.
Zhao, X., Li, M., Lu, W., Weber, C., Lee, J. H., Chu, K., and Wermter, S.: Enhancing zero-shot chain-of-thought reasoning in large language models through logic, arXiv preprint, https://doi.org/10.48550/arXiv.2309.13339, 2023.
Zhou, H., Feng, Z., Zhu, Z., Qian, J., and Mao, K.: UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation, arXiv preprint, https://doi.org/10.48550/arXiv.2405.20612, 2024.
Short summary
This study explores using large language models (LLMs) to simulate policy-making in land systems. We integrated LLMs into a land use model and simulated LLM-powered institutional agents steering meat production by taxation. The results show LLMs can generate boundedly rational policy-making behaviours that can hardly be modelled using conventional methods; LLMs can offer the reasoning behind policy actions. We also discussed LLMs’ potential and challenges in large-scale simulations.
This study explores using large language models (LLMs) to simulate policy-making in land...
Altmetrics
Final-revised paper
Preprint