
Supplement of Earth Syst. Dynam., 16, 423–449, 2025
https://doi.org/10.5194/esd-16-423-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Supplement of

Exploring the opportunities and challenges of using large language mod-
els to represent institutional agency in land system modelling
Yongchao Zeng et al.

Correspondence to: Yongchao Zeng (yongchao.zeng@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.

1

Supplementary Information I

CRAFTY Emulator

S1. Overview

The CRAFTY emulator, inspired by the methodology presented in Murray-Rust et al. (2014),

shares the foundational methodology of the main CRAFTY model, emphasizing the microscopic

interactions between Agent Functional Types (AFTs) that drive the emergence of key patterns,

such as AFT changes and ecosystem service supply. The emulator employs essential data—such

as AFTs, capitals, and demand—integral to the functionality of the model, without requiring

modifications to the data structure.

Unlike the main CRAFTY model, the emulator is not intended to offer its full range of

functionalities or replicate every detail of its outputs. Instead, the emulator serves as a streamlined

environment for rapid testing and experimentation with new components that could potentially

enhance the CRAFTY land system framework. Specifically, the emulator’s AFTs base their

decisions solely on economic benefits. This treatment intentionally excludes non-economic

considerations, such as affinity for possessed land or social networks, reducing complicatedness

and computational cost.

Despite its simplified nature, the emulator successfully reproduces key emergent patterns observed

in the main CRAFTY model. At the microscopic level, land users respond to the utility provided

by different ecosystem services. At the macroscopic level, the emulator demonstrates a tendency

to drive the aggregated ecosystem supply to align with ecosystem demand, reflecting the system's

adaptive dynamics. The simplifications in the emulator are designed not only to improve simulation

speed and simplify parameterization but also to provide a more interpretable baseline. This baseline

is particularly useful for observing the behaviour and influence of newly introduced components

in a controlled and understandable setting.

Components tested in the emulator may or may not be integrated into the main model, depending

on their added value and the evolving needs of ongoing projects.

This document outlines how the emulator is designed to facilitate the exploration of new

components and provides an example to demonstrate its output similarities with the main model.

Since the emulator does not introduce any new mechanisms compared to Murray-Rust et al. (2014),

we omit discussion of its conceptual foundation and equations for brevity.

S2. Design

S2.1 Key Design Elements

S2.1.1 ModelState Interface

2

A central element of the emulator is the ModelState interface, which defines two methods: setup

and toSchedule(). Any class that needs to be initialized and scheduled during a simulation must

implement this interface.

S2.1.2 AbstractUpdater Class

Another critical component is the AbstractUpdater class, which depends on an

AbstractModelRunner instance. The AbstractUpdater class implements both the ModelState

and Steppable interfaces. The Steppable interface, provided by the MASON1 library, designates

objects that can execute step-by-step operations within the model. Classes with one-time operations

can implement the ModelState interface directly. Conversely, classes requiring updates

throughout the simulation need to extend the AbstractUpdater class.

S2.1.3 Simulation Flow Control with ModelRunner

The ModelRunner class is responsible for controlling the simulation flow. As a subclass of

AbstractModelRunner, which extends the SimState class from the MASON library,

ModelRunner is designed to have robust simulation management capabilities.

A notable feature of the AbstractModelRunner is the stateManager, an ArrayList that stores

ModelState objects. Users can add ModelState instances to stateManager through the

loadStateManager method, and the model runner will invoke their setup methods to initialize

them in sequence. During execution, the MASON simulation engine detects and sequentially

invokes the step method for each instance of AbstractUpdater.

This architecture has two major advantages:

a) Flexibility: Objects can be added to or removed from the stateManager easily,

allowing for dynamic customization of the simulation.

b) Inter-Object Communication: The stateManager facilitates communication between

different objects, enhancing modularity and integration across components.

Figure S1 provides an example of the ModelRunner class, highlighting its structure and

functionality. The class includes a constructor method and a loadStateManager method. In the

loadStateManager method (lines 12 to 21), several instances are added to the stateManager. The

names of these instances are related to their place in the workflow of the ModelRunner, and they

are executed sequentially.

• The DataCenter instance, named dataCenter, is responsible for initializing and managing

land-use data within the model.

• SupplyInitializer calculates the initial ecosystem service supply in CRAFTY.

• DemandUpdater updates the annual demand for ecosystem services.

• InfluencedUtilityUpdater computes the marginal utility for each ecosystem service.

1 https://cs.gmu.edu/~eclab/projects/mason/

3

• dataCenter's getManagerSet method returns a set of land managers who make land-use

decisions.

• SupplyUpdater aggregates the ecosystem service supply from all land managers.

• AgriInstitution represents a policymaking agent that attempts to steer agricultural

ecosystem services toward specific target levels.

• The MapUpdater and GridCharts components are used to visualize the AFT (Agent

Functional Type) distribution and ecosystem service supply, respectively.

Certain lines, such as those involving the AgriInstitution, MapUpdater, and GridCharts, can

be commented out without disrupting the simulation's functionality. This flexibility allows for easy

integration/replacement of additional institutional agents (e.g., LLM institutional agents), similar

to the approach used for AgriInstitution.

Figure S1. An example implementation of the ModelRunner class

S2.2 Graphic user interface (GUI)

Instances of the ModelRunner class can be executed directly. However, this approach lacks the

flexibility needed for exploring and interacting with the model, both of which are crucial for

effective model development and usage. To address this limitation, the MASON library, used in

the emulator, provides a comprehensive GUI. This GUI allows users to visualize model data,

explore parameter spaces, and set up experiments. For an example of how a ModelRunner instance

(e.g., instantiated as new Intra()in the source code) is configured to enable the GUI, refer to the

ModelRunnerWithUI class in the display package.

4

Figure S2 illustrates several components of the GUI:

• Map Window: Displays a real-time updated map. Users can click on the map to view

detailed information about individual land cells.

• Central Window: Contains multiple tabs, with the “Model” tab displaying the model’s

parameters and objects. By clicking on the key symbols, users can visualize parameters,

stream data, or drill down into objects to inspect their fields. For instance, clicking the key

symbol next to stateManager and selecting “View” will show a list of objects that, by

design, contain nearly all the model's information.

• Parameter Sweeping Window: The rightmost window provides an interface for setting up

parameter sweeping experiments.

Figure S2. GUI of the emulator.

S3. Output comparison

As mentioned above, the emulator shares substantial conceptual similarities with the main

CRAFTY model and is compatible with the input data used by the main model. These contribute

to the resemblance in their outputs. To demonstrate their output similarity, we use the dataset of

RCP2.6-SSP1 from https://osf.io/vfjsn as shared input for both the emulator and the main model.

This dataset is also used to configure the experiments in this paper, which includes files indicating

the temporal changes in capital distribution, a file listing AFT names and indices, a set of files

specifying the parameters of each AFT, and a file detailing the changes in demand for different

ecosystem services.

A key feature of the outputs is the tendency to align ecosystem service supply with demand. As

illustrated in Fig.S3 (data available at Zeng (2025a)), with the exception of timber supply, the

supply of all other services (represented by black scatter points for the emulator and blue solid

https://osf.io/vfjsn

5

curves for the main model) shows a clear tendency to converge toward the demand (depicted as

red solid curves). The deviation of timber supply from demand is due to a decline in the capitals

associated with timber production over time, which reduces the resources available to AFTs,

thereby limiting their ability to meet the demand for timber.

Figure S3. The output ecosystem service supply of the emulator and CRAFTY main model. Red

curves are demand; blue curves are output from the main model; the dots are results from 100

times repeated simulations using the emulator.

In Fig. S4, the numbers of AFTs at the end of simulations (the 70th iteration) also show a high

output resemblance. Figure S5 shows the number of AFTs relative to the baseline data shared by

both the emulator and the main model. It can be seen that the relative AFT numbers from the

emulator and main model are quantitatively different. For example, the results from the emulator

include more Ext_AF and Int_Fa but less Int_AF, IP, UL and MF than the main model outputs.

However, the changing directions of the AFTs are identical.

6

Figure S4. Resultant AFT numbers of the emulator and main model. The results from the

emulator are averaged across 100 repeated simulations.

Figure S5. AFTs numbers relative to the baseline data shared by the emulator and main model.

The results from the emulator are averaged across 100 repeated simulations.

A key distinction between the emulator and the main model is that the emulator does not consider

social factors. To make a fair comparison of outputs, we disabled the social processes in the main

model. However, other differences remain that can contribute to variations in the results. For

instance, the emulator does not incorporate land abandonment—a mechanism that allows AFTs to

temporarily occupy fewer land cells—or the give-in/up threshold, which increases the difficulty of

7

land turnover. These omissions can lead to more pronounced land-use changes in the emulator

compared to the main model.

This disparity is noticeable in Fig. S5, where the numbers of AFTs fluctuate more notably in the

emulator than in the main model. However, both land abandonment and the give-in/up threshold

are deeply integrated into the main model’s framework, and their removal would require code

refactoring. The development team decided against refactoring the main model to maintain

compatibility for comparison purposes, as the emulator’s behaviour is considered acceptable for

its exploratory use.

It is important to note that the emulator’s tendency to align supply with demand is driven by the

micro-mechanisms inherent in the CRAFTY framework. This clear and simplified dynamic is

intentional, as it provides a well-defined benchmark for observing and understanding how newly

added components (e.g., institutional agents) influence system behaviour. In contrast, the main

model incorporates richer mechanisms that can produce more complex behaviours, which may

often deviate from alignment between supply and demand. This added complexity enhances the

main model’s descriptive power and makes it better suited for capturing the complexity of real-

world dynamics.

8

Supplementary Information II

Application of Genetic Algorithm for Optimal Policy Search

The optimal policy actions were determined using the NSGA-II genetic algorithm (Deb et al., 2002),

implemented through the Rhodium Python library (Hadjimichael et al., 2020). To integrate the

genetic algorithm with the CRAFTY emulator (developed in Java), the Py4J library (Py4J, 2025)

was utilized for communication between the two environments (source code available at Zeng

(2025b)). The diagram in Fig. S6 illustrates the process.

The search begins by instantiating the CRAFTY model on the Java side, creating a fully functional

CRAFTY object ready to be invoked from Python. On the Python side, the program initializes by

randomly generating a population of policy action time series. Each time series is represented as a

list of 21 integer elements with values constrained to the range [-5, 5], corresponding to different

tax change levels for policy actions. Each simulation was run for 110 iterations. Every five

iterations (starting from the 0th iteration), the institutional agent updates its policy action by using

the next integer in the list.

These generated policy action time series are passed as arguments to the CRAFTY object via a

Python wrapper function. The CRAFTY model processes each series, iterating through the

specified policy actions and producing a corresponding time series of meat supply outputs. These

outputs are then evaluated using the least squares method to calculate the total error relative to the

predefined policy goals. This total error serves as the objective that the NSGA-II algorithm seeks

to minimize.

After computing the error, the program checks if the maximum number of algorithm iterations (set

to 1000 in this experiment) has been reached. It is important to note that these iterations refer to

the optimization process performed by the NSGA-II algorithm and are distinct from the internal

iterations within the CRAFTY model itself. If the maximum number of algorithm iterations has

not been reached, the NSGA-II algorithm generates a new set of policy action time series (offspring

variants) for further evaluation. This iterative process continues until the stopping condition is met.

The optimal policy actions and the corresponding final total error are saved in a JSON file for

analysis.

9

Figure S6. The process of applying the NSGA-II algorithm to search optimal policy actions

within the CRAFTY emulator.

10

Supplementary Information III

Prompt refinement

Table S1 juxtaposes the initial draft and the final version of the prompt. We started with the prompt

of Agent S2 because it saves historical interactions with the human user and can use past experience

to improve its output, which is necessary for human-in-loop prompt improvement. The prompts of

Agent S1.1 and Agent 1.2 are derived as variations of the Agent S2 prompt. Table S2 highlights the

key differences between the initial draft and the final prompts in Table S1. The changes mainly

involve simplifying and clarifying the tasks for the agents instead of prescribing decision-making

strategies or policy preferences. A time-intensive refinement is to explain the format of the output

and to add notes to fix observed unwanted behaviours.

Table S1. The initial draft and final version of the prompt for Agent S2

Initial draft of prompt for Agent S2 Final version of prompt for Agent S2

Context: In a land use change simulation, you are

playing the role of a policymaker who intends to

influence meat production using economic policies

including subsidies and taxes. During the simulation,

you will be updated on information regarding historical

meat supply and demand. You also have access to the

policies you used in the past. You will be offered the

average gap between the prescribed policy goal and

actual meat production across the recent five years,

which is labelled as “AveGap” below. You use the

information in a way that you think is reasonable to

conduct policy adaptation periodically to close the gap.

Your output consists of two parts: one part is the reason

explaining how you make decision; the other part is a

number representing the intensity of policy intervention

you are going to implement. Please note that your step-

wise reasoning is normally more reliable and reasonable.

You will also be provided with a summary of the reason

how you made a policy decision last time as a reference

to reflect your decision-making. Information: 1. Meat

supply [values of meat supply in temporal order] 2. Meat

demand [values of meat demand in temporal order] 3.

AveGap: a number 4. Policy intervention [values of

historical policy intervention] Summary of Policy

decision reasoning last time: {summary here}

Simulation Role: Assistant to Economic Policymaker in

Land Use Change Scenario.

Objective: Develop tax policies to effectively manage

meat production, aligning with set policy goals.

Policy Tools: Taxes for regulating meat production

levels.

Information Provided:

1. General Context: As an assistant, propose tax-based

policies for meat production management.

Interaction with policymaker is crucial for refining

decisions and gaining your experience in policymaking.

2. Data:

 - Policy goal: {policy_goal}

 - Average error (avg_err):{avg_err}.

 - Historical policy actions: {hist_actions}

3. Recent interaction with policymaker: {convers}

4. Experience: {exp}

Guidance for Decision-Making:

- Use historical data and policymaker feedback for

policy adjustments.

- Aim to minimize the absolute value of avg_err.

- Provide logical, sequential reasoning.

- Reflect on experience for current decision

enhancement.

Interaction Instructions:

11

1. Review historical information, recent interaction with

policymaker, and your experience.

2. Assess the impact of previous policies.

3. Develop your policy rationale in a step-by-step

manner.

4. Propose a specific policy action.

Required Output Format:

1. Proposal Reasoning: [Your explanation]

2. Policy Action Proposal Without Reasoning:

 - Indicate your proposed tax policy change using

symbols and numbers.

 - Use '+' to signify an increase in tax levels, '-' for a

decrease, and '0' to maintain the current level.

 - Accompany '+' or '-' with a number from 1 to 5 to

denote the extent of the change, where 1 is minimal and

5 is maximal.

 - Examples: "+3" for a moderate increase, "-1" for a

slight decrease.

 - If proposing to maintain the current tax level ('0'), no

additional number is needed.

 - Surround the proposed action using a pair of hashtags

 [Indicate your proposal here, e.g., "#+3#", "#-2#",

"#0#"]

Here are three examples to show you the format to

output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: "#-1#"

2. Policy Action Proposal without reasoning: "#+3#"

3. Policy Action Proposal without reasoning: "#-5#"

Note:

Always specify a clear policy action. If uncertain,

propose a tentative action based on available data.

Don’t fake interaction with policymaker if there is no

interaction yet.

avg_err > 0 means meat undersupply, while avg_err < 0

means meat oversupply.

Table S2. Key differences between the initial draft and final version of the prompt for agent S2

Key aspects Draft Final version Reason for changes

Roles Assigning the agent the

role of a policymaker

directly.

Shifting the role from a

policymaker to an assistant

Using the draft prompt, the agent

was not able to act as expected.

Using human-in-loop prompt

improvement needs to define the

agent as an assistant, whose

proposals need to be checked by

the human operator. Using the

final prompt, the human

operator’s response is set to

approve every proposal from the

12

agent by default to enable full

autonomy.

Action scope Using taxes and subsidies. The focus narrows to tax-

based policies for regulating

meat production.

Simplify the scope of policy

actions to improve output

reliability.

Information Meat demand and supply

are included.

Meat demand and supply

are omitted.

Reduce information redundancy

to avoid the LLM agents

attempting to align meat supply

with demand.

Target A general guidance on

using historical data to

adapt policies and close the

gap (AveGap) between

goals and actual

production.

Clearly defines the objective

as minimizing the absolute

value of avg_err (error

between goal and actual

production)

Explaining the target more

explicitly.

Structure Structure is less formalized Information is organized

into several sections to

clearly delineate objectives,

tasks, and required output.

Making the prompt friendlier for

improvement.

Output

formatting

Lack of detailed formatting

guidelines.

A specific, symbolic format

and example to detail the

structure of output.

This is very important and takes

much time to adjust to achieve a

reliable output structure that can

be parsed by the emulator.

Notes Without notes. With notes such as “do not

fake interaction with

policymaker” and

“proposing a tentative

action” if uncertain.

The notes are intended to fix

erroneous behaviours of the LLM

agents observed during the

prompt improvement process.

Table S3 shows the initial prompt draft and final prompt for Agent Q. The prompt refinement

process for Agent Q was relatively simple because the part of the prompt that indicates the required

output format could be taken from the final prompt for Agent S2. In addition to this, there are some

key improvements worth noting. Instead of providing Agent Q with the average error, we found

that the policy goal seemed more straightforward for Agent Q. Agent Q’s multi-role conversations

also resulted in less misunderstanding of its target, even with meat demand and supply provided.

This might be because the conversations between different roles break down the given problem

into smaller components during role-specific information exchange, which is more manageable for

LLMs (Wei et al., 2022). To streamline a smooth dialogue, an example is given. This example

works as a guideline rather than a rule that confines the agent’s conversation generation. The added

“Notes” at the end of the final prompt are aimed at fixing issues observed during the test. For

instance, the agent occasionally used a pair of hashtags in the middle of a dialogue to highlight an

undecided policy action, which should be avoided. Additionally, the agent sometimes forgot to

include the sign (+/-) of a policy action, leading to ambiguity. These refinements were implemented

to enhance accuracy and consistency in the agent’s outputs.

Table S3. Initial draft and final version of prompts for Agent Q

Initial draft of prompt for Agent Q Final version of prompt for Agent Q

Your task: Generate a believable conversion

among different roles relevant to tax policies for

meat production.

Engage in a role-playing conversation about tax

policies affecting meat production, integrating

data analysis and diverse perspectives.

13

Information provided:

1. Data:

- Historical Policy Actions (adapted every

five years): {hist_actions}

- Historical meat demand averaged every

five years: {meat_demand}

- Historical meat supply averaged every

five years: {meat_supply}

- Historical errors between meat supply and

policy goal (avg_err): { avg_err }

2. Roles and responsibility

- Policy Analyst: Review the data provided,

and interpret the data to start the

conversation. Policy Analyst should

always note that avg_err greater than 0

means meat undersupply, while avg_err

less than 0 means oversupply.

- Government Official: Aiming at

maintaining avg_err at 0. Government

Official will listen to others’ opinions,

justify own judgement and make policy

decision regarding tax adjustment for

meat production. For simplicity, the

official can only increase, decrease, or

maintain the tax level by a reasonable

level ranging from 0 to 5, six levels in

total.

- Economists: Conduct a cost-benefit

analysis of the proposed policies. Assess

the economic impact on the budget,

taxpayers, and overall economy. Identify

any potential economic risks or

opportunities.

- Meat producer representative: Represent

the views and concerns of the meat

producers affected by the policy. Provide

feedback on how the policy will impact

the meat producers, and suggest

modifications to better serve their needs.

- Environmentalist: Concerned with the

environmental issues caused by meat

production, and suggest policy

adjustments benefiting environmental

protection.

Required output and format:

Conversation: place the generate conversation

here.

Policy action: place a clear policy action here

using a pair of hashtags to highlight the policy

action.

Background Data:

- **Historical Policy Actions** (updated every

five years): {policy_actions}

- **Meat Demand ** (averaged every five years):

{meat_demand}

- **Meat Supply** (averaged every five years):

{meat_supply}

- **Policy goal** maintain the meat production at:

{policy_goal}

Roles & Responsibilities:

1. **Policy Analyst:** Begin the conversation by

interpreting the provided data.

2. **Government Official:** Strive to achieve

policy goal. Listen to others, justify your

decisions, and adjust meat production tax.

3. **Economist:** Analyze the cost-benefit of

policy proposals, considering budget impacts,

taxpayer implications, and overall economic

effects. Highlight risks and opportunities.

4. **Meat Producer Representative:** Voice the

concerns and views of meat producers. Discuss

policy impacts on producers and offer suggestions

for improvement.

5. **Environmentalist:** Focus on the

environmental impacts of meat production.

Propose policy adjustments for environmental

protection.

Required Output & Format:

- **Conversation Flow:** Engage each role in a

structured dialogue, reflecting their unique

perspectives and data interpretation.

- **Policy Action:** Extract the final policy

action from the conversation and output it in

required format below:

- Indicate the official’s policy action using

symbols and numbers.

- Use '+' to signify an increase in tax levels, '-' for

a decrease, and '0' to maintain the current level.

- Accompany '+' or '-' with a number from 1 to 5

to denote the extent of the change, where 1 is

minimal and 5 is maximal.

- Examples: "+3" for a moderate increase, "-1" for

a slight decrease.

- If proposing to maintain the current tax level

('0'), no additional sign is needed.

14

- Indicate the official’s policy action using

symbols and numbers.

- Use '+' to signify an increase in tax levels, '-' for

a decrease, and '0' to maintain the current level.

- Accompany '+' or '-' with a number from 1 to 5

to denote the extent of the change, where 1 is

minimal and 5 is maximal.

- Examples: "+3" for a moderate increase, "-1" for

a slight decrease.

- If proposing to maintain the current tax level

('0'), no additional sign is needed.

- Surround the proposed action using a pair of

hashtags

Here are three examples to show the format to

output Policy Action:

1. "#-1#"

2. "#+3#"

3. "#-5#"

- Surround the proposed action using a pair of

hashtags

Here are three examples to show the format to

output Policy Action:

1. "#-1#"

2. "#+3#"

3. "#-5#"

Example Dialogue Structure:

1. Policy Analyst provides data summary and

initial observations.

2. Other roles react, suggest, and debate, guided

by their specific perspectives.

3. Government Official synthesizes the inputs and

proposes a policy action.

4. Final round of feedback and adjustments before

settling on a policy action.

Note:

Do not use hashtags in the dialogue. Hashtags are

only used as identifiers helping identify the

determined policy actions.

Important: "+" means increase tax; "-" means

decrease tax.

15

Supplementary Information IV

Settings for the CRAFTY emulator

In this study, CRAFTY was initialized by allocating AFTs, capital maps, and demand parameters

in accordance with a designated Representative Concentration Pathway (RCP) (Van Vuuren et al.,

2011) and Shared Socioeconomic Pathway (SSP) (O’neill et al., 2014). We employed the version

of CRAFTY that was previously calibrated using outputs from the IMPRESSIONS Integrated

Assessment Platform (IAP) (Harrison et al., 2015; Holman et al., 2017). The IAP is a cross-sectoral,

multi-model framework widely used to explore European land system changes and has been

rigorously evaluated in various studies (Brown et al., 2015; Harrison et al., 2016; Kebede et al.,

2015; Pedde et al., 2019). By relying exclusively on IAP-derived input data, we ensure that both

socio-economic and climatic drivers are implemented in a consistent manner and that any observed

land-use transitions are attributable to either CRAFTY’s internal dynamics or the conditions

imposed by each scenario. More specific details on calibration procedures for this model version

can be found in Brown et al. (2019).

For the simulations presented here, the model was run at a 10 arcminute (10’) resolution, which

yields 23,871 grid cells. This resolution matches the granularity of the available input data, offers

manageable computational demands, and is aligned with the current state of calibration data

availability. Although CRAFTY can be applied to various scenarios derived from different RCP

and SSP combinations, in this paper we focus on SSP1–RCP2.6. This particular scenario assumes

a relatively modest level of climate change, coupled with gradually improving socio-economic

conditions such as steady economic growth, effective governance, strong social cohesion, and

robust international collaboration. We acknowledge that exploring multiple RCP–SSP

combinations would provide additional insights into the variability and uncertainty across scenarios,

and future research will aim to extend this work to a broader range of climate and socio-economic

pathways.

Reference

Brown, C., Seo, B., and Rounsevell, M.: Societal breakdown as an emergent property of large-scale

behavioural models of land use change, Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-

809-2019, 2019.

Brown, C., Brown, E., Murray-Rust, D., Cojocaru, G., Savin, C., and Rounsevell, M.: Analysing

uncertainties in climate change impact assessment across sectors and scenarios, Climatic Change, 128, 293-

306, https://doi.org/10.1007/s10584-014-1133-0, 2015.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:

NSGA-II, IEEE transactions on evolutionary computation, 6, 182-197, https://doi.org/10.1109/4235.996017,

2002.

https://doi.org/10.5194/esd-10-809-2019
https://doi.org/10.5194/esd-10-809-2019
https://doi.org/10.1007/s10584-014-1133-0
https://doi.org/10.1109/4235.996017

16

Hadjimichael, A., Gold, D., Hadka, D., and Reed, P.: Rhodium: Python library for many-objective robust

decision making and exploratory modeling, Journal of Open Research Software, 8,

https://par.nsf.gov/servlets/purl/10314245, 2020.

Harrison, P. A., Holman, I. P., and Berry, P. M.: Assessing cross-sectoral climate change impacts,

vulnerability and adaptation: an introduction to the CLIMSAVE project, Climatic Change, 128, 153-167,

https://doi.org/10.1007/s10584-015-1324-3, 2015.

Harrison, P. A., Dunford, R. W., Holman, I. P., and Rounsevell, M. D. A.: Climate change impact modelling

needs to include cross-sectoral interactions, Nature Climate Change, 6, 885-890,

https://doi.org/10.1038/nclimate3039, 2016.

Holman, I. P., Brown, C., Janes, V., and Sandars, D.: Can we be certain about future land use change in

Europe? A multi-scenario, integrated-assessment analysis, Agricultural Systems, 151, 126-135,

https://doi.org/10.1016/j.agsy.2016.12.001, 2017.

Kebede, A. S., Dunford, R., Mokrech, M., Audsley, E., Harrison, P. A., Holman, I. P., Nicholls, R. J.,

Rickebusch, S., Rounsevell, M. D. A., Sabaté, S., Sallaba, F., Sanchez, A., Savin, C., Trnka, M., and

Wimmer, F.: Direct and indirect impacts of climate and socio-economic change in Europe: a sensitivity

analysis for key land- and water-based sectors, Climatic Change, 128, 261-277,

https://doi.org/10.1007/s10584-014-1313-y, 2015.

Murray-Rust, D., Brown, C., van Vliet, J., Alam, S. J., Robinson, D. T., Verburg, P. H., and Rounsevell, M.:

Combining agent functional types, capitals and services to model land use dynamics, Environmental

Modelling & Software, 59, 187-201, https://doi.org/10.1016/j.envsoft.2014.05.019, 2014.

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van Vuuren,

D. P.: A new scenario framework for climate change research: the concept of shared socioeconomic

pathways, Climatic Change, 122, 387-400, https://doi.org/10.1007/s10584-013-0905-2, 2014.

Pedde, S., Kok, K., Onigkeit, J., Brown, C., Holman, I., and Harrison, P. A.: Bridging uncertainty concepts

across narratives and simulations in environmental scenarios, Regional Environmental Change, 19, 655-666,

https://doi.org/10.1007/s10113-018-1338-2, 2019.

Py4J: Py4J - A Bridge between Python and Java, https://www.py4j.org/, 2025.

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T.,

Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The

representative concentration pathways: an overview, Climatic Change, 109, 5,

https://doi.org/10.1007/s10584-011-0148-z, 2011.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., and Zhou, D.: Chain-of-thought

prompting elicits reasoning in large language models, Advances in neural information processing systems,

35, 24824-24837, 2022.

Zeng, Y.: LlmInstitution_CRAFTY_data, Zenodo, https://doi.org/10.5281/zenodo.14622334, 2025a.

Zeng, Y.: LlmInstitution_CRAFTY (v1.0), Zenodo, https://doi.org/10.5281/zenodo.14622039, 2025b.

https://par.nsf.gov/servlets/purl/10314245
https://doi.org/10.1007/s10584-015-1324-3
https://doi.org/10.1038/nclimate3039
https://doi.org/10.1016/j.agsy.2016.12.001
https://doi.org/10.1007/s10584-014-1313-y
https://doi.org/10.1016/j.envsoft.2014.05.019
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10113-018-1338-2
https://www.py4j.org/
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.5281/zenodo.14622334
https://doi.org/10.5281/zenodo.14622039

