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Abstract. Public policy institutions play crucial roles in the land system, but modelling their policy-making
processes is challenging. Large language models (LLMs) offer a novel approach to simulating many different
types of human decision-making, including policy choices. This paper aims to investigate the opportunities and
challenges that LLMs bring to land system modelling by integrating LLM-powered institutional agents within
an agent-based land use model. Four types of LLM agents are examined, all of which, in the examples presented
here, use taxes to steer meat production toward a target level. The LLM agents provide simulated reasoning
and policy action output. The agents’ performance is benchmarked against two baseline scenarios: one without
policy interventions and another implementing optimal policy actions determined through a genetic algorithm.
The findings show that, while LLM agents perform better than the non-intervention scenario, they fall short of
the performance achieved by optimal policy actions. However, LLM agents demonstrate behaviour and decision-
making, marked by policy consistency and transparent reasoning. This includes generating strategies such as in-
crementalism, delayed policy action, proactive policy adjustments, and balancing multiple stakeholder interests.
Agents equipped with experiential learning capabilities excel in achieving policy objectives through progres-
sive policy actions. The order in which reasoning and proposed policy actions are output has a notable effect
on the agents’ performance, suggesting that enforced reasoning both guides and explains LLM decisions. The
approach presented here points to promising opportunities and significant challenges. The opportunities include,
exploring naturalistic institutional decision-making, handling massive institutional documents, and human–AI
cooperation. Challenges mainly lie in the scalability, interpretability, and reliability of LLMs.

1 Introduction

Land system models are increasingly incorporating elements
of agency in land use and management decision-making.
This process has several motivations, from theory-testing and
exploration to more predictive outputs based on process-
based knowledge (Groeneveld et al., 2017). Such models
can be particularly useful for understanding behavioural con-

straints on political strategies such as land-based climate mit-
igation (Perkins et al., 2023) or nature conservation through
protected areas (Staccione et al., 2023). Agent-based land
use models have now been applied from village to continen-
tal scales, revealing numerous ways in which land manager
behaviour affects the rate, spread, and impacts of land use
change (Brown et al., 2018; Kremmydas et al., 2018; Mar-
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vuglia et al., 2018; Matthews et al., 2007; Rounsevell et al.,
2014; Zeng et al., 2024a).

Despite the growth in land use models based on agency,
and despite their frequent application to policy questions, the
nature and effects of agency among political and institutional
actors have been relatively neglected. Institutions in general
(spanning a wide range from informal social groupings to
highly formal governance bodies) have almost exclusively
been modelled as exogenous forces that alter model input
settings in pre-defined ways, rather than as active partici-
pants in simulated land use change decision-making (Brown
et al., 2017; Holman et al., 2019; Krawchenko and Tomaney,
2023). Meanwhile, evidence that institutions play key roles
in land use change processes, and that these roles are strongly
mediated by the agency of those institutions, has continued to
grow (Dryzek, 2016; Dubash et al., 2022; Young et al., 2006).
These institutions display a variety of key behaviours, in-
cluding inertia in decision-making, interaction among them-
selves, the use of partial or otherwise imperfect information,
susceptibility to lobbying and social norms, and occasional
abrupt changes in objectives. These types of processes pose
a substantial challenge to representation in land system mod-
els.

The rise of large language models (LLMs) provides a
novel and potentially powerful approach to modelling the
decisions of institutional agents. LLMs are a class of arti-
ficial intelligence (AI) models designed to understand and
generate human-like language (Brown et al., 2020; Devlin
et al., 2019; Vaswani et al., 2023). LLMs typically have bil-
lions of parameters and are trained and fine-tuned on exten-
sive corpora to predict the next token (a sub-word, charac-
ter, or word) in a sequence, based on both the input context
and previously generated tokens (Minaee et al., 2024). Dur-
ing training, LLMs are optimized to learn and capture com-
plex linguistic, semantic, and contextual patterns in the data
(Liu et al., 2025). Models, such as GPT, Llama, and Claude,
use this capability to generate coherent and contextually ap-
propriate natural language responses across a range of tasks
(Minaee et al., 2024). They have recently been applied to
computational agent design, bringing benefits for both fields
(Sumers et al., 2023; Wang et al., 2023; Weng, 2023; Xi et
al., 2023; Yao et al., 2024). LLM-powered agents are, by the
nature of their design and training, implicit models of hu-
man decision-making and simulations using language agents
that can mimic believable human behaviour in various con-
texts (Horton, 2023; Park et al., 2023). They generate simu-
lated opinions, interact with one another and with the user in
natural language, learn from experience, and make plans for
the future in ways that are similar to humans (Wang et al.,
2023). This makes LLMs a powerful tool for modelling the
decision-making and behaviour of institutional agents which
interact dynamically with their environment.

Effective LLM-powered agents are pre-trained using mas-
sive amounts of textual data containing diverse linguistic
patterns. As demonstrated in Argyle et al. (2023), LLMs

can serve as proxies for a variety of human sub-groups
by emulating nuanced demographically correlated response
patterns, indicating that LLMs are powerful tools for re-
searching multifaceted human attitudes and complex social–
cultural dynamics. Moreover, LLM agents can generate
novel or underexplored behaviour supported by explicit rea-
soning, which is considered an emergent ability of large
language models (Huang and Chang, 2022) that draws in-
creasing interest and attention from researchers in many do-
mains (see Zhang et al., 2024, for a comprehensive review of
strategic reasoning with LLMs and Yu et al., 2023, for nat-
ural language reasoning (NLR)). By combining philosophi-
cal perspectives and natural language processing (NLP), Yu
et al. (2023) define NLR as “a process to integrate multi-
ple knowledge to drive new conclusions about the (realistic
or hypothetical) world”, which is different from memoriz-
ing or providing first-hand information. From a task-based
view, natural language reasoning is seen as a crucial method
for LLM agents to arrive at reachable solutions based on
available information (Yu et al., 2023). Recently, some re-
searchers have argued that specially designed LLM agents
are capable of generating research ideas that exceed human
experts in novelty (Si et al., 2024) and manifest the ability to
automate open-ended scientific discovery (Lu et al., 2024).

Although a fundamental mechanism underlying LLMs is
predicting the “next word”, which lacks active reasoning or
genuine creativity, the emergent capability of LLM agents
in finding solutions based on available information through
NLR presents the potential to mimic human behaviour in
complex policy-making scenarios. Conversely, if LLMs are
used without sufficient understanding or interpretation, they
can act as amplifiers of biased or erroneous data, uninfor-
mative “black box” models, or distractions from more useful
approaches.

In this paper, we explore a novel application of LLMs
to represent the behaviours of public policy institutional
agents in a large-scale, agent-based model of the land sys-
tem. We seek to represent the decision processes of pol-
icy agents through LLM simulations that are constructed
through the support of a human operator. We design a
set of LLM-powered institutional agents and couple them
with the CRAFTY land use model (Murray-Rust et al.,
2014). CRAFTY serves as an uncertain, dynamic environ-
ment where institutional agents use limited information to
achieve a well-defined policy goal by employing strategic
policy actions that influence land users’ decision-making.
The institutional agents’ performance and behavioural pat-
terns are evaluated and analysed, and the reasoning behind
a sequence of selected policy actions is investigated in de-
tail. The overall purpose is to explore the opportunities and
challenges of LLMs in modelling policy institutions beyond
existing (albeit limited) approaches.
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2 Methodology

2.1 Human-operator-centred prompt development

In contrast to conventional approaches that hard-code agents’
behaviours, an LLM-powered agent operates based on
prompts given in natural language. The efficacy of an LLM
in a simulation hinges critically on the quality of the LLM
and the prompts employed. The quality of an LLM itself is
largely dependent on the LLM’s providers. LLM end-users
mainly leverage prompts to communicate with and instruct
the LLM to achieve specific goals. Although a prompt is
simply a user input that an LLM is expected to respond to,
creating an effective prompt template is an intricate process,
particularly when integrating LLM-powered agents into spe-
cialized simulation environments. A wide array of prompt-
ing techniques has been developed, aimed at utilizing the full
potential of LLMs. These include zero-shot prompting (pro-
viding no examples in the prompt to guide the model’s out-
put) (Radford et al., 2019), few-shot prompting (using a few
examples to help the model understand the task) (Brown et
al., 2020), and chain-of-thought (CoT) prompting (Wei et al.,
2022). CoT is a crucial technique that enhances LLM reason-
ing by instructing LLMs to produce step-by-step reasoning,
leading to numerous variants, such as automatic chain-of-
thought (Zhang et al., 2022), logical chain-of-thought (Zhao
et al., 2023), and tree-of-thoughts (Yao et al., 2024) (for a
comprehensive overview of prompting techniques, see the
survey; Sahoo et al., 2024).

While these techniques are effective in guiding LLM out-
puts, there remains a significant gap in the literature regard-
ing prompt design tailored for integration with existing sim-
ulation systems. In such systems, LLMs often process dy-
namically updated inputs that evolve over time. This dynamic
nature can cause variations in model performance, making it
more challenging for developers to refine prompts efficiently.

The framework proposed in this paper addresses this chal-
lenge by offering a systematic approach to designing prompts
specifically for LLM agents integrated with existing pro-
grammed systems. This framework can incorporate exist-
ing prompting techniques and enable modellers to streamline
prompt refinement in response to dynamic inputs.

As shown in Fig. 1, our methodology for prompt develop-
ment encompasses a four-stage process (discovery, drafting,
fake-loop testing, and real-loop testing) in which the LLM
is supported by continuous engagement and refinement by a
human operator.

a. Discovery. Prompt engineering is a rapidly develop-
ing area, and a wide range of useful prompt templates
have now been developed and published for various pur-
poses. The initial phase is dedicated to comprehensive
research, including reviewing relevant literature and on-
line searches for existing templates that might align with
the simulation needs. Owing to the unique aspects of the
simulation model presented here, finding a fully formed

template was not possible. However, valuable insights
and components can often be gleaned during this phase.
For instance, few-shot learning (Brown et al., 2020) and
chain-of-thought (Wei et al., 2022) are both useful and
generalizable prompt techniques that can serve a variety
of purposes.

b. Drafting. If a suitable pre-existing template cannot be
found, the next step is to construct an initial draft. This
draft must clearly describe the tasks to be performed
by the LLM. Utilizing tools powered by LLMs, such as
ChatGPT, to improve prompts has the advantage of their
extensive pre-training data that may encompass a broad
range of prompting techniques and high-quality prompt
templates. Nonetheless, the outputs generated by LLMs
must undergo rigorous examination and iterative refine-
ment by the human operator to ensure alignment with
the simulation objectives.

c. Fake-loop testing. Upon reaching a satisfactory draft,
we proceed to the fake-loop test. This stage is particu-
larly beneficial when running actual simulation models
is resource-intensive. Fake-loop testing is similar to the
“mocking” technique in object-oriented programming
(OOP) (Xiao et al., 2024). Instead of running real simu-
lations, it mimics the behaviour of an actual simulation.
Here, simulated data – crafted by experts familiar with
the simulation model – serve as a stand-in for simulation
outcomes, allowing the assessment of a prompt without
the need for running an actual simulation. This enables
swift identification and rectification of issues within the
prompt.

d. Real-loop testing. Successful fake-loop testing paves
the way for the real-loop test, which entails the inte-
gration of the LLM with the actual simulation model.
However, challenges may arise, such as outputs that dis-
rupt the simulation due to formatting errors, necessi-
tating a restart. To mitigate such setbacks, a human-in-
loop (HIL) approach is used during the real-loop testing
phase to enhance the prompt template’s robustness and
reliability.

Through this structured approach, we refined the integra-
tion of LLM-powered agents within the simulation frame-
work, ensuring that the prompt design was not only effective
but also adaptable to the dynamic nature of real-world simu-
lations.

2.2 Applying human-in-loop (HIL) design to a real
simulation

Incorporating an HIL approach in the real-loop testing phase
offers substantial benefits, enhancing interactivity and adapt-
ability, which can lead to significant time and cost savings
throughout the development process. As depicted in Fig. 2,
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Figure 1. The operational flowchart of human-operator-centred prompt development.

the process commences with an initial prompt template as in-
put to the LLM model. This template includes foundational
information for the LLM and placeholders for dynamic up-
dates. Upon processing this input, the LLM formulates a pol-
icy proposal.

At this juncture, a human operator is required to assess the
LLM’s output for its rationality and formatting. Should the
output fall short of expectations (e.g., misunderstanding the
tasks, illogical output, or inaccurate formatting), the operator
marks a Boolean variable as false, signifying the proposal’s
rejection. Accompanying this action, the operator provides
feedback intended to refine subsequent responses from the
LLM. For instance, the LLM agent may misunderstand its
objective and propose actions that are not considered in the
land use model. The operator can leave a comment to empha-
size its objective and the boundary of action space it should
focus on. This commentary, alongside the original LLM pro-
posal, is woven into a dialogue that iteratively informs the
prompt’s evolution.

The dialogue between the LLM and the operator is pre-
served in the agent’s “memory”, ensuring that the LLM’s
learning is cumulative and contextually aware. The ac-
tionable part of the LLM’s final, operator-confirmed pro-
posal is then extracted and incorporated into the simulation
model. This model represents the environment (such as the
CRAFTY land use model) within which the agent operates.
The model reacts to the agent’s actions and produces data
that in turn become part of the feedback loop, informing the
agent’s proposals in the subsequent iteration.

This HIL process is crucial for maintaining a dynamic and
responsive testing environment, where human expertise plays
a pivotal role in guiding the LLM to generate proposals that
fit with the constraints of the task and the simulation to be
coupled with. The HIL design can serve multiple objectives.
Primarily, it leverages human examination to promptly iden-
tify and correct any issues with the LLM’s responses. For in-

stance, if the LLM misunderstands its instructions, a human
operator can clarify the error via comments without halting
the entire simulation. This capability is useful, especially in
the initial stages of simulation when the prompt template
may not be fully refined. It allows operators to observe a
broader range of responses from the LLM, accumulating in-
sights that are instrumental in subsequent prompt refinement.

A simple illustrative case is when the LLM generates a
satisfactory proposal that fails to meet specific formatting re-
quirements. An operator can guide the LLM by commenting,
“Your proposal is plausible, but it needs to be formatted as
follows . . . ”. Should the LLM continue to underperform af-
ter several interactions, the operator has the option to instruct
the LLM to output a predefined result, bypassing a complete
simulation restart. This approach not only salvages the cur-
rent simulation run but also garners additional data, enriching
the prompt engineering process post-simulation. A compar-
ison of the initial prompt draft and the final version can be
found in the Supplement.

2.3 Integration with the CRAFTY land use model

CRAFTY is an agent-based modelling framework designed
for simulating large-scale land use change (Blanco et al.,
2017; Brown et al., 2018; Murray-Rust et al., 2014). The
framework mimics land use dynamics arising from the com-
petition between, and strategic decisions of, different land
users. The land users, represented by agents in CRAFTY, ei-
ther individually or collectively, contribute to generating a
diverse range of ecosystem services, utilizing various forms
of natural capital, which represent the productive potential
of the land and socioeconomic capitals that represent the
context within which agents make decisions. The land user
agents within the model are categorized into discrete agent
functional types (AFTs) (Arneth et al., 2014). This catego-
rization is based on several criteria, including the intensity
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Figure 2. Human-in-loop (HIL) design applied to a running simulation model. In the human–LLM agent loop, the LLM agent interacts with
the human operator, while, in the LLM agent–environment loop, the LLM agent exchanges information with the programmed model, such
as the CRAFTY land use model.

of land management and the characteristics of the agents’
decision-making processes. Key factors in this categorization
encompass the degree to which profit generation is priori-
tized and their tendency to conserve land. The basic model
framework is described in Brown et al. (2018). This study
uses a newly developed emulator of the CRAFTY_EU appli-
cation (Brown et al., 2019a; Brown et al., 2021) that allows
rapid and easily adaptable simulations to be performed (see
Supplement for the emulator design and its output compari-
son with the main CRAFTY model).

Here, the CRAFTY model is coupled with the LLM-
powered institutional agents that employ policy instruments
to influence the land users’ decisions on ecosystem service
production. Figure 3 illustrates the model processes encom-
passing the eight steps that were implemented here:

1. CRAFTY was initialized by establishing the distribu-
tion of AFTs, capital maps, and demand parameters ac-
cording to a specified representative concentration path-
way (RCP) (van Vuuren et al., 2011) and shared socioe-
conomic pathway (SSP) (O’Neill et al., 2014) of cli-
mate change and socioeconomic change scenarios, re-
spectively (see Supplement for more information).

2. The institutional agents were initialized by defining pol-
icy types and policy goals. For LLM agents, these were
prescribed in their prompts.

3. Data, such as ecosystem service supply, demand, and
the gaps between them, were collected from CRAFTY
to capture the internal dynamics of the land use system.

4. Determining whether it was time for policy adaptation
was necessary to account for time lags in policy-making
(Brown et al., 2019b). If it was time for policy adapta-
tion, the process proceeded to step five; otherwise, ex-
isting policies were maintained.

5. Policies were adapted based on system observations,
institutional evaluation, and deciding on policy adjust-
ments as guided by the prompts. The LLM agent sug-
gested new policy actions.

6. Policies were applied to change the utility of AFTs.

7. CRAFTY processed with the AFTs under policy influ-
ence.

8. It was checked whether the stopping condition (e.g.,
maximum iterations) was met; if not, the cycle returned
to Step 3 for further observation and adjustment.
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2.4 Experimental settings

While CRAFTY considers a wide range of ecosystem prod-
ucts and services, the exploratory experiments presented here
focused on a single ecosystem service, meat production, un-
der the influence of institutional agents. Meat production has
significant environmental impacts: it is a major contributor to
deforestation and biodiversity loss and is the single most im-
portant global source of methane. However, meat consump-
tion continues to increase globally each year (Godfray et al.,
2018), hence the desire for policy interventions. A power-
ful economic incentive for changing consumption patterns is
the implementation of meat taxes. Here, we assign the LLM-
powered institutional agent the task of regulating meat sup-
ply through taxation, with the objective of aligning supply
with a predetermined level. Although this task appears sim-
ple, it presents significant challenges in terms of offsetting
the impact of increasing demand for meat, dynamics with
other connected ecosystem services, and the land use system
not being fully known to the agent.

We designed six types of agents, including two non-
LLM agent types, to conduct numerical experiments. The
specifics of these agent types are given in Table 1. The
prompts for the LLM-powered agent types are given in Ap-
pendix A. The LLM used here was gpt-4-1106-preview.
All LLM agents were provided with two series of histor-
ical data for their decision-making: the gap between meat
supply and the policy goal (“average errors”) and the pol-
icy actions that were implemented. To mitigate linguis-
tic confusion, the policy actions are simplified into a fi-
nite space of 11 tax change levels, represented by integers
ranging from −5 to 5 to indicate different magnitudes of
tax changes. The relevant equations and computations are
given in Appendix B. The relevant data and source code are
available at https://doi.org/10.5281/zenodo.14622334 and
https://doi.org/10.5281/zenodo.14622039 (Zeng, 2025a, b).

To better illustrate the performance and behavioural pat-
terns of the LLM-powered institutional agents, we used
agents B1 and B2 to set up two baseline scenarios. The first
baseline scenario reflects the simulation without policy in-
terventions, while the second used a genetic algorithm to
seek optimal policy interventions in which meat supply fol-
lows the prescribed target supply level. The genetic algorithm
searches for a sequence of policy actions that minimize the
sum of squared average errors (gaps between meat supply
and the target level) across all the iterations in a simulation.
These two baseline scenarios therefore give idealized limits
within which subsequent simulations can be situated.

3 Result analysis

3.1 Baseline scenarios

Figure 4 depicts meat demand (red arrowed line) and sup-
ply (solid blue curve) without policy intervention. Initially,
the meat supply mirrors the rising demand, exhibiting only
minor fluctuations. The data span 71 years, from year 0 to
year 70, with additional simulation years extending beyond
this period using the same input data as in the 70th year. This
extension allows us to observe the agent’s performance in a
relatively stable environment without being influenced by the
evolving meat demand. The policy goal, depicted as a dashed
horizontal line, is to maintain meat supply at its initial level,
challenging the agent to use taxation as a tool to minimize
the discrepancy between actual output and this target. In re-
ality, both policy objectives and market demands are crucial
for balanced policy-making. However, for this experiment,
the policy goal was intentionally set at an unrealistic level
to exert additional pressure on the agent. In contrast to the
scenario without policy intervention, the solid orange curve
represents the resultant meat supply under the optimal policy
interventions.

To visualize the agents’ behaviours and corresponding out-
comes, we use plots with dual vertical axes that simultane-
ously reflect the variation in the policy actions and in the av-
erage errors in the two baseline scenarios:

Baseline Scenario 1: Agent B1 with no policy intervention.
This scenario is depicted in Fig. 5a. It shows the average er-
ror in meat output relative to the policy goals (left axis) and
the absence of policy actions taken by the institutional agent
(right axis). It is worth noting that the average error in Fig. 5a
is essentially a re-presentation of that in Fig. 4. The average
error is calculated as “policy goal minus meat supply”. The
average error trend reveals an increasing divergence from the
policy goals, peaking at around the 70th year. After this pe-
riod, the error rate stabilizes, reflecting a system in its steady
state without further input updates.

Baseline Scenario 2: Agent B2 with optimal policy ac-
tions. Contrasting the first, the second scenario, shown in
Fig. 5b, adopts an approach based on optimization. Here,
the policy actions vary significantly over time, representing
dramatic annual changes that are unlikely to represent real-
world policy-making. However, the curve representing the
average errors exhibits an evident tendency to closely follow
the horizontal axis, indicating the efficacy of these policy ac-
tions.

3.2 Performance of the LLM agent types

3.2.1 Performance of Agent S1.1

Figure 5c shows the performance of institutional Agent S1.1.
Compared to Agent B1 without policy intervention, S1.1 has
a notable impact on meat supply. The average error peaks be-
tween −120 % and −100 % in the 70th year, in contrast with
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Figure 3. Coupling CRAFTY with LLM-powered institutional agents.

Figure 4. Changes in meat demand and supply without policy intervention. The policy goal (dashed horizontal line) is to maintain constant
meat production. Fluctuations in supply are due to a lack of simulated behaviour affecting individual land manager agents’ responses. The
unit of the vertical axis is omitted by normalization across different ecosystem services (Brown et al., 2019a).

approximately−140 % for the baseline scenario without pol-
icy intervention. A noticeable difference occurs after the 70th
year. The average error approaches zero steadily, indicating
that institutional Agent S1.1 has at that point in time found
effective policy actions to achieve the policy goal. The policy
actions taken by S1.1 are generally understandable. Initially,
the meat supply is slightly below the policy goal, resulting
in a positive average error. S1.1 chose to incrementally de-
crease the tax. When meat supply increases (driven by in-
creasing demand, which the institutional agents are unaware
of), S1.1 started to maintain or increase the tax (in contrast
to the optimizing Agent B2, which chose policy actions that

fluctuated irregularly). Starting from the fourth policy action,
all the following policy actions are non-negative, suggesting
the agent might be making plausible moves because a higher
tax is needed to counterbalance the oversupply of meat. The
sudden drop in tax change at the eighth policy action seems
unintuitive. The reason behind this is discussed in Sect. 3.3.

3.2.2 Performance of Agent S1.2

Figure 5d shows the performance of Agent S1.2. As de-
scribed in Table 1, S1.2 uses the same prompt template as
S1.1 but with a small difference in the order of the required
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Table 1. Agent types included within the experiments and their corresponding features.

Agent types Key features Description

B1 – Baseline agent;
– Not powered by LLM;
– Does nothing.

The role of Agent B1 in the simulation is
equivalent to the absence of an institutional
agent, mirroring the baseline scenario without
any policy intervention.

B2 – Baseline agent;
– Not powered by LLM;
– Policy optimizer.

Compared with B1, B2 is another extreme. B2
conducts a sequence of policy actions derived
from a genetic algorithm that seeks optimal
actions (see Supplement for implementation
and setup details).

S1.1 – Single agent;
– Powered by LLM;
– Outputting reasoning prior to final policy actions;
– No experiential learning.

S1.1 makes decisions based on the historical
data provided but with no experiential learning,
to ensure that reasoning is clear and
non-iterative and therefore easy to interpret.

S1.2 – Single agent;
– Powered by LLM;
– Outputting final policy actions prior to reasoning;
– No experiential learning.

S1.2 operates as S1.1 with the exception of the
order in which its actions and reasoning occur.
This variation is investigated because the
output sequencing is found to significantly
impact the institutional agent’s performance.

S2 – Single agent;
– Powered by LLM;
– Output reasoning prior to final policy actions;
– Using experiential learning to enhance decisions.

S2 should mimic human decisions more
accurately than S1.1 and S1.2 as its prompt
incorporates a summary of its previous outputs
for experiential learning. This means that the
agent produces substantially more textual
output to explain its decision-making.

Q – Quasi-multi-agents with five roles involved in
decision-making;
– Powered by LLM;
– The five roles include policy analyst, government official,
economist, meat producer representative, and environmentalist;
– Output a conversation among five roles prior to policy actions;
– No experiential learning.

Unlike traditional multi-agent systems where
each role is modelled as a separate entity,
quasi-multi-agents employ LLMs to simulate a
cohesive dialogue among these roles. This
methodology avoids the difficulty in explicitly
arranging the order in which agents act and
setting criteria to end a conversation, saving
time and token cost.

output. S1.2 is required to output the final policy action be-
fore giving the rationale behind its decision. As can be seen,
the policy actions taken by S1.2 are much less consistent.
S1.2 also performs poorly after the 70th year and is unable to
navigate meat supply towards the objective. We can see the
reasoning behind its policy actions, using the second policy
action as an example, which is to increase the tax by two lev-
els when the average error is positive. As shown in Fig. C1
in Appendix C, it stated in the first sentence of its output that
“a moderate tax decrease could be one approach”, which is a
reasonable action to mitigate the current undersupply issue.
However, in the next paragraph, it contradicts this by propos-
ing “+2” for the policy action, indicating an increase in tax.
This decision was supported by complex reasoning: increas-
ing tax can filter out inefficient meat producers and spur meat
production technologies, which are better for the long-term
sustainability goal. Another crucial issue captured in the out-

put text of S1.2 is that some policy actions are given without
a follow-up reasoning. Additionally, the required output for-
mat is often not strictly followed.

3.2.3 Performance of Agent S2

When contrasted with S1.1, S2 exhibits a notably incremen-
tal approach to policy actions, as shown in Fig. 5e. The tax
level adjustments are mainly minimal, consistent with the
smallest possible change. This pattern of incremental change
is initiated from the second policy action and progressively
escalates, reaching a higher intensity towards the simula-
tion’s end. Intriguingly, the policy action sharply reverts to
zero in the final phase, suggesting that S2 reaches a deci-
sion to maintain the current tax level, deeming it optimal.
This gradual and deliberate strategy in policy action results
in a smoother meat supply curve, effectively meeting the set
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Figure 5. The average error in meat output relative to policy goals and the policy actions taken by the institutional agents (defined in Table 1).
The average error is calculated as policy goal minus meat supply. Negative average errors indicate oversupply.

policy goal. Such measured and incremental actions align
more closely with human decision-making processes, reflect-
ing the nuanced impact of experiential learning in the sce-
nario.

3.2.4 Performance of Agent Q

Agent Q epitomizes a quasi-multi-agent ensemble, embody-
ing five distinct roles engaged in deliberation and negotiation
(as shown in Table 1). Despite a concerted effort, the aver-
age error curve (see Fig. 5f) indicates that the group’s perfor-
mance was suboptimal. While the error magnitude was less
severe than that of S1.2, it exceeded that of S1.1 and S2.

Upon examining the internal dialogues of Agent Q (Ta-
ble A5 in Appendix A), the sophistication of the LLM be-
comes apparent. Each role upholds unique priorities and re-
sponsibilities, contributing to a multifaceted discussion. The
discourse typically begins with the policy analyst, who accu-
rately interprets the data and highlights the supply shortfall
relative to demand, reiterating the objective to sustain meat

production at baseline levels. The government official then
synthesizes insights from the collective, while the economist
briefly evaluates the fiscal implications of tax adjustments.
The meat producer representative and environmentalist voice
their sector-specific concerns and policy preferences. Ulti-
mately, the government official is tasked with formulating a
policy response.

Although Agent Q’s roles do not collectively achieve the
policy goal, they offer an array of believable stakeholder per-
spectives – an indispensable aspect that poses a considerable
challenge for conventional modelling approaches. The result-
ing policy actions reflect the inherent difficulty in harmo-
nizing diverse interests. Notably, the government official’s
actions are characterized by prudence, as evidenced by the
narrow range of policy adjustments, oscillating between −2
and +2, to avoid excessive opposition. This conservative ap-
proach underscores the complexity of policy-making in a
multi-stakeholder context where a balancing act is as criti-
cal as the policy decisions themselves.

https://doi.org/10.5194/esd-16-423-2025 Earth Syst. Dynam., 16, 423–449, 2025



432 Y. Zeng et al.: Exploring the opportunities and challenges of using large language models

Figure 6. Selected key policy actions executed by Agent S1.1.

3.3 Dive into the “brain”

While LLM models are often perceived as opaque, LLM-
powered agents can offer the compelling ability to articulate
human-comprehensible reasoning for their actions, providing
a window into the decision-making processes that drive their
behaviour. Such transparency is not only instrumental in val-
idating the agents’ credibility but also serves as a source of
inspiration for enhancing institutional models and informing
real-world policy decisions. One of the challenges, however,
lies in the voluminous textual output generated when these
agents are integrated with simulation models, making it im-
practical to display and analyse systematically.

To navigate this, we concentrate on a subset of the data
that offers significant insights. Specifically, we have distilled
the textual output down to five key policy actions executed
by Agent S1.1, focusing on the rationale that underpins these
decisions. Agent S1.1 is selected here because, in general,
it demonstrated believable actions, yet its reasoning is less
history-dependent, which makes it easier to interpret through
an in-depth investigation of the large volume of textual out-
put. This investigation provides a valuable glimpse into the
“thought processes” of the institutional agent. Figure 6 marks
these pivotal moments, numbered using Roman numerals
from I through V, allowing us to dissect and understand the
logic applied at each juncture.

Action I: How did the agent reason with insufficient
information?

The initial policy decision by an institutional agent is often
the most challenging due to the lack of historical data. De-
tailed in Fig. C2 in Appendix C, the agent begins its reason-
ing by acknowledging this. The agent then turns to founda-
tional economic principles to guide its decision-making pro-
cess, aligning with the policy goal. The agent outlines the
economic theory underlying the use of taxation to influence
meat production levels before delving into the specifics of the
policy action required. It considers the industry’s response
time to policy changes and the potential for overreaction. Af-

ter weighing these factors, the agent chose a conservative ap-
proach, adjusting the tax by a moderate “−2”. This decision
reflects a strategic balancing act: it is cautious to mitigate the
risk of radical industry reactions yet still steers towards the
policy goal.

Action II: How did the agent deal with the first overshoot?

Following a period of increased taxation, the institutional
agent observed an overshoot in meat supply relative to the
policy target. The agent conducted an analysis to identify
the cause of this discrepancy. It concluded that the overshoot
was a result of its earlier decision to reduce the tax by three
levels. From the modeller’s perspective, it is apparent that
the primary driver of the overshoot was the rapidly increas-
ing demand, rather than the tax adjustment, but the agent is
not aware of this fact. Given the limited data available to the
agent, its attribution, while inaccurate, is understandable.

As shown in Fig. C3 in Appendix C, in response to this
perceived causation, the agent selected a conservative correc-
tive measure, implementing a modest tax increase of “+1” to
rectify the minor discrepancy. Interestingly, the agent seem-
ingly confuses the policy goal of maintaining supply lev-
els with an erroneous objective of matching supply to de-
mand. This confusion likely stems from the stochasticity in-
herent in its generative response and the data with which it
was provided. During the development of the prompts, we
observed the agent’s recurring misunderstanding of the ob-
jectives. To prevent further confusion and to streamline the
agent’s decision-making, we intentionally omitted demand
information from the prompts. This decision highlights the
challenge in prompt engineering, where the inclusion or ex-
clusion of specific data points can significantly influence the
agent’s understanding and subsequent actions.

Action III: How did the agent explain this counter-intuitive
action?

The third highlighted decision point presents a somewhat
counter-intuitive choice by the institutional agent, especially
in the context of the rapidly expanding average error. Logic
would suggest that the agent should further increase the tax
to mitigate the excess in meat supply overshooting the policy
target. However, as detailed in Fig. C4 in Appendix C, the
agent opted to maintain the current tax level. This decision
was based on its assessment that the market required more
time to fully respond to its previous significant policy action
of a “+3” tax increase.

This approach reflects the agent’s consideration of the time
lag inherent in market reactions to policy changes. The de-
cision to hold steady on the tax rate, rather than implement
further increases, was informed by the understanding that the
“+3” adjustment was the most substantial move it had made
since the simulation’s inception. The agent’s choice to allow
the market time to adjust to this major policy shift, rather than
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immediately introducing another change, indicates a level of
strategic foresight.

Action IV: What led the agent to change its action?

After a period of maintaining a consistent tax level, the insti-
tutional agent made a notable change, increasing the tax by
two levels. As detailed in Fig. C5 in Appendix C, this deci-
sion appears to stem from the agent’s growing suspicion that
factors beyond the scope of its existing data and prompt in-
structions were influencing the market dynamics. Although
this suspicion is speculative, it is a plausible consideration
given the complexity of the land system it is dealing with,
and it was actually correct in this case.

However, the agent’s analysis reveals a misinterpretation
of the cause-and-effect relationship in the data. It mistakenly
attributed the increasing average error to its prior decisions
to raise taxes. While the data show a negative correlation be-
tween tax increases and the average error, it is illogical to
speculate that the tax hikes are solely responsible for exacer-
bating the situation. This misattribution stands in contradic-
tion to the agent’s subsequent decision to further increase the
tax.

Moreover, by examining the agent’s reasoning, one can
notice the rationale provided by this agent is muddled. While
the decision to increase the tax could be seen as a logical
response to the perceived need for corrective action, the rea-
soning process the agent employs lacks clear logical coher-
ence. This disconnect between the agent’s final decision and
its reasoning highlights potential areas for improvement in
the agent’s decision-making framework and the prompts that
guide it.

Action V: What made the agent brake?

Action V represents a proactive approach. Upon reviewing
the outcomes of its recent actions and the corresponding fluc-
tuations in the average error, the agent acknowledged the
effectiveness of these measures. Recognizing the potential
risks associated with overcorrection, especially given that its
most recent policy involved the maximum possible increase
in tax, the agent proceeded with caution.

In its decision-making process, as outlined in Fig. C6 in
Appendix C, the agent carefully weighed the implications of
further tax adjustments, comparing the potential outcomes of
increasing the tax by +2, +3, and +4. Eventually, it settled
on a+3 increase, which maintains the increasing trend of tax
but at a slower pace, akin to a driver slowing down when the
destination is close.

This reasoned and well-articulated approach in Action V
notably contrasts with the less coherent rationale observed in
Action IV. This disparity in the quality of reasoning between
Action IV and Action V implies a key characteristic of LLM-
powered agents: their performance can be variable and some-
what unpredictable. While Action V reflects a higher level of

analytical sophistication and logical consistency, the incon-
sistency in performance across different iterations highlights
the challenges in achieving stable and reliable outputs from
LLM-powered agents. This variability points to the ongoing
need for refinement and development in the application of
LLMs in complex decision-making contexts.

4 Discussion

The experiments presented here reveal that LLM-powered
agents, representing institutional decision-makers, display a
spectrum of behaviours and reasoning processes that closely
resemble human decision-making. These behaviours emerge
naturally, unscripted by modellers, and encapsulate complex
aspects of human cognition, which are traditionally chal-
lenging to simulate. At the same time, inconsistencies in
decision-making within and between agents suggest specific
challenges (and solutions) for the future use of LLM agents
in this domain.

In our experiments, LLM-powered institutional agents are
able to move modelled outcomes towards their objectives but
do so less well than an agent powered by an optimizing ge-
netic algorithm. These results align with our expectations,
especially given the bounded rationality and imperfect infor-
mation available to the LLM. Among agents, we find that
the ability to learn from past experience improves outcomes,
as does, unexpectedly, a requirement to provide reasoning
before making a decision. When this order is reversed, ac-
tions are found to be inconsistent with the reasoning pro-
vided, which aligns with previous research that found the
order of prompts prominently affects the performance of pre-
trained language models (Lu et al., 2021). In this study, we
used GPT-4, which is a generative language model. Genera-
tive language models can be simply deemed as textual com-
pletion machines; they require prompts to initialize the con-
text guiding their textual output, and newly generated texts
add to the context for further output. That is, a generative
language model uses its output to continuously update its
context (Goldstein et al., 2022). Therefore, the order of out-
put does matter. One can confirm this by asking ChatGPT-4
a simple question: “Is 3 75 % of 4?” This question elicits
an incorrect answer, followed by an admission of confusion
and a correction (Fig. C7 in Appendix C). If asked to give
reasoning (“Is 3 75 % of 4? Give your reasoning before an-
swering”), the response is correct (Fig. C8). This finding is
consistent with the idea of chain-of-thought, which contends
that a generative language model performs better if it outputs
answers step by step (Wei et al., 2022). The step-wise output
not only represents the outcomes but also a way of context-
building. A prompt might only work as an initial trigger, but
the generative language model needs self-prompting to com-
plete the response appropriately.

Although the textual completion functionality seems arti-
ficial, it is intuitively consistent with how humans behave. It
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is normal for a human to have an illusion of understanding an
issue until being required to articulate or explain that issue to
others or to recognize logical gaps during verbal explanations
(Ericsson and Simon, 1998; Keil, 2006). In other words, we
need to properly prompt our neurons to give appropriate out-
put. This does not imply anything more than superficial sim-
ilarity in the behaviours of people and LLMs (Fokas, 2023),
and this superficial similarity can easily mislead, but it does
add interest to the use of LLMs as agents in simulation mod-
els.

Further interest is provided by our experiment with the
multi-faceted “Agent Q”. While performing less well than
others in achieving its policy goal, this agent generated con-
textually coherent conversations between five critical policy-
relevant roles. The conversation captures each role’s charac-
teristics and interests, particularly demonstrating the policy-
maker struggling to balance the interests of the meat pro-
ducer and the environmentalist. It should be noted that
the setup of Agent Q reflects a political system modelled
on broadly European Union (EU)-like democratic systems,
which may not be generalizable to regions where political
power is highly centralized. Agent Q is a group of quasi-
multi-agents. Quasi here means the agents are different from
real multi-agents, each of which has an independent and
relatively complete cognitive system. Several studies have
applied LLMs to multi-agent systems, where each agent
has an independent cognitive system. For instance, Park et
al. (2023) built an artificial village consisting of 25 LLM-
powered villager agents, and Qian et al. (2023) simulated a
software development team with different roles. Agents in
such multi-agent systems have different personalities, tar-
gets, memories, etc., which together form a unique prompt
triggering their responses. Such systems are convenient for
LLMs to generate short conversations between a pair of
agents but can become cumbersome for conversations in-
volving more than two agents. As above, the order of text
generation can affect performance in an LLM, and numerous
equally valid orders are possible when communicating in a
group conversation, possibly leading to open-ended outputs.
Our use of quasi-multi-agents hands control to the LLM, sav-
ing time and token fees.

Besides investigating the quantitative performance of the
agents, we also qualitatively analysed the output of Agent
S1.1, which made decisions after providing reasoning and
without learning from experience. Agent S1.1 was found to
eschew drastic changes, instead opting for a series of cau-
tious, incremental steps aligned with the principles of incre-
mentalism – a well-known theory in political science that
describes policy-making processes under cognitive and re-
source constraints (Lindblom, 2018). Incrementalism posits
that policy-makers often employ heuristics and make mod-
est, tentative changes to gradually achieve policy objec-
tives (Pal, 2011), reflecting an important aspect of policy-
making in real-world scenarios, e.g., environmental regu-
lations (Coglianese and D’ambrosio, 2007; Fiorino, 2006;

Kulovesi and Oberthür, 2020) and budgeting (Greenwood
et al., 2022; Hammond, 2018; Seal, 2003). Compared with
Agent B2, the “policy optimizer”, the behaviour of Agent
S1.1 more closely resembles human decision-making, char-
acterized by bounded rationality (Jones, 2002, 2003; Simon,
1990). In addition, Agent S1.1 exhibits an acute awareness
of the time lags inherent in the land use system’s response to
policy shifts. It strategically maintains a consistent tax rate,
allowing time for the system to adapt and provide feedback –
a practice mirroring real-world institutions, which typically
avoid frequent policy changes to accommodate the time re-
quired for land users to adjust to new policies. Additionally,
the agent demonstrates an understanding of the diminishing
returns associated with taxation, a critical consideration in
economic policy. As the policy objective nears realization,
Agent S1.1 reduces tax increment to mitigate potential over-
adjustment. This action reflects a proactive and adaptive ap-
proach that resembles that of real-world policy-makers suf-
ficiently closely to provide meaningful information to model
users.

4.1 Opportunities

LLMs are an unprecedented, powerful approach to modelling
institutional agents and provide a number of opportunities.

Believable naturalistic institutional decision-making. Re-
cent research has demonstrated that LLM-powered agents
can manifest believable behaviours (Horton, 2023; Park et
al., 2023; Qian et al., 2023). Such a feature is derived from
LLMs’ unique advantages in dealing with natural language,
which is a crucial aspect of human behaviour. One could ex-
pect that LLM-powered institutional agencies would not only
replicate the human aspect of real-world institutional agen-
cies but also offer a transparent and understandable way to
examine how these modelled institutions make their deci-
sions and how their believable behaviours impact the land
system.

Working with massive official documents. Although not
demonstrated in this research, it is noteworthy that LLMs
are particularly adept at dealing with massive textual materi-
als. Combined with retrieval-augmented generation (RAG),
LLMs can generate output based on a user’s database. Given
that there exist considerable amounts of textual materi-
als regarding policies, regulations, laws, and other institu-
tional interventions, LLM-powered agents can inform their
behaviours to an extent unmanageable using conventional
methods.

Teaching instead of training LLMs. Another potential ap-
plication of LLMs is to teach LLM-powered agents to decide
in ways that we want to investigate. Since LLMs can respond
to prompts effectively, modellers, together with stakehold-
ers, can teach the agents to make decisions. The teaching
process could be embedded within the HIL framework de-
veloped in this research. Beyond troubleshooting, the HIL
design can facilitate user engagement in teaching, participat-
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ing, or even steering the simulation narrative by introducing
new elements that direct the agent’s subsequent actions. Ulti-
mately, when integrating formal computational models with
LLMs, our HIL design offers enhanced flexibility and user
participation in simulations.

Institutional agent networks. Institutions involved in land
use change policy-making are not separate individuals. In-
stead, they can form multi-level, multi-centred structures.
For instance, González (2017) identified that the institu-
tional agents involved in the Swedish forestry sector in-
clude environmental NGOs, forest owner associations, re-
search suppliers, and a hierarchical government. It might be
difficult for conventional modelling techniques, such as rule-
based agents, to model the interactions between institutional
agents, such as lobbyists, because their interactions incorpo-
rate extensive unstructured information. For example, land
user associations and environmental NGOs may have con-
flicting advocacies expressed in words, which are challeng-
ing to formalize using mathematical equations or code. Al-
though we can simplify their interactions to fit conventional
methods, it often involves over-simplification/abstraction.
LLM agents provide a relatively straightforward way to sim-
ulate the unstructured information exchange between these
actors (Zeng et al., 2024b).

Human–AI cooperation. In some scenarios, LLMs still
face the issue of scalability. The time an LLM takes to re-
spond and the token fee its response consumes are both bar-
riers to applying LLMs in large-scale simulations. However,
LLMs can serve as decision supporters and give advice in
the face of different situations. Such a decision supporter can
also be embedded in the HIL framework, where the LLM-
powered agents are no longer taught to make decisions but
to cooperate with the modeller to design proper policy ac-
tions. Moreover, modellers can get useful inspiration from
this communication, which in turn can benefit modelling in-
stitutions using conventional methods. For instance, the ex-
perimental results show that the institutional agents gener-
ally eschew making drastic policy changes and intentionally
leave time lags for existing policies to manifest full influ-
ence. These are important factors to consider even if using
conventional modelling approaches.

4.2 Challenges

Notwithstanding the above opportunities, LLMs are not
a panacea for social simulation. The scalability of LLM-
powered agents to match the scale of large land use simu-
lations is still a challenge that requires further exploration.
Through this exploratory research, five further crucial chal-
lenges have been identified, and they are ranked below ac-
cording to their manageability, from lowest to highest.

Provider dependency. The reliance on LLM providers
presents a critical issue. The performance of an LLM is
largely in the hands of its providers, rather than the users.
If an LLM is sub-par, users are compelled to switch to an al-

ternative or wait for its improvement. The prohibitive costs
associated with training and maintaining a high-performing
LLM render it unrealistic for users to independently manage
an LLM. This dependence leads to costs incurred through
API usage, which encompasses both the token fee and the
response time. These factors pose substantial obstacles for
applications such as large-scale land use simulations. While
technological advancements may lead to reduced API costs
and shorter response times, these improvements are contin-
gent on the providers’ efforts and timelines, leaving users
with little influence over these enhancements. Open-source
LLMs could be potential solutions to this issue, but they still
require further testing (Chen et al., 2023).

“Unrealistic realism” paradox. This paradox arises from
the contrast between the goal of simulating realistic agent be-
haviours and the necessary simplifications inherent in these
models. Large-scale models are necessarily abstractions that
simplify the real world into manageable concepts, yet the in-
tegration of LLM-powered agents aims to infuse these simu-
lations with a layer of human-like realism. The challenge in-
tensifies when considering the complexity of educating these
agents about the model’s context, either through extensive
prompts or external information retrieval. The dilemma lies
in expecting these agents to exhibit behaviours that resemble
those of real humans closely enough to make the modelling
worthwhile, while simultaneously operating within the con-
straints of a model built on abstracted and sometimes unre-
alistic or unknown assumptions. This paradox underscores
a critical issue that needs to be tested: how realistic can
LLM behaviour be if unrealistic assumptions are used in its
prompts?

“Unbelievable believability” paradox. LLMs introduce an
effective method for modelling and exploring the “minds” of
social agents. Nonetheless, a notable challenge arises when
the primary concern is to relate emergent outcomes to in-
dividual agent interactions. For instance, in modelling the
dynamics of 20 000 land users, the core interest might be
in observing the landscape’s evolution over decades, driven
by communicative, cooperating, and competing land user
agents. However, the numerous textual interactions between
these agents can become excessive and difficult to anal-
yse systematically. Especially when an agent’s behaviour
is driven by experiential learning such as Agent S2 in this
research, verifying the absence of hallucination (Ye et al.,
2023) or incoherence in an agent’s reasoning poses a consid-
erable challenge. There is an inherent irony in utilizing LLMs
to endow agents with believable social behaviours, only to be
confronted with the difficulty in assuring their believability.

LLM biases. While the experiments in this paper are not
aimed at evaluating LLM biases, it is important to acknowl-
edge the potential for biases arising from various sources,
such as prompt design, pre-training data, fine-tuning pro-
cesses, and the underlying mechanisms of the models them-
selves (Gallegos et al., 2024). Such biases can impair the
models’ ability to simulate human behaviour if not han-
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dled cautiously. For instance, using Llama 2 7B, Zhou et
al. (2024) explored how these models may inherently prefer
certain responses, exhibit a bias toward the most recent ex-
amples in prompts, and show a selection bias when presented
with multiple-choice questions. Moreover, LLMs have ex-
hibited biases in political contexts (Zhou et al., 2024) and
cultural biases (Liu, 2024), such as favouring Western cul-
tural values, as English text contributes a large part of the
training data (Tao et al., 2024). As of now, there is no estab-
lished method to completely eliminate these biases. Never-
theless, it might be more insightful for researchers in human
behaviour modelling to identify and scrutinize these biases.
This is because biases can reveal underlying aspects of hu-
man cognition (Caverni et al., 1990). As noted in Taubenfeld
et al. (2024) and Tao et al. (2024), it is possible to manipulate
these biases by fine-tuning the LLMs or improving cultural
alignment through prompt design. Therefore, future research
in human behaviour simulations could gain from precisely
identifying and adjusting LLM biases to align with specific
research goals.

Inaccurate formatting. The challenge of formatting is piv-
otal when integrating LLMs with formal models, given that
LLM outputs are strings. This integration requires precise
formatting for proper functioning. For example, in the exper-
iments presented here, policy actions are bracketed between
hashtags to ease the extraction of desired outcomes from the
output string. Despite clear guidelines, LLM adherence to
this format remains unpredictable. Such formatting incon-
sistencies can severely disrupt simulations, especially those
requiring multiple iterations, as formal models may fail to
recognize incorrectly formatted outputs, especially given the
LLM’s boundless creativity in formatting. These issues could
be mitigated by the abovementioned HIL prompt design ap-
proach, standard JSON format, using data validation libraries
(e.g., Pydantic, 2025) together with a self-reflection mech-
anism (Renze and Guven, 2024a) or cost-intensive means
such as customized training or fine-tuning. But another ap-
proach drawing from software engineering concepts such as
“domain objects” may be more promising: this approach in-
volves deploying an additional LLM-powered agent dedi-
cated to formatting outputs. This strategy separates “domain
agents”, which represent entities within the simulation, such
as policy-makers and NGOs, from “technical agents” respon-
sible for tasks such as formatting, information extraction,
and managing dialogues. However, theoretically, generative
language models seem to have no means to ensure the pre-
cision of formatting, unlike computer programs that ensure
data types, which might cause scalability issues in simula-
tions requiring a multitude of iterations.

Prompt design and error handling. While numerous effec-
tive techniques for prompting LLMs have been proposed by
researchers and AI practitioners, crafting effective prompts
remains a formidable task, particularly in the context of so-
cial simulations. Unlike traditional coding, prompts offer
greater flexibility but lack safeguards such as syntax or data-

type checks, which are essential in minimizing errors. When
prompts become lengthy and encompass complex informa-
tion, it is challenging for users to detect subtle contradictions.
This issue is exacerbated during iterative refinement, where
inconsistencies might be inadvertently introduced. Addition-
ally, the absence of a mechanism akin to exception handling
in programming means that identifying flaws in prompt de-
sign relies heavily on laborious human examination.

Reproducibility. In this exploratory research, the focus was
on probing the logical consistency of LLM agents’ outputs
and their integration with existing land use models. How-
ever, it is worth noting that stochasticity is an inherent char-
acteristic of LLMs, and it might be useful to highlight some
challenges in reproducibility. In principle, to enhance out-
put reproducibility, specific conditions must be met, such
as using a fixed random seed, the same model version and
configuration, and identical prompts. Token sampling tem-
perature is a key hyperparameter that controls the diversity
of LLM outputs. A lower temperature (e.g., 0) increases
determinism, while higher temperatures can lead to more
diverse but potentially nonsensical outputs (Peeperkorn et
al., 2024). While the model’s outputs may vary across sim-
ulations, they should be statistically reproducible to make
meaningful token predictions. This is supported by Renze
and Guven (2024b), who investigated temperature effects on
problem-solving performance and found no statistically sig-
nificant performance variability within a wide temperature
range of 0 to 1.

Operational challenges may also emerge during experi-
ments with LLM agents. As to the experiments presented
here, we had to deal with API connection failures that fre-
quently disrupted simulations, necessitating extra compli-
cations in handling failures and resulting in increasing to-
ken costs and unpredictable simulation times. Additionally,
large-scale repetitions pose challenges due to API rate lim-
its imposed by LLM providers, requiring intentional delays
between API calls (e.g., see the rate limits of OpenAI APIs;
OpenAI Platform, 2025). Despite these limitations, the rapid
advancement in LLM technology makes larger-scale simula-
tions with sufficient repetitions increasingly feasible. For ex-
ample, the DeepSeek-V3 model (DeepSeek-AI et al., 2024)
has removed prescribed API rate limits (DeepSeek Platform,
2025a) and offers a significantly more affordable pricing
structure compared to its competitors (DeepSeek Platform,
2025b).
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Appendix A

Table A1. Prompt for Agent S1.1.

Simulation Role: Assistant to Economic Policy-maker in Land Use Change Scenario.
Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals.
Policy Tools: Taxes for regulating meat production levels.

Information Provided:

1. General Context: As an assistant, propose tax-based policies for meat production management.
Interaction with policy-maker is crucial for refining decisions and enhancing your policy-making.
2. Data:
– Policy goal: {policy_goal}
– Average error (avg_err):{ avg_err}.
– Historical policy actions: { hist_ actions}
3. Recent interaction with policy-maker: {convers}

Guidance for Decision-Making:

– Use historical data and policy-maker feedback for policy adjustments.
– Aim to minimize the absolute value of avg_err.
– Provide logical, sequential reasoning.
– Reflect on interactions with policy for current decision enhancement.

Interaction Instructions:

1. Review historical information, recent interactions with policy-maker.
2. Assess the impact of previous policies.
3. Develop your policy rationale in a step-by-step manner.
4. Propose a specific policy action.

Required Output Format:

1. Proposal Reasoning: [Your explanation]
2. Policy Action Proposal Without Reasoning:
– Indicate your proposed tax policy change using symbols and numbers.
– Use “+” to signify an increase in tax levels, “−” for a decrease, and “0” to maintain the current level.
– Accompany “+” or “−” with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
– Examples: “+3” for a moderate increase, “−1” for a slight decrease.
– If proposing to maintain the current tax level (“0”), no additional number is needed.
– Surround the proposed action using a pair of hashtags
[Indicate your proposal here, e.g., “#+3#”, “#−2#”, “#0#”]

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: “#−1#”
2. Policy Action Proposal without reasoning: “#+3#”
3. Policy Action Proposal without reasoning: “#−5#”

Note:

Always specify a clear policy action. If uncertain, propose a tentative action based on available data.
Don’t fake interaction with policy-maker if there is no interaction yet.
avg_err>0 means meat undersupply, while avg_err<0 means meat oversupply.
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Table A2. Prompt for Agent S1.2.

Simulation Role: Assistant to Economic Policy-maker in Land Use Change Scenario.
Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals.
Policy Tools: Taxes for regulating meat production levels.

Information Provided:

1. General Context: As an assistant, propose tax-based policies for meat production management.
Interaction with policy-maker is crucial for refining decisions and enhancing your policy-making.
2. Data:
– Policy goal: {policy_goal}
– Average error (avg_err):{avg_err}.
– Historical policy actions: {hist_actions}
3. Recent interaction with policy-maker: {convers}

Guidance for Decision-Making:

– Use historical data and policy-maker feedback for policy adjustments.
– Aim to minimize the absolute value of avg_err.
– Provide logical, sequential reasoning.
– Reflect on interactions with policy for current decision enhancement.

Interaction Instructions:

1. Review historical information, recent interaction with policy-maker.
2. Assess the impact of previous policies.
3. Develop your policy rationale in a step-by-step manner.
4. Propose a specific policy action.

Required Output Format:

1. Policy Action Proposal Without Reasoning:
– Indicate your proposed tax policy change using symbols and numbers.
– Use “+” to signify an increase in tax levels, “−” for a decrease, and “0” to maintain the current level.
– Accompany “+” or “−” with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
– Examples: “+3” for a moderate increase, “−1” for a slight decrease.
– If proposing to maintain the current tax level (“0”), no additional number is needed.
– Surround the proposed action using a pair of hashtags
[Indicate your proposal here, e.g., “#+3#”, “#−2#”, “#0#”]
2. Proposal Reasoning: (Your explanation)

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: “#−1#”
2. Policy Action Proposal without reasoning: “#+3#”
3. Policy Action Proposal without reasoning: “#−5#”

Note:

Always specify a clear policy action. If uncertain, propose a tentative action based on available data.
Don’t fake interaction with policy-maker if there is no interaction yet.
avg_err>0 means meat undersupply, while avg_err<0 means meat oversupply.
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Table A3. Prompt for Agent S2.

Simulation Role: Assistant to Economic Policy-maker in Land Use Change Scenario.
Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals.
Policy Tools: Taxes for regulating meat production levels.

Information Provided:

1. General Context: As an assistant, propose tax-based policies for meat production management.
Interaction with policy-maker is crucial for refining decisions and gaining your experience in policy-making.
2. Data:
– Policy goal: {policy_goal}
– Average error (avg_ err):{avg_err}.
– Historical policy actions: {hist_actions}
3. Recent interaction with policy-maker: {convers}
4. Experience: {exp}

Guidance for Decision-Making:

– Use historical data and policy-maker feedback for policy adjustments.
– Aim to minimize the absolute value of avg_err.
– Provide logical, sequential reasoning.
– Reflect on experience for current decision enhancement.

Interaction Instructions:

1. Review historical information, recent interaction with policy-maker, and your experience.
2. Assess the impact of previous policies.
3. Develop your policy rationale in a step-by-step manner.
4. Propose a specific policy action.

Required Output Format:

1. Proposal Reasoning: [Your explanation]
2. Policy Action Proposal Without Reasoning:
– Indicate your proposed tax policy change using symbols and numbers.
– Use “+” to signify an increase in tax levels, “−” for a decrease, and “0” to maintain the current level.
– Accompany “+” or “−” with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
– Examples: “+3” for a moderate increase, “−1” for a slight decrease.
– If proposing to maintain the current tax level (“0”), no additional number is needed.
– Surround the proposed action using a pair of hashtags
[Indicate your proposal here, e.g., “#+3#”, “#−2#”, “#0#”]

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: “#−1#”
2. Policy Action Proposal without reasoning: “#+3#”
3. Policy Action Proposal without reasoning: “#−5#”

Note:

Always specify a clear policy action. If uncertain, propose a tentative action based on available data.
Don’t fake interaction with policy-maker if there is no interaction yet.
avg_err>0 means meat undersupply, while avg_ err<0 means meat oversupply.
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Table A4. Prompt for Agent Q.

Engage in a role-playing conversation about tax policies affecting meat production, integrating data analysis and diverse perspectives.

∗∗Background Data:∗∗

– ∗∗Historical Policy Actions∗∗ (updated every five years): {policy_actions}
– ∗∗Meat Demand ∗∗ (averaged every five years): {meat_demand}
– ∗∗Meat Supply∗∗ (averaged every five years): { meat_supply}
– ∗∗Policy goal∗∗ maintain the meat production at: {policy_goal}

∗∗Roles and Responsibilities:∗∗

1. ∗∗Policy Analyst:∗∗ Begin the conversation by interpreting the provided data.
2. ∗∗Government Official:∗∗ Strive to achieve policy goal. Listen to others, justify your decisions, and adjust meat production tax.
3. ∗∗Economist:∗∗ Analyze the cost-benefit of policy proposals, considering budget impacts, taxpayer implications, and overall eco-
nomic effects. Highlight risks and opportunities.
4. ∗∗Meat Producer Representative:∗∗ Voice the concerns and views of meat producers. Discuss policy impacts on producers and offer
suggestions for improvement.
5. ∗∗Environmentalist:∗∗ Focus on the environmental impacts of meat production. Propose policy adjustments for environmental pro-
tection.

∗∗Required Output and Format:∗∗

– ∗∗Conversation Flow:∗∗ Engage each role in a structured dialogue, reflecting their unique perspectives and data interpretation.
– ∗∗Policy Action:∗∗ Extract the final policy action from the conversation and output it in required format below:
– Indicate the official’s policy action using symbols and numbers.
– Use “+” to signify an increase in tax levels, “−” for a decrease, and “0” to maintain the current level.
– Accompany “+” or “−” with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
– Examples: “+3” for a moderate increase, “−1” for a slight decrease.
– If proposing to maintain the current tax level (“0”), no additional sign is needed.
– Surround the proposed action using a pair of hashtags

Here are three examples to show the format to output Policy Action:

1. “#−1#”
2. “#+3#”
3. “#−5#”

∗∗Example Dialogue Structure:∗∗

1. Policy Analyst provides data summary and initial observations.
2. Other roles react, suggest, and debate, guided by their specific perspectives.
3. Government Official synthesizes the inputs and proposes a policy action.
4. Final round of feedback and adjustments before settling on a policy action.

Note:

Do not use hashtags in the dialogue. Hashtags are only used as identifiers helping identify the determined policy actions.
Important: “+” means increase tax; “−” means decrease tax.
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Table A5. A conversation of quasi-multi-agents.

– ∗∗Historical Policy Actions∗∗ (updated every five years): 0, −2, −1, −1
– ∗∗Meat Demand ∗∗ (averaged every five years): [1.01, 1.1, 1.23, 1.36]
– ∗∗Meat Supply∗∗ (averaged every five years): [0.88, 0.89, 1.04, 1.21]

∗∗Policy Analyst∗∗: Let’s initiate our discussion by observing the recent trends outlined by our data. We have a scenario where meat
demand is rising steadily (from 1.01 to 1.36 over the spanned periods). However, supply started below demand at 0.88 and is catching
up but still hasn’t met demand, now at 1.21. It appears that previous policy actions, which have consistently lowered taxes or subsidies
on meat production (−2, −1, −1), have stimulated an increase in supply, but not enough to meet demand. Given our policy goal of
maintaining meat production at a stable level of 1, adjustments in policy are likely necessary to close the gap.

∗∗Government Official∗∗: Thank you for your analysis. It’s clear that we need to bridge the gap between supply and demand to reach
our policy goal. I am calling on the perspectives of our stakeholders before we determine the nature of the adjustments needed.

∗∗Economist∗∗: I’d like to offer a cost-benefit perspective on potential policy actions. If we’re considering taxation as our policy lever,
increasing taxes may slow down the growth of demand to match supply better, but we must tread carefully. Over-taxing could harm
the meat industry, affect jobs, and raise the price for consumers disproportionately. Alternatively, decreasing taxes further may risk
oversupply if our production ramps up too significantly.

∗∗Meat Producer Representative∗∗: The trend in increasing demand is advantageous for us as producers; it means our market is
growing. Any increase in taxes could reduce our margins and hamper our ability to invest in expanding production. On the other hand,
more significant supports or reduced taxes would certainly help us to increase supply, but it’s not solely a question of tax rates – we
also need to consider other barriers to scaling up production, like feed costs, land availability, and export markets.

∗∗Environmentalist∗∗: It’s crucial we don’t overlook the environmental repercussions of intensifying meat production. The pursuit of
balancing supply with rising demand must not lead to lax environmental regulations. Rather, it should incentivize sustainable
practices. Perhaps an eco-tax on meat could be applied, with revenues redirected to support eco-friendly farming practices, helping to
maintain the balance of production with minimal environmental damage.

∗∗Government Official∗∗: Each of your points is valid. It’s a careful balance between nurturing the meat industry and ensuring
affordability and environmental sustainability. From this, I’m inclined to propose a slight tax incentive to encourage increased
production while maintaining vigilance on environmental practices. If demand continues to grow, however, we may need to revisit and
potentially increase taxes to temper demand growth while encouraging sustainable practices. Based on our discussion, I am proposing
the following:
∗∗Policy Action∗∗: #+1#

∗∗Policy Analyst∗∗: A moderate increase in taxation may help to gradually steer both supply and demand towards equilibrium while
avoiding sudden market disruption. However, we should closely monitor the outcomes to ensure we are moving towards our policy
goal without unintended consequences.

∗∗Economist∗∗: I agree with a cautionary approach. Incremental changes allow for market adjustment and offers time for analysis on
impacts to the economy and consumers.

∗∗Meat Producer Representative∗∗: We would prefer no increase, but a minimal increase is manageable. It would be beneficial if a
portion of the increased tax revenue could be earmarked for supporting producers to adopt more sustainable practices, perhaps as tax
credits or grants.

∗∗Environmentalist∗∗: A slight increase is a step in the right direction, as long as it’s paired with strong incentives for sustainable
practices. Let’s ensure there are follow-up policies that encourage environmental responsibility in meat production.

∗∗Government Official∗∗: Thank you all for your input. We will proceed with a small tax increase, monitor the situation closely, and
consider reallocating funds to support sustainable meat production practices. We’ll revisit this conversation periodically to make sure
we’re on track and making the right adjustments.
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Appendix B

The average error at the time tn is denoted as εtn and calcu-
lated using Eq. (B1), in which k means the span of time lags
reflecting the period of time between an agent’s observation
and policy adaptation and stm denotes the meat supply at tm.

εtn =
1
k

n∑
m=n−k

gtm − stm∣∣gtm ∣∣ (B1)

The policy action is denoted as δt = [−5,5]∩Z. For data
compatibility, the policy actions need to be transformed us-
ing Eq. (B2):

1t = η× δt/10, (B2)

where η is a prescribed step size. In the CRAFTY model
(Murray-Rust et al., 2014), a land user’s competitiveness is
determined using Eq. (B3):

cixy =
∑

E
(pE (vE +mE)) , (B3)

where cixy represents land user i’s competitiveness on land
cell at (x,y); E represents the ecosystem service type, e.g.,
meat, timber, crops; pE means the production of E; mE is
the marginal utility; and vE denotes the policy intervention
imposed on E. In this study, only the policy interventions on
meat production are considered, and vE is computed using
Eq. (B4):

vE =

{
1, ifE is meat.
0, otherwise. (B4)
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Appendix C

Figure C1. Reasoning of Agent S1.2 behind its second policy action.

Figure C2. Reasoning of Agent S1.1 behind Action I.

Figure C3. Reasoning of Agent S1.1 behind Action II.
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Figure C4. Reasoning of Agent S1.1 behind Action III.

Figure C5. Reasoning of Agent S1.1 behind Action IV.

Figure C6. Reasoning of Agent S1.1 behind Action V.
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Figure C7. The response of ChatGPT-4 to the question “is 3 75 % of 4?”

Figure C8. The response of ChatGPT-4 to the question “is 3 75 % of 4?” when asked to give reasoning before the final answer.
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