Articles | Volume 16, issue 6
https://doi.org/10.5194/esd-16-2295-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-2295-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bridging science and practice on multi-hazard risk drivers: stakeholder insights from five pilot studies in Europe
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Marleen de Ruiter
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Wiebke Jäger
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Veronica Casartelli
CMCC Foundation – Euro-Mediterranean Center on Climate Change, Venice, Italy
Roxana Ciurean
British Geological Survey, Keyworth NG12 5GG, United Kingdom
Noemi Padrón-Fumero
Universidad de La Laguna, La Laguna, Spain
Anne Sophie Daloz
Center for International Climate Research, Oslo, Norway
David Geurts
Deltares, Delft, the Netherlands
Stefania Gottardo
CMCC Foundation – Euro-Mediterranean Center on Climate Change, Venice, Italy
Stefan Hochrainer-Stigler
IIASA – International Institute for Applied Systems Analysis, Laxenburg, Austria
Abel López Diez
Universidad de La Laguna, La Laguna, Spain
Jaime Díaz Pacheco
Universidad de La Laguna, La Laguna, Spain
Pedro Dorta Antequera
Universidad de La Laguna, La Laguna, Spain
Tamara Febles Arévalo
Universidad de La Laguna, La Laguna, Spain
Sara García González
Universidad de La Laguna, La Laguna, Spain
Raúl Hernández-Martín
Universidad de La Laguna, La Laguna, Spain
Carmen Alvarez-Albelo
Universidad de La Laguna, La Laguna, Spain
Juan José Diaz-Hernandez
Universidad de La Laguna, La Laguna, Spain
Center for International Climate Research, Oslo, Norway
Letizia Monteleone
CMCC Foundation – Euro-Mediterranean Center on Climate Change, Venice, Italy
Karina Reiter
IIASA – International Institute for Applied Systems Analysis, Laxenburg, Austria
Tristian Stolte
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Robert Šakić Trogrlić
IIASA – International Institute for Applied Systems Analysis, Laxenburg, Austria
Silvia Torresan
CMCC Foundation – Euro-Mediterranean Center on Climate Change, Venice, Italy
Sharon Tatman
Deltares, Delft, the Netherlands
David Romero Manrique de Lara
Universidad de La Laguna, La Laguna, Spain
Yeray Hernández González
Universidad de La Laguna, La Laguna, Spain
Philip J. Ward
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Deltares, Delft, the Netherlands
Related authors
Philip J. Ward, Sophie Buijs, Roxana Ciurean, Judith Claassen, James Daniell, Kelley De Polt, Melanie Duncan, Stefania Gottardo, Stefan Hochrainer-Stigler, Robert Šakić Trogrlić, Julius Schlumberger, Timothy Tiggeloven, Silvia Torresan, Nicole van Maanen, Andrew Warren, Carmen D. Álvarez-Albelo, Vanessa Banks, Benjamin Blanz, Veronica Casartelli, Jordan Correa González, Julia Crummy, Anne Sophie Daloz, Marleen C. de Ruiter, Juan José Díaz-Hernández, Jaime Díaz-Pacheco, Pedro Dorta Antequera, Davide Ferrario, Sara García-González, Joel Gill, Raúl Hernández-Martín, Wiebke Jäger, Abel López-Díez, Lin Ma, Jaroslav Mysiak, Diep Ngoc Nguyen, Noemi Padrón Fumero, Eva-Cristina Petrescu, Karina Reiter, Jana Sillmann, and Lara Smale
EGUsphere, https://doi.org/10.5194/egusphere-2025-5897, https://doi.org/10.5194/egusphere-2025-5897, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Disasters often result from interactions between different hazards, like floods triggering landslides, or earthquakes followed by tropical cyclones, so-called multi-hazards. People and societies are increasingly exposed and vulnerable to these multi-hazards. Assessing these aspects is referred to as multi-(hazard-)risk assessment and management. In this paper we synthesise key learnings from the MYRIAD-EU project, reflecting on progress and challenges faced in addressing multi-(hazard-)risk.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Wei Li, Philip J. Ward, and Lia van Wesenbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-4663, https://doi.org/10.5194/egusphere-2025-4663, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study presents a novel model that captures the interactions among water, energy, and food, revealing how human activities and natural processes mutually shape one another. It shows how human activities alter water quantity and quality, and how these changes reshape resource availability and subsequent human resource use. The Beijing-Tianjin-Hebei case study demonstrates the model's value for advancing hydrological science and informing sustainable and equitable resource management.
Philip J. Ward, Sophie Buijs, Roxana Ciurean, Judith Claassen, James Daniell, Kelley De Polt, Melanie Duncan, Stefania Gottardo, Stefan Hochrainer-Stigler, Robert Šakić Trogrlić, Julius Schlumberger, Timothy Tiggeloven, Silvia Torresan, Nicole van Maanen, Andrew Warren, Carmen D. Álvarez-Albelo, Vanessa Banks, Benjamin Blanz, Veronica Casartelli, Jordan Correa González, Julia Crummy, Anne Sophie Daloz, Marleen C. de Ruiter, Juan José Díaz-Hernández, Jaime Díaz-Pacheco, Pedro Dorta Antequera, Davide Ferrario, Sara García-González, Joel Gill, Raúl Hernández-Martín, Wiebke Jäger, Abel López-Díez, Lin Ma, Jaroslav Mysiak, Diep Ngoc Nguyen, Noemi Padrón Fumero, Eva-Cristina Petrescu, Karina Reiter, Jana Sillmann, and Lara Smale
EGUsphere, https://doi.org/10.5194/egusphere-2025-5897, https://doi.org/10.5194/egusphere-2025-5897, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Disasters often result from interactions between different hazards, like floods triggering landslides, or earthquakes followed by tropical cyclones, so-called multi-hazards. People and societies are increasingly exposed and vulnerable to these multi-hazards. Assessing these aspects is referred to as multi-(hazard-)risk assessment and management. In this paper we synthesise key learnings from the MYRIAD-EU project, reflecting on progress and challenges faced in addressing multi-(hazard-)risk.
Gwendoline Ducros, Timothy Tiggeloven, Lin Ma, Anne Sophie Daloz, Nina Schuhen, Judith Claassen, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 4693–4712, https://doi.org/10.5194/nhess-25-4693-2025, https://doi.org/10.5194/nhess-25-4693-2025, 2025
Short summary
Short summary
Our study finds that heatwave, drought and wildfire events occurring simultaneously in Scandinavia are pronounced in the summer months; and the heat-drought 2018 event led to a drop in gross domestic product, affecting agriculture and forestry imports, further impacting Europe's trade balance. This research shows the importance of ripple effects of multi-hazard, and that forest management and adaptation measures are vital to reducing the risks of heat-related multi-hazards in vulnerable areas.
Kai Kornuber, Emanuele Bevacqua, Mariana Madruga de Brito, Wiebke S. Jäger, Pauline Rivoire, Cassandra D. W. Rogers, Fabiola Banfi, Fulden Batibeniz, James Carruthers, Carlo de Michele, Silvia de Angeli, Cristina Deidda, Marleen C. de Ruiter, Andreas H. Fink, Henrique M. D. Goulart, Katharina Küpfer, Patrick Ludwig, Douglas Maraun, Gabriele Messori, Shruti Nath, Fiachra O’Loughlin, Joaquim G. Pinto, Benjamin Poschlod, Alexandre M. Ramos, Colin Raymond, Andreia F. S. Ribeiro, Deepti Singh, Laura Suarez Gutierrez, Philip J. Ward, and Christopher J. White
EGUsphere, https://doi.org/10.5194/egusphere-2025-4683, https://doi.org/10.5194/egusphere-2025-4683, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Impacts from extreme weather events are becoming increasingly severe under global warming, in particular when events occur simultaneously or successively. While these complex event combinations are often difficult to analyse as impact data, early warning schemes or modelling frameworks might not be fit for purpose. In this perspective we reflect on the usability of compound event research to bridge the gap between academic research and real-world applications, by formulating a set of guidelines.
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 25, 4263–4281, https://doi.org/10.5194/nhess-25-4263-2025, https://doi.org/10.5194/nhess-25-4263-2025, 2025
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose a set of recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
Nat. Hazards Earth Syst. Sci., 25, 4089–4113, https://doi.org/10.5194/nhess-25-4089-2025, https://doi.org/10.5194/nhess-25-4089-2025, 2025
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan M. Kropf, Viktor Wattin Håkansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, Fred Hattermann, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 3055–3073, https://doi.org/10.5194/nhess-25-3055-2025, https://doi.org/10.5194/nhess-25-3055-2025, 2025
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it is crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Wiebke S. Jäger, Marleen C. de Ruiter, Timothy Tiggeloven, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 25, 2751–2769, https://doi.org/10.5194/nhess-25-2751-2025, https://doi.org/10.5194/nhess-25-2751-2025, 2025
Short summary
Short summary
Multiple hazards, occurring simultaneously or consecutively, can have more extreme impacts than single hazards. We examined the disaster records in the global emergency events database EM-DAT to better understand this phenomenon. We developed a method to identify such multi-hazards and analysed their reported impacts using statistics. Multi-hazards have accounted for a disproportionate number of the impacts, but there appear to be different archetypal patterns in which the impacts compound.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025, https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Short summary
Global flood models are key to the mitigation of coastal flooding impacts, yet they still have limitations when providing actionable insights locally. We present a multiscale framework that couples dynamic water level and flood models and bridges the fully global and local modelling approaches. We apply it to three historical storms. Our findings reveal that the importance of model refinements varies based on the study area characteristics and the storm’s nature.
Huazhi Li, Robert A. Jane, Dirk Eilander, Alejandra R. Enríquez, Toon Haer, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2993, https://doi.org/10.5194/egusphere-2025-2993, 2025
Short summary
Short summary
We assess the likelihood of widespread compound flooding along the U.S. coastline. Using a large set of generated plausible events preserving observed dependence, we find that nearly half of compound floods on the West coast affect multiple sites. Such events are rarer on the East coast while most compound events affect single sites on the Gulf coast. Our results underscore the importance of including spatial dependence in compound flood risk assessment and can help in better risk management.
Hunter C. Quintal, Antonia Sebastian, Marc L. Serre, Wiebke S. Jäger, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2870, https://doi.org/10.5194/egusphere-2025-2870, 2025
Short summary
Short summary
High quality weather event datasets are crucial to community preparedness and resilience. Researchers create such datasets using clustering methods, which we advance by addressing current limitation in the relationship between space and time. We propose a method to determine the appropriate factor by which to resample the spatial resolution of the data prior to clustering. Ultimately, our approach increases the ability to detect historic heatwaves over current methods.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Ekta Aggarwal, Marleen C. de Ruiter, Kartikeya S. Sangwan, Rajiv Sinha, Sophie Buijs, Ranjay Shrestha, Sanjeev Gupta, and Alexander C. Whittaker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3901, https://doi.org/10.5194/egusphere-2024-3901, 2025
Preprint archived
Short summary
Short summary
The occurrence of frequent floods in recent years due to changing weather, heavy rainfall, and the natural landscape, has caused major damage to lives and property. This study looks at flood risks in the Ganga Basin, focusing on the factors that cause floods, the areas affected, and the vulnerability of people. The study uses NASA's night-time lights to track human activities. This helps to show how risks are connected to expanding human activities, and changing resilience to floods.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Preprint archived
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Nivedita Sairam and Marleen de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-920, https://doi.org/10.5194/egusphere-2025-920, 2025
Short summary
Short summary
This paper highlights gaps in disaster risk assessments, particularly regarding disease outbreaks after natural hazards. It calls for: 1) learning from compound risk models to understand disaster and disease probabilities, 2) including health metrics in risk frameworks, and 3) improving data and modeling for health impacts. The authors propose a research agenda to enhance disaster risk management.
Davide Mauro Ferrario, Marcello Sanò, Margherita Maraschini, Andrea Critto, and Silvia Torresan
EGUsphere, https://doi.org/10.5194/egusphere-2025-670, https://doi.org/10.5194/egusphere-2025-670, 2025
Short summary
Short summary
This review explores how Machine Learning (ML) can advance multi-hazard and multi-risk going through four main themes: data processing, hazard prediction, risk assessment, and future climate scenarios. It shows how ML is widely used for Earth observations and climate data processing, with Deep Learning applied for hazard prediction and ensemble ML methods for risks, and how future research moving towards analysis of multi-hazard interactions, dynamic vulnerability and early warning systems.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025, https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat–CALIPSO, ERA5, and the CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025, https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
Short summary
We present a methodology to compile single hazards and multi-hazard interrelationships in data-scarce urban settings, which we apply to the Kathmandu Valley, Nepal. Using blended sources, we collate evidence of 21 single natural hazard types and 83 multi-hazard interrelationships that could impact the Kathmandu Valley. We supplement these exemplars with multi-hazard scenarios developed by practitioner stakeholders, emphasising the need for inclusive disaster preparedness and response approaches.
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. Van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 4341–4368, https://doi.org/10.5194/nhess-24-4341-2024, https://doi.org/10.5194/nhess-24-4341-2024, 2024
Short summary
Short summary
Critical infrastructures (CIs) are exposed to natural hazards, which may result in significant damage and burden society. Vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in the literature. Our study reviews over 1510 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can be directly used for hazard risk assessments, including floods, earthquakes, windstorms, and landslides.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Georg C. Pflug, Viktoria Kittler, and Stefan Hochrainer-Stigler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-194, https://doi.org/10.5194/nhess-2023-194, 2024
Preprint withdrawn
Short summary
Short summary
Multi-hazard events can be devastating and there are indications that in such situations the exposed risk-bearers are affected more severely compared to single-hazard events. We present some statistical modeling approaches to determine possible interrelationships of hazards and tested them for the specific case of the countries within the Danube Region. We especially focused on the question whether certain hazards are more likely to occur due to preceding hazardous events.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Marleen Carolijn de Ruiter, Anaïs Couasnon, and Philip James Ward
Geosci. Commun., 4, 383–397, https://doi.org/10.5194/gc-4-383-2021, https://doi.org/10.5194/gc-4-383-2021, 2021
Short summary
Short summary
Many countries can get hit by different hazards, such as earthquakes and floods. Generally, measures and policies are aimed at decreasing the potential damages of one particular hazard type despite their potential of having unwanted effects on other hazard types. We designed a serious game that helps professionals to improve their understanding of these potential negative effects of measures and policies that reduce the impacts of disasters across many different hazard types.
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
Cited articles
Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., Homod, R. Z., Albahri, O. S., Alamoodi, A. H., and Alzubaidi, L.: A systematic review of trustworthy artificial intelligence applications in natural disasters, Computers and Electrical Engineering, 119, 109409, https://doi.org/10.1016/j.compeleceng.2024.109409, 2024.
Allen, C., Metternicht, G., Noble, I., Luken, D., Stafford-Smith, M., and Leitch, A.: Cross-scale, cross-level and multi-actor governance of transformations toward the Sustainable Development Goals: A review of common challenges and solutions, Sustainable Development, 31, 1250–1267, https://doi.org/10.1002/sd.2495, 2023.
ATLAS.ti Scientific Software Development GmbH: ATLAS.ti [software], https://atlasti.com (last access: 13 June 2025), 2023.
Bonner, C., Tuckerman, J., Kaufman, J., Costa, D., Durrheim, D. N., Trevena, L., Thomas, S., and Danchin, M.: Comparing inductive and deductive analysis techniques to understand health service implementation problems: a case study of childhood vaccination barriers, Implementation Science Communications, 2, 100, https://doi.org/10.1186/s43058-021-00202-0, 2021.
Casartelli, V., Salpina, D., Marengo, A., and Mohammadi, S.: Vaia 2018 – Plausible Vaia 2074 storm: Storylines for the Veneto pilot, Myriad-EU project, ArcGIS StoryMaps, https://doi.org/10.25424/cmcc-b5tt-1x90, 2025.
Ciurean, R. L.: Reflections on Stakeholder Engagement, Co-Production Methods, and Knowledge Co-Development in the MYRIAD-EU Project, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-21264, https://doi.org/10.5194/egusphere-egu25-21264, 2025.
Claassen, J. N., Ward, P. J., Daniell, J., Koks, E. E., Tiggeloven, T., and de Ruiter, M. C.: A new method to compile global multi-hazard event sets, Scientific Reports, 13, 13808, https://doi.org/10.1038/s41598-023-40400-5, 2023.
Clark, T., Foster, L., Sloan, L., and Bryman, A.: Bryman's Social Research Methods, 6th edn., Oxford University Press, Oxford, ISBN 9780192636614, 2021.
CRED: Disasters in Numbers, Centre for Research on the Epidemiology of Disasters (CRED), Brussels, https://cred.be/sites/default/files/2021_EMDAT_report.pdf (last access: 19 March 2025), 2021.
Cremen, G., Galasso, C., McCloskey, J., Barcena, A., Creed, M., Filippi, M. E., Gentile, R., Jenkins, L. T., Kalaycioglu, M., Mentese, E. Y., Muthusamy, M., Tarbali, K., and Šakić Trogrlić, R.: A state-of-the-art decision-support environment for risk-sensitive and pro-poor urban planning and design in Tomorrow's Cities, International Journal of Disaster Risk Reduction, 85, 103400, https://doi.org/10.1016/j.ijdrr.2022.103400, 2023.
Delforge, D., Wathelet, V., Below, R., Lanfredi Sofia, C., Tonnelier, M., Loenhout, J. A. F., and Speybroeck, N.: EM-DAT: The Emergency Events Database, International Journal of Disaster Risk Reduction, 98, 105509, https://doi.org/10.1016/j.ijdrr.2025.105509, 2025.
de Ruiter, M. C. and van Loon, A. F.: The challenges of dynamic vulnerability and how to assess it, iScience, 25, 104720, https://doi.org/10.1016/j.isci.2022.104720, 2022.
de Ruiter, M. C., Couasnon, A., van den Homberg, M. J. C., Daniell, J. E., Gill, J. C., and Ward, P. J.: Why we can no longer ignore consecutive disasters, Earth's Future, 8, e2019EF001425, https://doi.org/10.1029/2019EF001425, 2020.
Elkady, S., Mehryar, S., Hernantes, J., and Labaka, L.: Prioritizing stakeholder interactions in disaster management: A TOPSIS-based decision support tool for enhancing community resilience, Progress in Disaster Science, 22, 100320, https://doi.org/10.1016/j.pdisas.2024.100320, 2024.
Flick, U.: The SAGE Handbook of Qualitative Research Design, Sage Publications, London, https://doi.org/10.4135/9781529770278, 2022.
Forzieri, G., Bianchi, A., Batista e Silva, F., Marin Herrera, M. A., Leblois, A., Lavalle, C., Aerts, J. C. J. H., and Feyen, L.: Escalating impacts of climate extremes on critical infrastructures in Europe, Global Environmental Change, 48, 97–107, https://doi.org/10.1016/j.gloenvcha.2017.11.007, 2018.
Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and Marcomini, A.: A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment, Journal of Environmental Management, 168, 123–132, https://doi.org/10.1016/j.jenvman.2015.11.011, 2016.
Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions of natural hazards, Reviews of Geophysics, 52, 680–722, https://doi.org/10.1002/2013RG000445, 2014.
Gill, J. C. and Malamud, B. D.: Hazard interactions and interaction networks (cascades) within multi-hazard methodologies, Earth Syst. Dynam., 7, 659–679, https://doi.org/10.5194/esd-7-659-2016, 2016.
Gill, J. C., Malamud, B. D., Barillas, E. M., and Guerra Noriega, A.: Construction of regional multi-hazard interaction frameworks, with an application to Guatemala, Nat. Hazards Earth Syst. Sci., 20, 149–180, https://doi.org/10.5194/nhess-20-149-2020, 2020.
Guest, G., MacQueen, K. M., and Namey, E. E.: Applied Thematic Analysis, SAGE Publications, Thousand Oaks, https://doi.org/10.4135/9781483384436, 2012.
Guest, G., Namey, E., and McKenna, K.: How many focus groups are enough? Building an evidence base for nonprobability sample sizes, Field Methods, 29, 3–22, https://doi.org/10.1177/1525822X16639015, 2017.
Haer, T. and de Ruiter, M.: A multi-hazard perspective on equitable adaptation and how to assess it, PLOS Climate, 3, e0000521, https://doi.org/10.1371/journal.pclm.0000521, 2024.
Hermans, T. D. G., Šakić Trogrlić, R., van den Homberg, M. J. C., Bailon, H., Sarku, R., and Mosurska, A.: Exploring the integration of local and scientific knowledge in early warning systems for disaster risk reduction: a review, Natural Hazards, 114, 1125–1152, https://doi.org/10.1007/s11069-022-05468-8, 2022.
Hochrainer-Stigler, S., Šakić Trogrlić, R., Reiter, K., Ward, P. J., de Ruiter, M. C., Duncan, M. J., Torresan, S., Ciurean, R., Mysiak, J., Stuparu, D., and Gottardo, S.: Toward a framework for systemic multi-hazard and multi-risk assessment and management, iScience, 26, 106736, https://doi.org/10.1016/j.isci.2023.106736, 2023.
IPCC: Summary for Policymakers, in: Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–33, https://doi.org/10.1017/9781009325844.001, 2022.
Jäger, W. S., de Ruiter, M. C., Tiggeloven, T., and Ward, P. J.: What can we learn about multi-hazard impacts from global disaster records?, Nat. Hazards Earth Syst. Sci., 25, 2751–2769, https://doi.org/10.5194/nhess-25-2751-2025, 2025.
Jones, R. L., Kharb, A., and Tubeuf, S.: The untold story of missing data in disaster research: a systematic review of the empirical literature utilising the Emergency Events Database (EM-DAT), Environmental Research Letters, 18, 103006, https://doi.org/10.1088/1748-9326/acfd42, 2023.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of analyzing multi-hazard risk: a review, Natural Hazards, 64, 1925–1958, https://doi.org/10.1007/s11069-012-0294-2, 2012.
Kelman, I.: Lost for words amongst disaster risk science vocabulary?, International Journal of Disaster Risk Science, 9, 281–291, https://doi.org/10.1007/s13753-018-0188-3, 2018.
Lee, R., White, C. J., Adnan, M. S. G., Douglas, J., Mahecha, M. D., O'Loughlin, F. E., Patelli, E., Otto, F. E. L., Quigley, M. C., Simpson, M., and Murray, V.: Reclassifying historical disasters: From single to multi-hazards, Science of the Total Environment, 912, 169120, https://doi.org/10.1016/j.scitotenv.2023.169120, 2024.
Liu, B., Siu, Y. L., and Mitchell, G.: Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment, Nat. Hazards Earth Syst. Sci., 16, 629–642, https://doi.org/10.5194/nhess-16-629-2016, 2016.
Miles, M. B., Huberman, A. M., and Saldaña, J.: Qualitative Data Analysis: A Methods Sourcebook, 3rd edn., SAGE Publications, Thousand Oaks, ISBN 978-1-4522-5787-7, 2014.
Nichersu, I., Dimitriu, D., Nichersu, I. I., Balaican, D., Bratfanof, E., Nichersu, A., and Livanov, O.: A roadmap for a sustainable environment of Danube Delta – a 3D initiative, Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering, 11, 119–126, https://www.researchgate.net/publication/364387108_A_ROADMAP_FOR_A_SUSTAINABLE_ENVIRONMENT_OF_DANUBE_DELTA_-A_3D_INITIATIVE (last access: 13 June 2025), 2022.
Nowell, L. S., Norris, J. M., White, D. E., and Moules, N. J.: Thematic analysis: striving to meet the trustworthiness criteria, International Journal of Qualitative Methods, 16, 1609406917733847, https://doi.org/10.1177/1609406917733847, 2017.
Pal, L. A., Al-Hababi, R., and Cochrane, L.: Pathways for a sustainable future, in: Sustainable Qatar: Social, Political and Environmental Perspectives, edited by: Cochrane, L., and Al-Hababi, R., Springer, Singapore, 301–316, https://doi.org/10.1007/978-981-19-7398-7_19, 2023.
Papathoma-Köhle, M., Thaler, T., and Fuchs, S.: An institutional approach to vulnerability: evidence from natural hazard management in Europe, Environmental Research Letters, 16, 044056, https://doi.org/10.1088/1748-9326/abe88c, 2021.
Parviainen, J., Hochrainer-Stigler, S., Cumiskey, L., Bharwani, S., Schweizer, P.-J., Hofbauer, B., and Cubie, D.: The Risk-Tandem Framework: An iterative framework for combining risk governance and knowledge co-production toward integrated disaster risk management and climate change adaptation, International Journal of Disaster Risk Reduction, 116, 105070, https://doi.org/10.1016/j.ijdrr.2024.105070, 2025.
Poljanšek, K., Marín Ferrer, M., De Groeve, T., and Clark, I. (Eds.): Science for Disaster Risk Management 2017: Knowing Better and Losing Less, EUR 28034 EN, Publications Office of the European Union, Luxembourg, https://doi.org/10.2788/688605, 2017.
Qin, F., Huang, C., and Lin, Z.: Big data and artificial intelligence-driven natural disaster prediction and prevention: technological advances and prospects, Geographical Research Bulletin, 3, 381–398, https://doi.org/10.50908/grb.3.0_381, 2024.
Šakić Trogrlić, R., Reiter, K., Ciurean, R. L., Gottardo, S., Torresan, S., Daloz, A. S., Ma, L., Padrón Fumero, N., Tatman, S., Hochrainer-Stigler, S., de Ruiter, M. C., Schlumberger, J., Harris, R., Garcia-Gonzalez, S., García-Vaquero, M., Febles Arévalo, T. L., Hernandez-Martin, R., Mendoza-Jimenez, J., Ferrario, D. M., Geurts, D., Stuparu, D., Tiggeloven, T., Duncan, M. J., and Ward, P. J.: Challenges in assessing and managing multi-hazard risks: a European stakeholders perspective, Environmental Science & Policy, 157, 103774, https://doi.org/10.1016/j.envsci.2024.103774, 2024.
Santos, A. P., Rodriguez Lopez, J. M., Peng, Y., and Scheffran, J.: Integrating broad and deep multiple-stressor research: A framework for translating across scales and disciplines, Perspective, 7, 1713–1726, https://doi.org/10.1016/j.oneear.2024.09.006, 2024.
Schipper, E. L. F.: Maladaptation: when adaptation to climate change goes very wrong, One Earth, 3, 409–414, https://doi.org/10.1016/j.oneear.2020.09.014, 2020.
Senevirathne, M., Amaratunga, D., Haigh, R., and Clegg, G.: Enhancing systemic risk management to strengthen community resilience: key recommendations from state-of-the-art practices of past complex incidents, International Journal of Disaster Risk Reduction, 97, 105347, https://doi.org/10.1016/j.ijdrr.2024.105013, 2024.
Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., Lawrence, J., Lempert, R. J., Muccione, V., Mackey, B., New, M., O'Neill, B., Otto, F. E. L., Pörtner, H.-O., Reisinger, A., Roberts, D., Schmidt, D. N., Seneviratne, S. I., Strongin, S., van Aalst, M., Totin, E., and Trisos, C. H.: A framework for complex climate change risk assessment, Climate Risk Management, 4, 489–501, https://doi.org/10.1016/j.oneear.2021.03.005, 2021.
Stalhandske, Z., Steinmann, C. B., Meiler, S., Sauer, I. J., Vogt, T., Bresch, D. N., and Kropf, C. M.: Global multi-hazard risk assessment in a changing climate, Scientific Reports, 14, 5875, https://doi.org/10.1038/s41598-024-55775-2, 2024.
Staupe-Delgado, R.: Overcoming barriers to proactive response in slow-onset disasters, Contributing Paper to GAR 2019, United Nations Office for Disaster Risk Reduction (UNDRR), Geneva, https://www.preventionweb.net/publications/view/66508 (last access: 13 June 2025), 2019.
Thompson, H. E., Gill, J. C., Šakić Trogrlić, R., Taylor, F. E., and Malamud, B. D.: A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to the Kathmandu Valley, Nepal, Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025, 2025.
Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: A review of quantification methodologies for multi-hazard interrelationships, Earth-Science Reviews, 196, 102881, https://doi.org/10.1016/j.earscirev.2019.102881, 2019.
UNDRR: Sendai Framework for Disaster Risk Reduction 2015–2030, United Nations Office for Disaster Risk Reduction (UNDRR), Geneva, https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (last access: 13 June 2025), 2015.
UNDRR: Midterm Review of the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030, United Nations Office for Disaster Risk Reduction (UNDRR), Geneva, https://www.undrr.org/publication/midterm-review-implementation-sendai-framework-disaster-risk-reduction-2015-2030 (last access: 13 June 2025), 2023.
van den Hurk, B. J. J. M., Pacchetti, M. B., Boere, E., Ciullo, A., Coulter, L., Dessai, S., Ercin, E., Goulart, H. M. D., Hamed, R., Hochrainer-Stigler, S., Koks, E., Kubiczek, P., Levermann, A., Mechler, R., Middelanis, R., Minderhoud, K., Mysiak, J., Nirandjan, S., and Witpas, K.: Climate impact storylines for assessing socio-economic responses to remote events, Climate Risk Management, 40, 100500, https://doi.org/10.1016/j.crm.2023.100500, 2023.
Vargas, J. and Paneque, P.: Challenges for the integration of water resource and drought-risk management in Spain, Sustainability, 11, 308, https://doi.org/10.3390/su11020308, 2019.
Verschuur, J., Fernández-Pérez, A., Mühlhofer, E., Nirandjan, S., Borgomeo, E., Becher, O., Voskaki, A., Oughton, E. J., Stankovski, A., Greco, S. F., Koks, E. E., Pant, R., and Hall, J. W.: Quantifying climate risks to infrastructure systems: a comparative review of developments across infrastructure sectors, PLOS Climate, 3, e0000331, https://doi.org/10.1371/journal.pclm.0000331, 2024.
Vollmer, M., Mulder, F., Knudsen, S., and Hollmann, V.: Fostering collaboration to close the risk perception–action gap: RiskPACC white paper and roadmap, RiskPACC project, https://www.riskpacc.eu/wp-content/uploads/2024/08/RiskPACC-WhitePaper_Final.pdf (last access: 12 April 2024), 2024.
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Williams, M. and Moser, T.: The art of coding and thematic exploration in qualitative research, International Management Review, 15, 45–56, 2019.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nature Reviews Earth & Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Chief editor
This paper offers the first cross-regional synthesis of stakeholder perspectives on multi-hazard risk drivers across Europe, providing empirically grounded insights into how hazard interactions, vulnerability dynamics and disaster risk reduction measures evolve over time. By integrating qualitative methods with multi-risk governance analysis, it promotes context-sensitive and actionable disaster risk knowledge. Its findings are highly relevant to the geosciences community working on risk modeling and hazard interactions and are also of great interest for practitioners, policymakers and media focusing on disaster risk governance, climate adaptation, and societal resilience.
This paper offers the first cross-regional synthesis of stakeholder perspectives on multi-hazard...
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews...
Altmetrics
Final-revised paper
Preprint