Articles | Volume 16, issue 6
https://doi.org/10.5194/esd-16-2187-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-2187-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The preseason warming of the Indian Ocean resulting in soybean failure in US
Menghan Li
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100193, China
University of Chinese Academy of Sciences, Beijing, 100193, China
Xichen Li
CORRESPONDING AUTHOR
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100193, China
Institute of Ocean Research, Peking University, Beijing, 100193, China
Yi Zhou
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100193, China
University of Chinese Academy of Sciences, Beijing, 100193, China
Yurong Hou
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100193, China
University of Chinese Academy of Sciences, Beijing, 100193, China
Related authors
No articles found.
Kai Man, Xichen Li, Jürg Luterbacher, Lei Geng, Naiming Yuan, Yurong Hou, Yonghao Wang, and Yujie Miao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1381, https://doi.org/10.5194/egusphere-2025-1381, 2025
Preprint archived
Short summary
Short summary
The West Antarctic Ice Sheet shows opposing snow accumulation trends: decreasing in the west and increasing in the east. Our study reveals that tropical ocean temperature shifts – Pacific cooling and Atlantic warming – drive changes in winds and moisture, boosting snowfall in the east while reducing it in the west. Using ice cores and models, we highlight how distant ocean changes shape Antarctic Ice Sheet, crucial for predicting future sea level rise.
Cited articles
Anderson, W., Seager, R., Baethgen, W., and Cane, M.: Crop production variability in North and South America forced by life-cycles of the El Niño Southern Oscillation, Agric. For. Meteorol., 239, 151–165, https://doi.org/10.1016/j.agrformet.2017.03.008, 2017a.
Anderson, W., Seager, R., Baethgen, W., and Cane, M.: Life cycles of agriculturally relevant ENSO teleconnections in North and South America, Int. J. Climatol., 37, 3297–3318, https://doi.org/10.1002/joc.4916, 2017b.
Anderson, W. B., Seager, R., Baethgen, W., Cane, M., and You, L.: Synchronous crop failures and climate-forced production variability, Sci. Adv., 5, eaaw1976, https://doi.org/10.1126/sciadv.aaw1976, 2019.
Cai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J.-S., Yu, J.-Y., Stuecker, M. F., Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N., Lin, X., Luo, J.-J., Martín-Rey, M., Ruprich-Robert, Y., Wang, G., Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I., Kim, C.-E., Kim, S., Kim, J.-H., and Chang, P.: Pantropical climate interactions, Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236, 2019.
Cao, J., Zhang, Z., Tao, F., Chen, Y., Luo, X., and Xie, J.: Forecasting global crop yields based on El Nino Southern Oscillation early signals, Agric. Syst., 205, 103564, https://doi.org/10.1016/j.agsy.2022.103564, 2023.
Doan, Q., Chen, F., Asano, Y., Gu, Y., Nishi, A., Kusaka, H., and Niyogi, D.: Causes for Asymmetric Warming of Sub-Diurnal Temperature Responding to Global Warming, Geophys. Res. Lett., 49, e2022GL100029, https://doi.org/10.1029/2022GL100029, 2022.
Ergo, V. V., Lascano, R., Vega, C. R. C., Parola, R., and Carrera, C. S.: Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield, Environ. Exp. Bot., 148, 1–11, https://doi.org/10.1016/j.envexpbot.2017.12.023, 2018.
Fan, L. and Meng, X.: The Asymmetric Predictive Power of Indian Ocean Dipole for Subsequent Year's ENSO: Role of Atlantic Ocean as an Intermediary, Geophys. Res. Lett., 50, e2023GL105525, https://doi.org/10.1029/2023GL105525, 2023.
Feng, Y., Sun, F., and Liu, F.: SHAP-powered insights into short-term drought dynamics disturbed by diurnal temperature range across China, Agric. Water Manag., 316, 109579, https://doi.org/10.1016/j.agwat.2025.109579, 2025.
Gan, Z., Guan, X., Kong, X., Guo, R., Huang, H., Huang, W., and Xu, Y.: The Key Role of Atlantic Multidecadal Oscillation in Minimum Temperature Over North America During Global Warming Slowdown, Earth Space Sci., 6, 387–397, https://doi.org/10.1029/2018EA000443, 2019.
Gaupp, F., Hall, J., Hochrainer-Stigler, S., and Dadson, S.: Changing risks of simultaneous global breadbasket failure, Nat. Clim. Change, 10, 54–57, https://doi.org/10.1038/s41558-019-0600-z, 2020.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. R. Meteorol. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905, 1980.
Gobin, A. and Van de Vyver, H.: Spatio-temporal variability of dry and wet spells and their influence on crop yields, Agric. For. Meteorol., 308, 108565, https://doi.org/10.1016/j.agrformet.2021.108565, 2021.
Gopika, S., Sadhvi, K., Vialard, J., Danielli, V., Neetu, S., and Lengaigne, M.: Drivers of Future Indian Ocean Warming and Its Spatial Pattern in CMIP Models, Earths Future, 13, e2025EF006112, https://doi.org/10.1029/2025EF006112, 2025.
Goulart, H. M. D., van der Wiel, K., Folberth, C., Balkovic, J., and van den Hurk, B.: Storylines of weather-induced crop failure events under climate change, Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, 2021.
Hamed, R., Van Loon, A. F., Aerts, J., and Coumou, D.: Impacts of compound hot–dry extremes on US soybean yields, Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, 2021.
Hamed, R., Vijverberg, S., Van Loon, A. F., Aerts, J., and Coumou, D.: Persistent La Niñas drive joint soybean harvest failures in North and South America, Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, 2023.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., and Wolfe, D.: Climate Impacts on Agriculture: Implications for Crop Production, Agron. J., 103, 351–370, https://doi.org/10.2134/agronj2010.0303, 2011.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hou, Y., Xie, S.-P., Johnson, N. C., Wang, C., Yoo, C., Deng, K., Sun, W., and Li, X.: Unveiling the Indian Ocean forcing on winter eastern warming – western cooling pattern over North America, Nat. Commun., 15, 9654, https://doi.org/10.1038/s41467-024-53921-y, 2024.
Hu, Z.-Z., Kumar, A., Jha, B., Chen, M., and Wang, W.: The tropical Indian Ocean matters for U. S. winter precipitation variability and predictability, Environ. Res. Lett., 18, 074033, https://doi.org/10.1088/1748-9326/ace06e, 2023.
Hultgren, A., Carleton, T., Delgado, M., Gergel, D. R., Greenstone, M., Houser, T., Hsiang, S., Jina, A., Kopp, R. E., Malevich, S. B., McCusker, K. E., Mayer, T., Nath, I., Rising, J., Rode, A., and Yuan, J.: Impacts of climate change on global agriculture accounting for adaptation, Nature, 642, 644–652, https://doi.org/10.1038/s41586-025-09085-w, 2025.
Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., Brown, M. E., and Yamagata, T.: Impacts of El Niño Southern Oscillation on the global yields of major crops, Nat. Commun., 5, 3712, https://doi.org/10.1038/ncomms4712, 2014.
Jia, L., Vecchi, G. A., Yang, X., Gudgel, R. G., Delworth, T. L., Stern, W. F., Paffendorf, K., Underwood, S. D., and Zeng, F.: The Roles of Radiative Forcing, Sea Surface Temperatures, and Atmospheric and Land Initial Conditions in U. S. Summer Warming Episodes, J. Clim., 29, 4121–4135, https://doi.org/10.1175/JCLI-D-15-0471.1, 2016.
Jong, B.-T., Ting, M., Seager, R., and Anderson, W. B.: ENSO Teleconnections and Impacts on U. S. Summertime Temperature during a Multiyear La Niña Life Cycle, J. Clim., 33, 6009–6024, https://doi.org/10.1175/JCLI-D-19-0701.1, 2020.
Jong, B.-T., Ting, M., and Seager, R.: Assessing ENSO Summer Teleconnections, Impacts, and Predictability in North America, J. Clim., 34, 3629–3643, https://doi.org/10.1175/JCLI-D-20-0761.1, 2021.
Joshi, V. R., Kazula, M. J., Coulter, J. A., Naeve, S. L., and Garcia Y Garcia, A.: In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt, Int. J. Biometeorol., 65, 489–502, https://doi.org/10.1007/s00484-020-02039-z, 2021.
Leng, G. and Hall, J.: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future, Sci. Total Environ., 654, 811–821, https://doi.org/10.1016/j.scitotenv.2018.10.434, 2019.
Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E., and Peng, B.: Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States, Glob. Change Biol., 25, 2325–2337, https://doi.org/10.1111/gcb.14628, 2019.
Lobell, D. B.: Changes in diurnal temperature range and national cereal yields, Agric. For. Meteorol., 145, 229–238, https://doi.org/10.1016/j.agrformet.2007.05.002, 2007.
Luo, M. and Lau, N.-C.: Summer heat extremes in northern continents linked to developing ENSO events, Environ. Res. Lett., 15, 074042, https://doi.org/10.1088/1748-9326/ab7d07, 2020.
Manthos, Z. H., Pegion, K. V., Dirmeyer, P. A., and Stan, C.: The relationship between surface weather over North America and the Mid-Latitude Seasonal Oscillation, Dyn. Atmospheres Oceans, 99, 101314, https://doi.org/10.1016/j.dynatmoce.2022.101314, 2022.
Matsuno, T.: Quasi-Geostrophic Motions in the Equatorial Area, J. Meteorol. Soc. Jpn. Ser II, 44, 25–43, https://doi.org/10.2151/jmsj1965.44.1_25, 1966.
Meade, B., Puricelli, E., McBride, W., Valdes, C., Hoffman, L., Foreman, L., and Dohlman, E.: Corn and Soybean Production Costs and Export Competitiveness in Argentina, Brazil, and the United States, USDA Economic Information Bulletin 154, https://ssrn.com/abstract=2981675 (last access: 7 May 2024), 2016.
Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C., and Vilà-Guerau De Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nat. Geosci., 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014.
Mo, K. C., Schemm, J.-K. E., and Yoo, S.-H.: Influence of ENSO and the Atlantic Multidecadal Oscillation on Drought over the United States, J. Clim., 22, 5962–5982, https://doi.org/10.1175/2009JCLI2966.1, 2009.
Mourtzinis, S., Specht, J. E., Lindsey, L. E., Wiebold, W. J., Ross, J., Nafziger, E. D., Kandel, H. J., Mueller, N., Devillez, P. L., Arriaga, F. J., and Conley, S. P.: Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season-specific responses, Nat. Plants, 1, 14026, https://doi.org/10.1038/nplants.2014.26, 2015.
Nendel, C., Reckling, M., Debaeke, P., Schulz, S., Berg-Mohnicke, M., Constantin, J., Fronzek, S., Hoffmann, M., Jakšić, S., Kersebaum, K., Klimek-Kopyra, A., Raynal, H., Schoving, C., Stella, T., and Battisti, R.: Future area expansion outweighs increasing drought risk for soybean in Europe, Glob. Change Biol., 29, 1340–1358, https://doi.org/10.1111/gcb.16562, 2023.
Nóia Júnior, R. D. S., Fraisse, C. W., Karrei, M. A. Z., Cerbaro, V. A., and Perondi, D.: Effects of the El Niño Southern Oscillation phenomenon and sowing dates on soybean yield and on the occurrence of extreme weather events in southern Brazil, Agric. For. Meteorol., 290, 108038, https://doi.org/10.1016/j.agrformet.2020.108038, 2020.
Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D., Mueller, R., Tadesse, T., Wardlow, B., and Brown, J.: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought, Agric. For. Meteorol., 218–219, 230–242, https://doi.org/10.1016/j.agrformet.2015.12.065, 2016.
Perondi, D., De Souza Nóia Júnior, R., Zotarelli, L., Mulvaney, M. J., and Fraisse, C. W.: Soybean maturity groups and sowing dates to minimize ENSO and extreme weather events effects on yield variability in the Southeastern US, Agric. For. Meteorol., 324, 109104, https://doi.org/10.1016/j.agrformet.2022.109104, 2022.
Proctor, J., Zeppetello, L. V., Chan, D., and Huybers, P.: Climate change increases the interannual variance of summer crop yields globally through changes in temperature and water supply, Sci. Adv., 11, eady3575, https://doi.org/10.1126/sciadv.ady3575, 2025.
Qian, Y., Zhao, J., Zheng, S., Cao, Y., and Xue, L.: Risk assessment of the global crop loss in ENSO events, Phys. Chem. Earth Parts ABC, 116, 102845, https://doi.org/10.1016/j.pce.2020.102845, 2020.
Rao, S. A., Dhakate, A. R., Saha, S. K., Mahapatra, S., Chaudhari, H. S., Pokhrel, S., and Sahu, S. K.: Why is Indian Ocean warming consistently?, Clim. Change, 110, 709–719, https://doi.org/10.1007/s10584-011-0121-x, 2012.
Ratnam, J. V., Behera, S. K., Masumoto, Y., and Yamagata, T.: Role of Rossby Waves in the Remote Effects of the North Indian Ocean Tropical Disturbances, Mon. Weather Rev., 140, 3620–3633, https://doi.org/10.1175/MWR-D-12-00027.1, 2012.
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation explains a third of global crop yield variability, Nat. Commun., 6, 5989, https://doi.org/10.1038/ncomms6989, 2015.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res. Atmospheres, 108, 2002JD002670, https://doi.org/10.1029/2002JD002670, 2003.
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting dates: an analysis of global patterns, Glob. Ecol. Biogeogr., 19, 607–620, https://doi.org/10.1111/j.1466-8238.2010.00551.x, 2010.
Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Mueller, C., Pugh, T. A. M., Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenker, W., and Frieler, K.: Consistent negative response of US crops to high temperatures in observations and crop models, Nat. Commun., 8, https://doi.org/10.1038/ncomms13931, 2017.
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate severe damages to U. S. crop yields under climate change, Proc. Natl. Acad. Sci., 106, 15594–15598, https://doi.org/10.1073/pnas.0906865106, 2009.
Sharma, S., Ha, K.-J., Yamaguchi, R., Rodgers, K. B., Timmermann, A., and Chung, E.-S.: Future Indian Ocean warming patterns, Nat. Commun., 14, 1789, https://doi.org/10.1038/s41467-023-37435-7, 2023.
Stacke, T. and Hagemann, S.: Lifetime of soil moisture perturbations in a coupled land–atmosphere simulation, Earth Syst. Dynam., 7, 1–19, https://doi.org/10.5194/esd-7-1-2016, 2016.
Strong, C., McCabe, G. J., and Weech, A.: Step Increase in Eastern U. S. Precipitation Linked to Indian Ocean Warming, Geophys. Res. Lett., 47, e2020GL088911, https://doi.org/10.1029/2020GL088911, 2020.
Teasdale, J. R. and Cavigelli, M. A.: Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems, Sci. Rep., 7, 688, https://doi.org/10.1038/s41598-017-00775-8, 2017.
Torreggiani, S., Mangioni, G., Puma, M. J., and Fagiolo, G.: Identifying the community structure of the food-trade international multi-network, Environ. Res. Lett., 13, 054026, https://doi.org/10.1088/1748-9326/aabf23, 2018.
Verón, S. R., De Abelleyra, D., and Lobell, D. B.: Impacts of precipitation and temperature on crop yields in the Pampas, Clim. Change, 130, 235–245, https://doi.org/10.1007/s10584-015-1350-1, 2015.
Von Bloh, M., Nóia Júnior, R. D. S., Wangerpohl, X., Saltık, A. O., Haller, V., Kaiser, L., and Asseng, S.: Machine learning for soybean yield forecasting in Brazil, Agric. For. Meteorol., 341, 109670, https://doi.org/10.1016/j.agrformet.2023.109670, 2023.
Wang, C.: Three-ocean interactions and climate variability: a review and perspective, Clim. Dyn., 53, 5119–5136, https://doi.org/10.1007/s00382-019-04930-x, 2019.
Wang, F., Liu, Z., and Notaro, M.: Extracting the Dominant SST Modes Impacting North America's Observed Climate*, J. Clim., 26, 5434–5452, https://doi.org/10.1175/JCLI-D-12-00583.1, 2013.
Wang, Z., Chang, C.-P., and Wang, B.: Impacts of El Niño and La Niña on the U. S. Climate during Northern Summer, J. Clim., 20, 2165–2177, https://doi.org/10.1175/JCLI4118.1, 2007.
Wu, R. and Kirtman, B. P.: Understanding the Impacts of the Indian Ocean on ENSO Variability in a Coupled GCM, J. Clim., 17, 4019–4031, https://doi.org/10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2, 2004.
Xie, S.-P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., and Huang, G.: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review, Adv. Atmospheric Sci., 33, 411–432, https://doi.org/10.1007/s00376-015-5192-6, 2016.
Yang, R. and Xing, B.: Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China, Atmosphere, 13, 230, https://doi.org/10.3390/atmos13020230, 2022.
Yang, W., Li, X., Wang, L., Hou, Y., Wang, Y., Miao, Y., and Ma, W.: Remote effect of tropical South Atlantic variability on the Pacific–Japan pattern, Clim. Dyn., 63, 255, https://doi.org/10.1007/s00382-025-07718-4, 2025.
Yin, D., Roderick, M. L., Leech, G., Sun, F., and Huang, Y.: The contribution of reduction in evaporative cooling to higher surface air temperatures during drought, Geophys. Res. Lett., 41, 7891–7897, https://doi.org/10.1002/2014GL062039, 2014.
Zhang, Y., Li, J., Hou, Z., Zuo, B., Xu, Y., Tang, X., and Wang, H.: Climatic Effects of the Indian Ocean Tripole on the Western United States in Boreal Summer, J. Clim., 35, 2503–2523, https://doi.org/10.1175/JCLI-D-21-0490.1, 2022.
Zhao, C. and Brissette, F.: Impacts of large-scale oscillations on climate variability over North America, Clim. Change, 173, 4, https://doi.org/10.1007/s10584-022-03383-2, 2022.
Zhao, F., Wang, G., Li, S., Hagan, D. F. T., and Ullah, W.: The combined effects of VPD and soil moisture on historical maize yield and prediction in China, Front. Environ. Sci., 11, 1117184, https://doi.org/10.3389/fenvs.2023.1117184, 2023.
Short summary
Warming in the Indian Ocean during the preceding winter can cause hotter, drier U.S. summers and reduce soybean yields. Our study reveals that temperature changes in the Indian Ocean explain 16 % of variations in U.S. soybean yields. This happens because warmer ocean waters disrupt atmospheric patterns, lowering soil moisture and increasing summer heat during critical growth stages, stressing soybean plants. Understanding this link helps improve crop risk forecasts and protect food security.
Warming in the Indian Ocean during the preceding winter can cause hotter, drier U.S. summers and...
Altmetrics
Final-revised paper
Preprint