Articles | Volume 16, issue 6
https://doi.org/10.5194/esd-16-2101-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-2101-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Irreversible phytoplankton community shifts over Subpolar North Atlantic in response to CO2 forcing
Dong-Geon Lee
Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
Eun Young Kwon
IBS Center for Climate Physics, Pusan National University, Busan, South Korea
Jonghun Kam
Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, South Korea
Related authors
Dong-Geon Lee, Ji-Hoon Oh, Jonghun Kam, and Jong-Seong Kug
Biogeosciences, 22, 3165–3180, https://doi.org/10.5194/bg-22-3165-2025, https://doi.org/10.5194/bg-22-3165-2025, 2025
Short summary
Short summary
This study investigates the mechanisms driving anomalous phytoplankton blooms in the East China Sea (ECS) during El Niño decaying summers. The findings highlight three key mechanisms: increased river runoff, nutrient transport through the Taiwan Strait, and wind-driven upwelling, all linked to the western North Pacific anticyclone (WNPAC).
Sun-Seon Lee, Sahil Sharma, Nan Rosenbloom, Keith B. Rodgers, Ji-Eun Kim, Eun Young Kwon, Christian L. E. Franzke, In-Won Kim, Mohanan Geethalekshmi Sreeush, and Karl Stein
Earth Syst. Dynam., 16, 1427–1451, https://doi.org/10.5194/esd-16-1427-2025, https://doi.org/10.5194/esd-16-1427-2025, 2025
Short summary
Short summary
A new 10-member ensemble simulation with the state-of-the-art Earth system model was employed to study the long-term climate response to sustained greenhouse warming through to the year 2500. The findings show that the projected changes in the forced mean state and internal variability during 2101–2500 differ substantially from the 21st-century projections, emphasizing the importance of multi-century perspectives for understanding future climate change and informing effective mitigation strategies.
Dong-Geon Lee, Ji-Hoon Oh, Jonghun Kam, and Jong-Seong Kug
Biogeosciences, 22, 3165–3180, https://doi.org/10.5194/bg-22-3165-2025, https://doi.org/10.5194/bg-22-3165-2025, 2025
Short summary
Short summary
This study investigates the mechanisms driving anomalous phytoplankton blooms in the East China Sea (ECS) during El Niño decaying summers. The findings highlight three key mechanisms: increased river runoff, nutrient transport through the Taiwan Strait, and wind-driven upwelling, all linked to the western North Pacific anticyclone (WNPAC).
Cited articles
Allen, J. T., Brown, L., Sanders, R., Moore, C. M., Mustard, A., Fielding, S., Lucas, M., Rixen, M., Savidge, G., Henson, S., and Mayor, D.: Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic, Nature, 437, 728–732, https://doi.org/10.1038/nature03948, 2005.
An, S. Il, Shin, J., Yeh, S. W., Son, S. W., Kug, J. S., Min, S. K., and Kim, H. J.: Global Cooling Hiatus Driven by an AMOC Overshoot in a Carbon Dioxide Removal Scenario, Earth's Future, 9, https://doi.org/10.1029/2021EF002165, 2021.
An, S. Il, Park, H. J., Kim, S. K., Shin, J., Yeh, S. W., and Kug, J. S.: Intensity changes of Indian Ocean dipole mode in a carbon dioxide removal scenario, npj Clim. Atmos. Sci., 5, 1–8, https://doi.org/10.1038/s41612-022-00246-6, 2022.
Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S., and Rynearson, T. A.: Marine phytoplankton functional types exhibit diverse responses to thermal change, Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-26651-8, 2021.
Archibald, K. M., Dutkiewicz, S., Laufkötter, C., and Moeller, H. V.: Thermal Responses in Global Marine Planktonic Food Webs Are Mediated by Temperature Effects on Metabolism, J. Geophys. Res. Ocean., 127, 1–18, https://doi.org/10.1029/2022JC018932, 2022.
Barton, A. D., Irwin, A. J., Finkel, Z. V., and Stock, C. A.: Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities, P. Natl. Acad. Sci. USA, 113, 2964–2969, https://doi.org/10.1073/pnas.1519080113, 2016.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Bennington, V., McKinley, G. A., Dutkiewicz, S., and Ullman, D.: What does chlorophyll variability tell us about export and air-sea CO2 flux variability in the North Atlantic?, Global Biogeochem. Cycles, 23, 1–11, https://doi.org/10.1029/2008GB003241, 2009.
Boot, A., von der Heydt, A. S., and Dijkstra, H. A.: Effect of Plankton Composition Shifts in the North Atlantic on Atmospheric pCO2, Geophys. Res. Lett., 50, https://doi.org/10.1029/2022GL100230, 2023.
Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J., Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an Earth System model in response to CO2 concentration changes, Environ. Res. Lett., 7, https://doi.org/10.1088/1748-9326/7/2/024013, 2012.
Boyd, P. W. and Trull, T. W.: Understanding the export of biogenic particles in oceanic waters: Is there consensus?, Prog. Oceanogr., 72, 276–312, https://doi.org/10.1016/j.pocean.2006.10.007, 2007.
Bray, J. R., Curtis, J. T., and Roger, J.: This content downloaded from 147.8.31.43 on Mon, Source Ecol. Monogr., 27, 325–349, 1957.
Breitbarth, E., Oschlies, A., and LaRoche, J.: Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy, Biogeosciences, 4, 53–61, https://doi.org/10.5194/bg-4-53-2007, 2007.
Cael, B. B., Dutkiewicz, S., and Henson, S.: Abrupt shifts in 21st-century plankton communities, Sci. Adv., 7, https://doi.org/10.1126/sciadv.abf8593, 2021.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.
Conversi, A., Dakos, V., Gårdmark, A., Ling, S., Folke, C., Mumby, P. J., Greene, C., Edwards, M., Blenckner, T., Casini, M., Pershing, A., and Möllmann, C.: A Holistic view of Marine Regime shifts, Philos. Trans. R. Soc. B Biol. Sci., 370, 1–8, https://doi.org/10.1098/rstb.2013.0279, 2015.
Cui, J., Zheng, M., Bian, Z., Pan, N., Tian, H., Zhang, X., Qiu, Z., Xu, J., and Gu, B.: Elevated CO2 levels promote both carbon and nitrogen cycling in global forests, Nat. Clim. Chang., 14, 511–517, https://doi.org/10.1038/s41558-024-01973-9, 2024.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Syst., 12, 1–35, https://doi.org/10.1029/2019MS001916, 2020.
Doney, S. C.: Plankton in a warmer world, Nature, 444, 695–696, https://doi.org/10.1038/444695a, 2006.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical controls and feedbacks on ocean primary production, Science, 281, 200–206, https://doi.org/10.1126/science.281.5374.200, 1998.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D., and Ciais, P.: Negative emissions physically needed to keep global warming below 2 °C, Nat. Commun., 6, https://doi.org/10.1038/ncomms8958, 2015.
Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios, Science, 349, https://doi.org/10.1126/science.aac4722, 2015.
Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H., Legendre, L., Picheral, M., and Gorsky, G.: Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis, Limnol. Oceanogr., 54, 1951–1963, https://doi.org/10.4319/lo.2009.54.6.1951, 2009.
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., and De Cuevas, B.: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL047208, 2011.
Henson, S. A., Cael, B. B., Allen, S. R., and Dutkiewicz, S.: Future phytoplankton diversity in a changing climate, Nat. Commun., 12, 1–8, https://doi.org/10.1038/s41467-021-25699-w, 2021.
Herren, C. M. and McMahon, K. D.: Cohesion: A method for quantifying the connectivity of microbial communities, ISME J., 11, 2426–2438, https://doi.org/10.1038/ismej.2017.91, 2017.
Heuzé, C.: North Atlantic deep water formation and AMOC in CMIP5 models, Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017, 2017.
Jackson, L. C., Schaller, N., Smith, R. S., Palmer, M. D., and Vellinga, M.: Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases, Clim. Dynam., 42, 3323–3336, https://doi.org/10.1007/s00382-013-1842-5, 2014.
Jeltsch-Thömmes, A., Stocker, T. F., and Joos, F.: Hysteresis of the Earth system under positive and negative CO2 emissions, Environ. Res. Lett., 15, https://doi.org/10.1088/1748-9326/abc4af, 2020.
John, J. G., Stock, C. A., and Dunne, J. P.: A more productive, but different, ocean after mitigation, Geophys. Res. Lett., 42, 9836–9845, https://doi.org/10.1002/2015GL066160, 2015.
Kim, G. Il, Oh, J. H., Shin, N. Y., An, S. Il, Yeh, S. W., Shin, J., and Kug, J. S.: Deep ocean warming-induced El Niño changes, Nat. Commun., 15, 1–8, https://doi.org/10.1038/s41467-024-50663-9, 2024.
Kim, S. K., Shin, J., An, S. Il, Kim, H. J., Im, N., Xie, S. P., Kug, J. S., and Yeh, S. W.: Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing, Nat. Clim. Chang., 12, https://doi.org/10.1038/s41558-022-01452-z, 2022.
Kug, J. S., Oh, J. H., An, S. Il, Yeh, S. W., Min, S. K., Son, S. W., Kam, J., Ham, Y. G., and Shin, J.: Hysteresis of the intertropical convergence zone to CO2 forcing, Nat. Clim. Chang., 12, 47–53, https://doi.org/10.1038/s41558-021-01211-6, 2022.
Laufkötter, C. and Gruber, N.: Will marine productivity wane?, Science, 359, 1103–1104, https://doi.org/10.1126/science.aat0795, 2018.
Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M., Durrieu De Madron, X., Bowler, C., Malviya, S., Thyssen, M., Grégori, G., Rembauville, M., Grosso, O., Poulain, J., De Vargas, C., Pujo-Pay, M., and Conan, P.: Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-03376-9, 2018.
Lee, D. G.: Irreversible phytoplankton community shifts over subpolar North Atlantic in response to CO2 forcing [data set], https://doi.org/10.6084/m9.figshare.27058897, 2025.
Liu, C., An, S. Il, Jin, F. F., Stuecker, M. F., Zhang, W., Kug, J. S., Yuan, X., Shin, J., Xue, A., Geng, X., and Kim, S. K.: ENSO skewness hysteresis and associated changes in strong El Niño under a CO2 removal scenario, npj Clim. Atmos. Sci., 6, https://doi.org/10.1038/s41612-023-00448-6, 2023.
Liu, W., Fedorov, A. V., Xie, S. P., and Hu, S.: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate, Sci. Adv., 6, 1–8, https://doi.org/10.1126/sciadv.aaz4876, 2020.
Long, M. C., Moore, J. K., Lindsay, K., Levy, M., Doney, S. C., Luo, J. Y., Krumhardt, K. M., Letscher, R. T., Grover, M., and Sylvester, Z. T.: Simulations With the Marine Biogeochemistry Library (MARBL), J. Adv. Model. Earth Syst., 13, https://doi.org/10.1029/2021MS002647, 2021.
Manabe, S. and Stouffer, R. B.: Freshwater input to the North Atlantic Ocean, Nature, 378, 165–167, 1995.
Maranon, E.: Cell Size as a Key Determinant of Phytoplankton Metabolism and Community Structure, Ann. Rev. Mar. Sci., 7, 241–264, https://doi.org/10.1146/annurev-marine-010814-015955, 2014.
Marinov, I., Doney, S. C., and Lima, I. D.: Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light, Biogeosciences, 7, 3941–3959, https://doi.org/10.5194/bg-7-3941-2010, 2010.
Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., and Allen, M. R.: Greenhouse-gas emission targets for limiting global warming to 2 °C, Nature, 458, 1158–1162, https://doi.org/10.1038/nature08017, 2009.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M., Doney, S. C., Mahowald, N., Hoffman, F., and Randerson, J. T.: Sustained climate warming drives declining marine biological productivity, Science, 359, 1139–1143, https://doi.org/10.1126/science.aao6379, 2018.
Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A., and LI, W. K. W.: Increasing importance of small phytoplankton in a warmer ocean, Glob. Chang. Biol., 16, 1137–1144, https://doi.org/10.1111/j.1365-2486.2009.01960.x, 2010.
Nagelkerken, I. and Connell, S. D.: Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions, P. Natl. Acad. Sci. USA, 112, 13272–13277, https://doi.org/10.1073/pnas.1510856112, 2015.
Needham, M. R., Falter, D. D., and Randall, D. A.: Changes in External Forcings Drive Divergent AMOC Responses Across CESM Generations, Geophys. Res. Lett., 51, https://doi.org/10.1029/2023GL106410, 2024.
Oh, J. H., An, S. Il, Shin, J., and Kug, J. S.: Centennial Memory of the Arctic Ocean for Future Arctic Climate Recovery in Response to a Carbon Dioxide Removal, Earth's Future, 10, https://doi.org/10.1029/2022EF002804, 2022.
Oh, J. H., Kug, J. S., An, S. Il, Jin, F. F., McPhaden, M. J., and Shin, J.: Emergent climate change patterns originating from deep ocean warming in climate mitigation scenarios, Nat. Clim. Chang., 14, 260–266, https://doi.org/10.1038/s41558-024-01928-0, 2024.
Park, S. W. and Kug, J. S.: A decline in atmospheric CO2 levels under negative emissions may enhance carbon retention in the terrestrial biosphere, Commun. Earth Environ., 3, 2–9, https://doi.org/10.1038/s43247-022-00621-4, 2022.
Park, S. W., Mun, J. H., Lee, H., Steinert, N. J., An, S. Il, Shin, J., and Kug, J. S.: Continued permafrost ecosystem carbon loss under net-zero and negative emissions, Sci. Adv., 11, 1–10, https://doi.org/10.1126/sciadv.adn8819, 2025.
Passow, U. and Carlson, C. A.: The biological pump in a high CO2 world, Mar. Ecol. Prog. Ser., 470, 249–271, https://doi.org/10.3354/meps09985, 2012.
Pathirana, G., Oh, J. H., Cai, W., An, S. Il, Min, S. K., Jo, S. Y., Shin, J., and Kug, J. S.: Increase in convective extreme El Niño events in a CO2 removal scenario, Sci. Adv., 9, 1–10, https://doi.org/10.1126/sciadv.adh2412, 2023.
Platt, T., Fuentes-Yaco, C., and Frank, K. T.: Spring algal bloom and larval fish survival off Nova Scotia, Nature, 423, 398–399, 2003.
Reid, P. C., Battle, E. J. V., Batten, S. D., and Brander, K. M.: Impacts of fisheries on plankton community structure, ICES J. Mar. Sci., 57, 495–502, https://doi.org/10.1006/jmsc.2000.0740, 2000.
Renssen, H., Goosse, H., and Fichefet, T.: Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022462, 2005.
Richardson, A. J. and Schoeman, D. S.: Climate impact on plankton ecosystems in the Northeast Atlantic, Science, 305, 1609–1612, https://doi.org/10.1126/science.1100958, 2004.
Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., and Meinshausen, M.: Paris Agreement climate proposals need a boost to keep warming well below 2 °C, Nature, 534, 631–639, https://doi.org/10.1038/nature18307, 2016.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., R. Wallace, D. W., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., and Ono, T.: The Oceanic Sink for Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Schmittner, A.: Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation, Nature, 434, 628–633, https://doi.org/10.1038/nature03476, 2005.
Schwinger, J. and Tjiputra, J.: Ocean Carbon Cycle Feedbacks Under Negative Emissions, Geophys. Res. Lett., 45, 5062–5070, https://doi.org/10.1029/2018GL077790, 2018.
Schwinger, J., Asaadi, A., Goris, N., and Lee, H.: Possibility for strong northern hemisphere high-latitude cooling under negative emissions, Nat. Commun., 13, https://doi.org/10.1038/s41467-022-28573-5, 2022.
Song, S. Y., Yeh, S. W., An, S. Il, Kug, J. S., Min, S. K., Son, S. W., and Shin, J.: Asymmetrical response of summer rainfall in East Asia to CO2 forcing, Sci. Bull., 67, 213–222, https://doi.org/10.1016/j.scib.2021.08.013, 2022.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., Qin, Y., and Davis, S. J.: Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target, Nature, 572, 373–377, https://doi.org/10.1038/s41586-019-1364-3, 2019.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence of diatom diversity on the ocean biological carbon pump, Nat. Geosci., 11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018.
Van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Van Den Berg, M., Bijl, D. L., De Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., Harmsen, M., Hof, A. F., and Van Sluisveld, M. A. E.: Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies, Nat. Clim. Chang., 8, 391–397, https://doi.org/10.1038/s41558-018-0119-8, 2018.
Winder, M. and Sommer, U.: Phytoplankton response to a changing climate, Hydrobiologia, 698, https://doi.org/10.1007/s10750-012-1149-2, 1 November 2012.
Wu, P., Jackson, L., Pardaens, A., and Schaller, N.: Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL049998, 2011.
Yi, X., Fu, F.-X., Hutchins, D. A., and Gao, K.: Light availability modulates the effects of warming in a marine N2 fixer, Biogeosciences, 17, 1169–1180, https://doi.org/10.5194/bg-17-1169-2020, 2020.
Short summary
Phytoplankton communities in the Sub-Polar North Atlantic shift towards smaller species under greenhouse warming, with limited recovery even under CO2 removal. This shift results from reduced surface nutrient availability caused by the weakened Atlantic Meridional Overturning Circulation (AMOC), which recovers slowly. Nutrient depletion disrupts trophic dynamics, decreasing diatoms and increasing smaller phytoplankton, leading to a significant reduction in the ocean's carbon export capacity.
Phytoplankton communities in the Sub-Polar North Atlantic shift towards smaller species under...
Altmetrics
Final-revised paper
Preprint