Articles | Volume 16, issue 4
https://doi.org/10.5194/esd-16-1237-2025
https://doi.org/10.5194/esd-16-1237-2025
Research article
 | 
01 Aug 2025
Research article |  | 01 Aug 2025

Diagnosing aerosol–meteorological interactions on snow within Earth system models: a proof-of-concept study over High Mountain Asia

Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.

Related authors

Spatio-temporal pattern analysis of MOPITT total column CO using varimax rotation and singular spectrum analysis
John Motley McKinnon, Chayan Roychoudhury, and Avelino Florentino Arellano Jr.
EGUsphere, https://doi.org/10.5194/egusphere-2024-3440,https://doi.org/10.5194/egusphere-2024-3440, 2025
Short summary
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024,https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Investigating ground-level ozone pollution in semi-arid and arid regions of Arizona using WRF-Chem v4.4 modeling
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024,https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary

Related subject area

Topics: Atmosphere | Interactions: Human/Earth system interactions | Methods: Machine learning
Constraining uncertainty in projected precipitation over land with causal discovery
Kevin Debeire, Lisa Bock, Peer Nowack, Jakob Runge, and Veronika Eyring
Earth Syst. Dynam., 16, 607–630, https://doi.org/10.5194/esd-16-607-2025,https://doi.org/10.5194/esd-16-607-2025, 2025
Short summary

Cited articles

Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008. a
Ansari, K. and Ramachandran, S.: Optical and physical characteristics of aerosols over Asia: AERONET, MERRA-2 and CAMS, Atmos. Environ., 326, 120470, https://doi.org/10.1016/j.atmosenv.2024.120470, 2024. a
Archer-Nicholls, S., Lowe, D., Schultz, D. M., and McFiggans, G.: Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution, Atmos. Chem. Phys., 16, 5573–5594, https://doi.org/10.5194/acp-16-5573-2016, 2016. a, b
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a
Barthlott, C., Zarboo, A., Matsunobu, T., and Keil, C.: Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes, Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022, 2022. a
Download
Short summary
We present a novel data-driven approach to understand how pollution and weather processes interact to influence snowmelt in Asian glaciers and how these interactions are represented in three climate models. Our findings show where models need improvement in predicting snowmelt, particularly dust and its transport. This method can support future model development for reliable predictions in climate-vulnerable regions.
Share
Altmetrics
Final-revised paper
Preprint