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S1. XGBoost Model Implementation and Hyperparameter Optimization 
We used the XGBoost model using the Scikit-Learn wrapper interface (within the xgboost package) to predict 
snow cover fraction (SCF) across different regions of High Mountain Asia (HMA). Our implementation 
followed a rigorous hyperparameter optimization approach using adaptive Tree-Parzen estimator algorithm 
(ATPE) via the hyperopt library in Python. Below, we provide the complete methodology to ensure 
reproducibility of our model. 
 
S1.1 Model Pre-processing 
Models were trained separately for each combination of: 

• Data source (ERA5/CAMS-EAC4, MERRA-2, MATCHA) 
• Region (6 HMA subregions) 
• Month (May, June, July) 
• Construct type (original target (SCF) from MODIS, model target (SCF) from each reanalysis) 

 
Our dataset had 22 predictors (six aerosol, 15 meteorological and one elevation) which we used for fitting the 
XGBoost model to SCF (from MODIS and the models/reanalysis). 
 
S1.1. Model Configuration 
 
All models were implemented with the following specifications: 
 
Table S1. XGBoost model specifications. 
Parameter Configuration 
Objective Function Mean Squared Error 
Random Seed  24 
Hardware GPU (NVIDIA A100) 
Tree Method gpu_hist 
n_jobs 1 

 
We used a different cross-validation approach in our model, where we initialized the XGBoost model with a set 
of hyperparameters, split our dataset into 5 folds (that gives a training and a validation subset), and fit the XGBoost 
model to each training subset. We then finally fit the entire dataset with the XGBoost model and optimized it with 
hyperopt. 
 
S1.2 Hyperparameter Optimization 
 
We used the adaptive Tree-structured Parzen Estimator algorithm within the hyperopt framework to efficiently 
search the following hyperparameter space for each model: 
 
Table S2. Hyperparameter specifications. 

Hyperparameter Range Sampling Distribution 
Maximum tree depth 6-10 Uniform (integer values) 
Minimum child weight 10-100 Uniform (steps of 10) 
Number of estimators 500-1100 Uniform 
Learning rate 0.01-1.0 Log-uniform 
Gamma 0-5 Uniform (steps of 0.2) 
L2 regularization (reg_lambda) 0-100 Uniform 
Subsample ratio 0.8-1.0 Uniform 
Hyperopt objective to minimize Model MAE (mean absolute error)  

 
For each regional model, we conducted approximately 140 trial iterations (20 × number of hyperparameters = 7) 
with an early stopping criterion that terminated the search after 15% of trials showed no improvement in 
performance. 



 
Each model's final performance was evaluated using multiple metrics: 

• Mean Absolute Error (MAE) 
• Root Mean Squared Error (RMSE) 
• Coefficient of determination (R²) 
• Pearson's correlation coefficient (ρ) 

 
S1.4 SHAP Value Calculation 
 
To quantify the contribution of individual predictors and their interactions to model predictions, we utilized the 
SHapley Additive exPlanations (SHAP) values calculated through XGBoost's native implementation. Rather than 
using the separate shap library, we employed XGBoost's built-in functionality via the pred_contribs=True and 
pred_interactions=True parameters in the booster's predict method to also account for interactions. This approach 
allows us to leverage GPU acceleration through the gpu_predictor parameter, significantly reducing computation 
time for our high-dimensional dataset. An important thing to note is that SHAP values were calculated for both 
individual feature contributions and pairwise interactions, accounting for complex interdependencies between 
variables. The XGBoost native implementation is similar to the standard SHAP algorithm, producing contribution 
values that sum to the difference between each prediction and the expected value of the model output. 
 
We modified the SHAP values to a normalized contribution (defined as SHAPc) by averaging the absolute 
SHAP values and dividing by their sum. The steps are as follows,  

1. Extracted the interaction matrices from the SHAP values, excluding the bias term (expected/base value). 
2. Computed the absolute values to focus on magnitude of influence instead of direction. 
3. Normalized these values by dividing by the sum of all absolute interaction effects for each sample, then 

multiplied by 100 to express the SHAP contributions as percentages. 
4. Applied statistical functions (mean, standard deviation, and various percentiles: 5%, 25%, 50%, 75% 

and 95%) across samples to characterize the distribution of interaction effects. 
5. Maintained the symmetry of interaction effects by doubling off-diagonal values in the interaction matrix, 

since interactions between features A and B are commutative. 
6. Processed the interaction matrices to create tables that distinguish between main effects (single 

predictors) and interaction effects (predictor pairs). We then preserved regional and temporal context by 
tagging each interaction with its corresponding month, region, and data source. 

 
S1.5 Computational Environment 
All models were developed using Python 3.8 with the following key libraries: 

• xgboost 1.7.4 
• hyperopt 0.2.7 
• scikit-learn 1.4.2 

 
  



Supplementary Figures. 
 

 

Fig. S1. Spatio-temporal distribution of snow cover fraction over HMA. (a) Temporal average (2003-2018) of snow cover fraction 
at 0.75o resolution during the late snowmelt season (May - July) with geographical outlines from RGI v6. Blue regions denote low snow 
cover (LSC) regions, while red regions denote high snow cover (HSC) regions. The LSC regions are composed of the following second-
order regions based on the Randolph Glacier Inventory v6.0, 1) Inner Tibet, 2) S and E Tibet, 3) Hengduan Shan, 4) Qilian Shan, 5) W 
and E Tien Shan, 6) W and E Kun Lun. The HSC regions are composed of the following second-order regions, 1) W, C, and E Himalayas, 
2) Hindu Kush, 3) Karakoram, 4) Pamir, and 5) Hissar Alay. (b) Monthly time series of snow cover fraction (SCF) across low and high 
snow cover regions from three reanalysis datasets and MODIS. The height of the bars represents the interquartile range (IQR) with the 
median.  
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Fig. S2. Underrepresented aerosol-meteorology interactions for all three reanalyses and each importance metric. Network 
diagrams depicting the underrepresented interactions (positive difference in interaction importance from Obs-Model construct and 
Model-Model construct) for three reanalyses (across columns) and the importance metrics (across rows). The nodes are arranged in a 
concentric fashion, with the innermost nodes representing aerosol predictors (highlighted with light red shading) and the outermost 
nodes representing meteorology predictors (highlighted with light blue shading). The interaction importances are shown through edges 
connections/lines between the nodes and are weighted by colors and width denoting the strength of the importance (1 to 100%, very 
low-low for <=25%, low-moderate for 25% to 50%, moderate-high for 50% to 75%, and high-very high for >=75% shown in the color 
bars). 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S3. Underrepresented interactions that ERA5/CAMS4 and MERRA-2 fail to show relative to MATCHA. Network diagrams 
depicting the underrepresented interactions in both reanalyses compared to MATCHA aggregated across both RI and SHAPc metrics 
for (a) Obs-Model and (b) Model-Model construct. The interaction importances are based on aerosol-meteorology interactions onto 
snow (AMI) in low snow-cover regions during the late snowmelt period (May-July). The nodes are arranged in a concentric fashion, 
with the innermost nodes representing aerosol predictors (highlighted with light red shading) and the outermost nodes representing 
meteorology predictors (highlighted with light blue shading). The interaction importances is shown through edges connections/lines 
between the nodes and are weighted by colors and width denoting the strength of the importance (1 to 100%, very low-low for <=25%, 
low-moderate for 25% to 50%, moderate-high for 50% to 75%, and high-very high for >=75% shown in the color bars). 

 

 

 

 

 

 

 

 

 

 



 

Fig. S4. Spatio-temporal distribution of surface black carbon (BC) and dust mixing ratios (DU) over HMA. (a) Temporal average 
(2003-2018) of BC and DU at a horizontal resolution of 0.75o used in our methodology across three reanalysis datasets during the late 
snowmelt season (May - July). Blue regions denote low snow cover (LSC) regions, while red regions denote high snow cover (HSC) 
regions. (b) Monthly time series of BC and DU across LSC regions for the three reanalysis datasets. The width of the bars represents 
the interquartile range (IQR) with the median denoted by dark circles. The shaded yellow region represents the time period (May-July) 
of our study. 
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Fig. S5. Importance of aerosol-meteorology interactions on snow in low and high snow-covered regions. Distributions of 
importance metrics, relative importance (RI, solid), and Shapely contribution (SHAPc, dashed) for aerosol-meteorology (AMI) and 
meteorology-meteorology (MMI) interactions on snow shown for the Obs-Model (a) and Model-Model (c) construct across three 
reanalyses (ERA5/CAMS-EAC4, MERRA-2 and MATCHA). 
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Table S3. Overview of reanalysis and observation datasets used. 

 
ERA5/CAMS-EAC4 MERRA-2 MATCHA 

Spatial Resolution 
0.1o (ERA5-Land) 
0.25o (ERA5) 
0.75o (CAMS-EAC4) 

0.5o by 0.625o 12 km 

Temporal 
Resolution hourly hourly hourly to 3-hourly 

Atmospheric Model IFS Cy41r2 GEOS 5.12.4 WRF v3.9.1 

Land Model HTESSEL 1 Catchment LSM 2 CLM v4.5 – SNICAR 3 

Snow Model 1 Layer 3 Layer 5 Layers 

Aerosol Model CAMS-IFS 4 GOCART 5 MOSAIC 6 

Coupling Schemes None till date a Aerosol-Radiation b Aerosol-Radiation-Snow c 

Assimilated 
Observations    

Snow in-situ (not for >1500 m 
elevation locations)   

 IMS (4 km)   
AOD AATSR (Envisat) MISR MODIS Terra/Aqua 
 MODIS Terra/Aqua AERONET  
  MODIS Terra/Aqua  

CO MOPITT CO (Total Column)  
MOPITT CO (Profile and Total 
Column) 

 

aAerosol reanalysis from CAMS is not coupled to ERA5 meteorology which instead uses a monthly climatology for aerosols. Recent developments 
suggest a step towards incorporating aerosol coupling in the ECMWF IFS model 7. 
bAerosol reanalysis is radiatively coupled into the GEOS-5 model. 
cAerosol products are radiatively coupled with meteorology in WRF, while CLM-SNICAR couples aerosol deposition to snow properties. 

 

  



Table S4. Overview of the variables used in our study. 

Reanalysis 
   

Predictors Group Variable Name 
(with units) 

ERA5/ERA5-
L/CAMS 

MERRA2 MATCHA 

 

Carbonaceous BC mixing ratio at 
the surface (kg/kg) 

aermr09 

aermr10 

BCPHOLIC 

BCPHOBIC 

BC_SFC_TOT 

 
Carbonaceous OM mixing ratio at 

the surface (kg/kg) 
aermr07 

aermr08 

OCPHILIC 

OCPHOBIC 

OC_SFC_TOT 

 
Dust DU mixing ratio at 

the surface (kg/kg) 
aermr0(4-6) DU00(1-5) DUST_SFC_TOT 

 
Sulphate SU mixing ratio at 

the surface (kg/kg) 
aermr11 SO4 SO4_SFC_TOT 

 
Others SS mixing ratio at 

the surface (kg/kg) 
aermr0(1-3) SS00(1-5) NA_SFC_TOT 

 
Others Aerosol optical 

depth at 550nm* 
taod550 TOTEXTTAU AOD_550 

 

Moisture Daily Accumulated 
Precipitation (mm) 

tp (ERA5-Land) PRECTOTLAND RAINC 

RAINNC 
 

Moisture Specific Humidity 
(kg/kg) 

d2m a  QV2M Q2 

 
Circulation Geopotential 

Height at 500 hPa 
(m) 

z H PHP 

 
Circulation Geopotential 

Height at 300 hPa 
(m) 

z H PHP 

 
Circulation Mean Sea Level 

Pressure (Pa) 
msl SLP P 

PB 
 

Circulation Zonal Wind at 10 
m (m/s) 

u10 U10M U10 

 
Circulation Meridional Wind 

at 10 m (m/s) 
v10 V10M V10 

 
Cloud Cover 
(CC) b 

Total CC  tcc CLDTOT CFRACT 

 
Cloud Cover 
(CC) 

High CC c hcc CLDHGH CFRACT 

 
Cloud Cover 
(CC) 

Medium CC d mcc CLDMID CFRACT 

 
Cloud Cover 
(CC) 

Low CC e lcc CLDLOW CFRACT 



 
Temperature Temperature at 2 

m (K) 
t2m T2M T2 

 
Temperature Skin Temperature 

(K) 
skt TS TSK 

 
Radiation Surface Sensible 

Heat Flux (W/m2) 
sshf SHLAND HFX 

 
Radiation Surface Latent 

Heat Flux (W/m2) 
slhf LHLAND LH 

 
Elevation Elevation (m) GMTED2010 

      

Target 

 

Snow Cover 
Fraction (%) 

sc (ERA5-Land) FRSNO SNOWFRAC 

      

Observations 

 

Snow Cover 
Fraction (%) 

MOD10C1 

MYD10C1 

  

  
Land Surface 
Temperature (K) 

MOD11C1 

MYD11C1 

  

  
AOD at 550 nm* MCD19A2 

  

  
Daily Accumulated 
Precipitation (mm) 

IMERG Final 
Run 

  

aDewpoint at 2 m from ERA5 converted to specific humidity following Bolton, 19808. 
bAll cloud cover variables are in fraction (0-1). 
cHigh cloud cover defined for model pressure levels < 0.4-0.45 Ps hPa across all three reanalyses where Ps is the surface pressure in hPa. 
dMedium cloud cover defined with (0.4-0.8) Ps hPa for ERA5 and MATCHA, while 400-700 hPa based on MERRA-2’s model terrain following 
coordinate. 
eLow cloud cover defined within (1 – 0.8) Ps hPa for ERA5 and MATCHA while 1000-700 hPa based on MERRA-2’s model terrain following 
coordinate. 
*Aerosol optical depth at 550 nm is unitless. 
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