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Abstract. Snowmelt in the Third Pole, or High Mountain Asia (HMA), serves as a vital water source for 30 %
of the world’s population and is strongly influenced by interactions between aerosols and meteorology. However,
understanding these interactions remains uncertain due to their complexity and limitations in existing approaches
using model sensitivity and process-denial experiments. In addition, these interactions are insufficiently repre-
sented in current climate models. Equally ambiguous is the impact of these interactions on snow processes in
the context of climate change. Here we use network theory, a graphical approach that maps the relationships
between variables as interconnected nodes, to identify key variables that influence snowmelt processes. We fo-
cus on the late snowmelt season (May–July) using daily data (from 2003–2019) from satellite observations and
reanalyses. We combine statistical and machine learning methods to highlight the underappreciated relevance
of coupled processes between aerosols and meteorology on snow, as well as the inconsistent representation
of aerosol–meteorology interactions on snow within major reanalyses. These inconsistencies reflect fundamen-
tal differences in model design. In particular, we identify underrepresented dust interactions with near-surface
temperature and large-scale circulation and gaps in cloud cover interactions, especially in the least coupled re-
analysis. Carbonaceous aerosols and large-scale circulation emerge as main drivers of aerosol–meteorology in
snow interactions, highlighting their relevance in Earth system models (ESMs) for the accurate assessment of
water availability in developing economies. These insights point to the degree of complexity of these interactions
and their relative strength of representation across ESMs. The proposed framework can be extended to help di-
agnose other complex Earth system processes and complement conventional feedback separation methods. This
has broader implications for the future development of coupled models to improve Earth system predictability.

1 Introduction

The rapid acceleration of glacial snowmelt in recent decades
has critically impacted the freshwater resources that serve
the livelihood of regions downstream of the glaciers in High
Mountain Asia (HMA), often referred to as the Third Pole,
that contains the world’s largest reservoir of glaciers and
snow (∼ 1 % of the Earth’s surface area) outside of the
Earth’s polar ice sheets (Kraaijenbrink et al., 2021; Yao et al.,
2019; UNEP, 2022). These snowmelt trends reflect the sus-
ceptibility of HMA to climate change and the complex in-

terplay between the land and atmosphere, which has cascad-
ing effects on snowmelt and water resources downstream for
approximately 2 billion people (Mudryk et al., 2020; Bar-
nett et al., 2005). The snow cover fraction (SCF), which
is one of the ways we can represent snowmelt, is an es-
sential climate variable. SCF modulates the surface energy
balance and atmospheric circulation (Cohen and Entekhabi,
2001; Cerveny and Balling, 1992). The high albedo of snow
leads to feedback mechanisms, where the warming-induced
snowmelt exposes the underlying darker surfaces, absorbing
more solar radiation and further accelerating warming and
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snowmelt. These cryospheric changes influence the Earth’s
radiation budget and contribute to the broader Earth system
feedbacks that drive climate change (Flanner et al., 2011;
Robock, 1983; Hileman, 1992).

Past studies on SCF variability over HMA have primar-
ily focused on meteorological factors (e.g., ambient temper-
ature, precipitation) and topography, often overlooking an-
thropogenic emissions in the vicinity of glaciers (Bonekamp
et al., 2021; Sorg et al., 2012; Pepin et al., 2015; Singh
et al., 2022). Light-absorbing particles (LAPs; viz. black
and brown carbon (BC, BrC) and dust), a key component of
these emissions, have a considerable impact on snow cover
through deposition with efficacy comparable to greenhouse
gases (Warren and Wiscombe, 1980; Qian et al., 2015; Kang
et al., 2020; Shindell and Faluvegi, 2009; Sarangi et al., 2020;
Brown et al., 2022; Wang et al., 2023). The interactions be-
tween meteorology and aerosols (mostly but not limited to
LAPs) on snow, defined as aerosol–meteorology interactions
(AMIs) at the snow interface, affect (a) the Earth’s radia-
tion budget and atmospheric thermodynamics; (b) cloud mi-
crophysical properties, precipitation rate, and type; (c) snow
albedo through deposition and snow darkening; (d) snow
physical properties (e.g. specific surface area) that amplify
the snow albedo feedback; and (e) the hydrological cycle
through increased ground temperatures, decreased snow wa-
ter equivalent, shortened snow cover duration, and earlier
runoff (Ramanathan et al., 2001; He, 2022; Andreae and
Rosenfeld, 2008; Painter et al., 2007; Lohmann and Feichter,
2005; Flanner et al., 2007; Huang et al., 2022; Lohmann,
2017; Borys et al., 2000; Oaida et al., 2015). Previous studies
rarely incorporate this full spectrum of variables and path-
ways in hydrological analyses (Wu et al., 2018). The com-
plexity is further compounded by the diverse sources of these
LAPs: BC and BrC originate predominantly from anthro-
pogenic sources, while dust comes from natural sources in
desert regions in the vicinity of HMA (Shi et al., 2019). The
spatial heterogeneity in HMA’s glaciers and the non-linear
interaction between these processes can either intensify or
buffer the response of the climate system, confounding the
net effect of AMI on the cryosphere and potentially lead-
ing to the misattribution of the relevant drivers to snowmelt
(Sakai and Fujita, 2017; Ragettli et al., 2016; Kapnick et al.,
2014; Bonekamp et al., 2019; Sand et al., 2020; Stevens and
Feingold, 2009; Michibata et al., 2020; Gautam et al., 2013;
Rahimi et al., 2020). For instance, recent studies place con-
trasting degrees of importance on the types of LAPs and their
radiative impact on snow. While BC has historically domi-
nated such studies, emerging research indicates dust and BrC
have greater significance than previously recognized (Tuc-
cella et al., 2021).

Understanding these interacting processes is crucial for
accurate climate change predictions, particularly regarding
freshwater availability in Third Pole regions like HMA
(Zhang et al., 2019). A systems-science approach to these
non-linear processes conceptualizes the Earth’s climate as

a self-regulating system of organized complexity with in-
terconnected feedbacks among its sub-components (Wood,
1988; Steffen et al., 2020; Kump et al., 2010). Ripple et al.
(2023) identified approximately 41 of the most significant
climate interactions/feedbacks driving climate change, seven
of which are yet uncertain, the major source of uncertainty
being atmospheric chemistry (Heinze et al., 2019; Pathak
et al., 2023). Current state-of-the-art ESMs have only re-
cently been able to incorporate some degree of atmospheric
composition feedbacks into coupled atmosphere–ocean mod-
els (van Vuuren et al., 2012; Randall et al., 2018; Giorgi and
Gao, 2018). As models incorporate more processes and in-
teractions, they exhibit an increased uncertainty in projec-
tions of various climate variables such as surface tempera-
ture and precipitation (Meehl et al., 2007; Stainforth et al.,
2005; Pathak et al., 2023), which highlight the fundamental
gaps in current ESMs to fully simulate these coupled Earth
system processes, particularly at regional scales. Therefore,
rigorous evaluation and assessment of ESMs and coupled re-
gional models is essential, in addition to improved quantifi-
cation and parameterization of these diverse feedback mech-
anisms.

Challenges in constraining these non-linear interactions
in these models arise from a variety of factors: the spar-
sity in long-term continuous observations, theoretical un-
certainties in parameterization and coupling, and spatio-
temporal heterogeneity in the processes, as well as the mag-
nitude and direction of these feedbacks. Researchers have
traditionally addressed these uncertainties through multiple
approaches: (1) perturbing model parameters and sensitiv-
ity analysis, (2) selective withholding of modeled parame-
ters and comparing their relative impacts, (3) using obser-
vations and data assimilation (Schneider et al., 2017), and
(4) assessing emergent constraints across multiple models
(Heinze et al., 2019; Soden et al., 2008; Zhou et al., 2019;
Moch et al., 2022; Gettelman, 2015; Barthlott et al., 2022;
Archer-Nicholls et al., 2016; Usha et al., 2020; Stein and
Alpert, 1993). However, the computational demands of these
methods necessitate alternative approaches. Simpler statis-
tical techniques ranging from regression to emulators of-
fer more accessible insights albeit with limitations (Carslaw
et al., 2013; Johnson et al., 2015; Lee et al., 2013; Xiao
et al., 2023; Wall et al., 2022; Gregory et al., 2004). Arti-
ficial intelligence methods to emulate complex systems pro-
vide viable alternatives (Reichstein et al., 2019; Shin et al.,
2022; Schneider et al., 2017; Irrgang et al., 2021), despite
being perceived as black boxes that introduce additional
complexity and biases (Castelvecchi, 2016; Lipton, 2018).
Following the systems-science paradigm, Harte (2002) pro-
poses integrating Newtonian (top-down, system-wide analy-
sis) and Darwinian (bottom-up, process-level analysis) per-
spectives to better understand complex Earth system pro-
cesses and potentially constrain some of their uncertain-
ties. The approach by Harte (2002) has been adapted for
aerosol–cloud interactions (ACIs) to constrain ACI-related
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feedbacks through combined process modeling and observa-
tions (Feingold et al., 2016). In this study, we apply a similar
methodology to diagnose these feedbacks at the snow inter-
face in HMA, where the system-wide complexity is reduced
into second-order non-linear interactions between simpler
sub-components. Our approach attempts to identify second-
order feedbacks between atmospheric composition (particu-
larly aerosols) and meteorology that influence the cryosphere
interface (i.e., snow surface) over HMA. Examples of these
second-order interactions can include (a) interactions be-
tween absorbing aerosols and geopotential height that can
modify convection patterns, regional temperature, and pre-
cipitation and (b) interactions between BC and near-surface
temperature that reduce snow albedo through near-surface
warming.

Our definition of AMI has an additional layer of com-
plexity due to the cryosphere and the land–atmosphere inter-
face. Unlike the approach of Feingold et al. (2016), which
explores ACI as a product of the sensitivities of differ-
ent cloud properties to cloud radiative forcing, we exam-
ine the joint dependencies (pairwise or two predictors si-
multaneously) between aerosol and meteorological drivers
of snowmelt through observations and reanalysis data. Pre-
vious studies have typically adopted either a Newtonian per-
spective, assessing snow-related sensitivity to aerosols (Usha
et al., 2020; He et al., 2018), or a Darwinian perspective,
attributing snow-related trends to dominant meteorological
factors (Sorg et al., 2012; Pepin et al., 2015). The missing el-
ement is the insight into the feedback/interacting processes
between aerosols and meteorology on the snow interface,
or the Darwinian–Newtonian nexus, which we incorporate
in this study. Figure 1 illustrates our integrative approach.
The Darwinian view identifies individual aerosol and mete-
orological factors that couple among themselves and impact
snow properties. The Newtonian view examines the physics-
based processes like aerosol deposition, snow property mod-
ification, accumulation, and ablation (melt) in the system-
wide atmosphere–cryosphere interface. We bridge these per-
spectives by considering individual predictors relevant to
snow processes (Darwinian) while highlighting specific in-
teractions influencing snowmelt (Newtonian).

Our objective in this study is to demonstrate this system-
science approach for AMI on snow over HMA. The lack of
consistent geophysical observations across HMA, driven by
its remoteness and complex terrain, compels us to use reanal-
ysis products where observations already constrain model
simulations with long-term records. ERA5/CAMS-EAC4
and MERRA-2 are two of the most widely used global re-
analyses that have different approaches to coupling intercon-
nected processes (Hersbach et al., 2020; Inness et al., 2019;
Randles et al., 2017). In our previous work (Roychoudhury
et al., 2022, hereafter R22), we attempted to address AMI on
snow by quantifying the importance of second-order inter-
actions between aerosol and meteorological variables from
ERA5/CAMS-EAC4 reanalysis to satellite-based MODIS

SCF using multi-linear regression. We found that AMIs,
particularly interactions related to carbonaceous aerosols,
hold high importance for glacial regions with low snow
cover fraction (LSC) in HMA, particularly during the late
snowmelt season (May–July). Recently, a new regional re-
analysis from NSF NCAR (https://himat.org/topic/matcha/,
last access: 27 July 2025) was developed to meet the objec-
tives of NASA’s High Mountain Asia 2 project, particularly
focusing on aerosol deposition on snow. This presents an op-
portunity to evaluate AMI on snow’s representation across
these reanalyses, given the known differences in coupling
within their model design. This paper is a proof of concept
that extends R22 by quantifying the importance of AMI on
snow over HMA across three reanalyses (ECMWF, NASA,
and NSF NCAR) (see Sect. 2.1) using both statistical multi-
linear regression and explainable machine learning (ML) ap-
proaches. We evaluate this importance with both observed
and modeled SCF to understand the differences between ob-
servable and modeled AMI on snow. The aim is to gain
insights into the model representation of AMI-related pro-
cesses in each reanalysis, rather than discovering new physi-
cal mechanisms or causal pathways within AMI. Our results
show that AMI contributes at least 20 % to SCF variability,
with absorbing aerosols and large-scale circulation emerg-
ing as dominant processes requiring improved representation
in current reanalyses. Through network visualizations and
joint distributions, we illustrate the varying degrees of cou-
pled parameterization across reanalyses, demonstrating that
accurate attribution of Earth system phenomena in climate-
vulnerable regions depends significantly on how interactions
are represented in coupled models.

The remainder of this paper is structured as follows. Sec-
tion 2 describes our data sources and methods. We elaborate
on the regression framework and quantification of the impor-
tance of AMI. Section 3 presents our results on the model
differences in AMI through network visualizations and iden-
tifies associations that align with existing studies. Finally,
Sect. 4 summarizes our main findings, discusses the implica-
tions for Earth System predictability, and acknowledges lim-
itations while suggesting directions for future research.

2 Methods

2.1 Reanalyses

ERA5 and its land counterpart ERA5-Land are the most re-
cent fifth-generation reanalysis datasets from ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts) avail-
able from 1979 to the present (Hersbach et al., 2020; Muñoz-
Sabater et al., 2021). MERRA-2 is the most recent reanalysis
from NASA GMAO (Global Modeling and Assimilation Of-
fice), with data available from 1980 to the present (Gelaro
et al., 2017). Both datasets are observationally constrained
by assimilating multiple satellites and in situ data. It should
be noted that snow cover assimilation in ERA5-Land is lim-
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Figure 1. Schematic describing an integrated approach to assess interactions at the atmospheric–cryospheric (land) interface over High
Mountain Asia. The Darwinian view focuses on the individual predictors (shown by the 22 icons grouped by meteorology, aerosols, and
elevation) that drive snowmelt, while the Newtonian view emphasizes emerging patterns and physics-based processes driving snowmelt
(shown in the interface between the atmosphere and land). This study lies at the nexus of both perspectives where we assess the sensi-
tivity of snow cover fraction to the interactions between aerosol and meteorology variables at the interface (aerosol–meteorology interac-
tions or AMIs on snow). Likewise, we also consider meteorology–meteorology interactions (MMIs) on snow, aerosol–elevation interactions
(AEIs) on snow, and meteorology–elevation interactions (MEIs) on snow. Abbreviations of the individual predictors are mentioned in the
acronym section (Appendix B). The overlaid map of Asia is taken from FreeVectorMaps at https://freevectormaps.com/world-maps/asia/
WRLD-AS-02-4001?ref=atr (last access: 27 July 2025).

ited as data above an elevation of 1500 m are not assimilated,
while most of the study domain lies above this threshold.
An important difference between the two reanalysis frame-
works is (1) online coupling between aerosol and radiation
is included in MERRA-2, whereas in ECWMF, the radia-
tion scheme uses an aerosol climatology instead, and (2) a
separate reanalysis (CAMS-EAC4) for atmospheric compo-
sition from ECMWF exists, while aerosol products are al-
ready simulated within MERRA-2 (Inness et al., 2019; Ran-
dles et al., 2017). We hereafter refer to the ECMWF reanaly-
sis, ERA5, with CAMS-EAC4 as ERA5/CAMS4. In addition
to these publicly available reanalyses, we also use a recent,
regional reanalysis product from NSF NCAR (National Cen-
ter for Atmospheric Research) called MATCHA (Model for
Atmospheric Transport and Chemistry in Asia), consisting
of∼ 16 years of hydrometeorological and aerosol fields over
HMA, generated using the WRF-Chem v3.9.1 (Weather Re-
search and Forecasting Model with Chemistry) coupled with
the CLM-SNICAR model (Community Land Model – Snow,
ICe, and Aerosol Radiative) (Kumar et al., 2024; Flanner
et al., 2021; Oleson et al., 2010; Skamarock et al., 2008). The
model framework in MATCHA couples variables between
aerosols, meteorology, and land in two ways: (1) the Rapid

Radiative Transfer Model for General Circulation Models
(RRTMG) allows for online interaction between simulated
aerosols and radiation, and (2) the use of SNICAR with CLM
is an additional component in MATCHA that modifies snow
albedo due to deposition of LAPs (Archer-Nicholls et al.,
2016; Mlawer et al., 1997; Kumar et al., 2014). Similar to the
reanalyses from ECWMF and NASA, MATCHA is observa-
tionally constrained by daily assimilation of MODIS aerosol
optical depth (AOD) and MOPITT CO products (acronyms
explained in Appendix B) to constrain the concentration and
deposition of LAPs in Asia. These reanalyses encompass dif-
ferent meteorological models and representations of aerosol
processes that make them suitable candidates for understand-
ing the representation of interactions in each model frame-
work. The general characteristics of these datasets are avail-
able in Table S3.

ERA5 exhibits systematic wet and warm biases over
Asia, with higher near-surface wind speeds (Sun, 2017;
Gong et al., 2022; Wei et al., 2024). CAMS-EAC4 cap-
tures large-scale aerosol transport but underestimates to-
tal and speciated aerosol concentrations, particularly dur-
ing high aerosol events, and overestimates BC. MERRA-
2 generally simulates higher dust concentrations and better
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represents extreme aerosol events but overestimates BC (Li
et al., 2024; Ansari and Ramachandran, 2024; Gueymard and
Yang, 2020; Xian et al., 2024). It is also important to note
that while these reanalyses are invaluable for studying re-
gions with sparse observations like HMA, their application
in high-elevation regions has its challenges. Several studies
in the region have pointed out elevation biases in surface tem-
perature and its trends, as well as wind patterns arising from
complex topography, varying vegetation cover, and coarser
reanalyses that cannot resolve valley-scale terrain (Luo et al.,
2019; Tang et al., 2022; Jentsch and Weidinger, 2022; Pepin
and Seidel, 2005).

A total of 22 variables (6 aerosol and 15 meteorology-
related) from the three reanalysis datasets, in addition to ele-
vation, were selected as predictors that can potentially drive
SCF (see Table S4 for the predictors). The meteorological
variables, defined hereafter as MET, include (a) temperature
(2 m temperature and skin temperature), (b) cloud cover (to-
tal, low, medium, and high cloud cover fraction), (c) dynamic
circulation (mean sea level pressure, geopotential height at
500 and 300 hPa, 10 m zonal and meridional winds), (d) sur-
face energy fluxes (surface sensible and latent heat), and
(e) moisture (2 m specific humidity, daily accumulated to-
tal precipitation). The choice of these variables was guided
by previous studies showing that temperature, precipitation,
surface energy fluxes, and cloud cover are important factors
across snow variability studies (Duan and Wu, 2006; Ohmura
et al., 1992; Shi et al., 2013; Södergren et al., 2018; Wang
et al., 2015; Harder et al., 2017; Shi et al., 2011; Senf et al.,
2021; Schlögl et al., 2018). The dynamic circulation vari-
ables are chosen considering the association of wind-driven
processes and atmospheric teleconnections on SCF (Jiang
et al., 2019; You et al., 2020). The variable groupings here are
meant to reflect the modules within the architecture of cou-
pled models/ESMs that interact as sub-components, aligning
with a systems-science framework.

Aerosol variables, defined as AER hereafter, consist of
aerosol optical depth (AOD) at 550 nm and surface mass
mixing ratios. These are grouped by species: (a) carbona-
ceous (hydrophilic and hydrophobic BC and organic) matter,
(b) dust, (c) sulfate, and (d) others (sea-salt surface mixing
ratio including total AOD at 550 nm). Note that MATCHA
does not separate carbonaceous aerosols into hydrophobic
and hydrophilic components and uses an internal mixing as-
sumption of different aerosol species from emissions. Ta-
ble S4 provides an overview of the variables used in the re-
analyses.

In addition to aerosol and meteorological variables, we
used elevation (defined as ELEV) from the Global Multi-
resolution Terrain Elevation Data (GMTED2010, Danielson
and Gesch, 2011) as a static predictor to represent topogra-
phy and its related interactions (Pepin et al., 2015; Danielson
and Gesch, 2011). Although snow hydrology is found to be
sensitive not only to elevation but also to other topographical
factors like aspect, slope, and shadowing effects, we use only

elevation for this study as a common static predictor to rep-
resent topographical interactions across the three reanalyses
(Hao et al., 2021).

2.2 Satellite data

We use MODIS-based Level 3 daily satellite products with
a horizontal resolution of 0.05°, namely snow cover frac-
tion (SCF) from MOD10C1/MYD10C1 Collection 6.1, AOD
at 550 nm from MODIS processed using the MAIAC algo-
rithm (MCD19A2CMG version 6.1), and land surface tem-
perature (LST) (MOD11C1/MYD11C1 Collection 6.1) (Hall
and Riggs, 2021b, a; Lyapustin, 2023; Wan et al., 2015;
Wan et al., 2015b). We chose to assess our understanding
of snowmelt using SCF as it (1) is recognized as an essen-
tial climate variable, (2) is shown to determine the strength
of snow albedo feedback, and (3) shows higher sensitivity
to snow albedo feedback than snow albedo in some studies
(World Meteorological Organization (WMO), 2022; Qu and
Hall, 2007; Fernandes et al., 2009). This choice was also in-
fluenced by SCF’s broad applicability to various stakehold-
ers for hydroclimate studies in data-sparse regions (Crumley
et al., 2020). MODIS LST contains daily data for both day
and night, averaged to a daily estimate of LST. MODIS LST
is used as a surrogate variable for skin temperature from each
reanalysis (Jin and Dickinson, 2010). SCF and LST products
from MODIS contain products from both satellites, Terra and
Aqua, which were averaged to a single quantity for this study.
We also use daily accumulated precipitation from IMERG
(post-processed final runs) with a spatial resolution of 0.1°
to represent precipitation over HMA (Huffman et al., 2014).
The acronyms used here are listed in Appendix B.

2.3 Regridding the data

The finer pixels of the predictors from both reanalysis and
satellites were spatially averaged to 0.75°, considering that
AER variables from CAMS-EAC4 are available only at
0.75°. Hourly to 3-hourly products from each reanalysis
(ERA5/CAMS4, MERRA-2, and MATCHA) were averaged
to daily data between the years 2003 and 2018. An exception
is the daily accumulated precipitation from the three datasets,
which was calculated by aggregating (summing) the hourly
products into daily products.

2.4 Glacier regions

A total of 6 glacier regions (GRs) are defined for HMA fol-
lowing the classification in Randolph Glacier Inventory ver-
sion 6.0 (RGI Consortium, 2017). A total of 15 second-order
glacier regions were aggregated into 6 major GRs for this
study (Roychoudhury et al., 2022) (see Fig. S1). These GRs
refer to the geographical extent of the snow-covered regions
containing the individual glaciers. The geographical extent
of the GRs over HMA is shown in Fig. S1a. GRs marked
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in red (blue) denote regions of high snow cover or HSC
(low snow cover or LSC) and have been identified using the
methodology described in R22. We specifically focus on the
late snowmelt season, i.e., May–July, across the years 2003–
2018, when AMI is found to be significant in LSC (blue)
regions (Roychoudhury et al., 2022). The spatio-temporal
mean (standard deviation) across LSC regions during 2003–
2018 is 2.4 %–5.5 % (5.6 %–9.1 %). HMA has an average al-
titude of 4 km, with a large number of the highest mountains
and plateaus in the world across both the LSC and HSC re-
gions. The region is typically arid, with humid summers due
to the Asian monsoon. The vegetation type is mostly grass-
lands and forests, with vegetation greening mostly concen-
trated in LSC regions as well as foothills of HSC regions
within the recent decades (Liu et al., 2022, 2021b; Maina
et al., 2022).

2.5 Regression framework to estimate the importance
of AMI on snow

We regress the target variable (daily SCF) on 22 predictors
spanning aerosols (AER), meteorology (MET), and elevation
(ELEV) following the equation

Y s,t =

Term 1︷ ︸︸ ︷∑
p

αpX
s,t
p +

Term 2︷ ︸︸ ︷∑
p,q

αpqX
s,t
p X

s,t
q +

Term 3︷ ︸︸ ︷
αO(Xs,t ), (1)

where α is the importance/sensitivity of the predictors (X)
in regulating SCF (Y ), and p and q denote sets of different
types of predictors (AER, MET, and ELEV), with the su-
perscripts s and t denoting the spatio-temporal dependency
of the quantities. Term 1 represents the linear sensitivity of
SCF as a function of the AER, MET, and ELEV variables
(the predictorsX). Terms 2 and 3 introduce non-linear effects
that account for interactions between different predictors.
Term 2 focuses specifically on product interactions influenc-
ing snow grouped as (1) aerosol–meteorology interactions
(AMIs), (2) aerosol–elevation interactions (AEIs), (3) mete-
orology interactions (MMIs), and (4) elevation–meteorology
interactions (MEIs), with AMIs as the primary focus in this
study. In contrast, Term 3 points toward higher-order unre-
solved processes extending beyond second-order product in-
teractions in Term 2. We select daily products of the target
and predictor variables over a 0.75 by 0.75° grid, grouped
by six glacier regions (GRs) and 3 months within the late
snowmelt season (May–July).

The importance metric, α, is derived with two dis-
tinct methods: (1) relative importance (RI), obtained from
the multi-linear regression described in Sect. 2.6, includes
the linear predictors and their second-order product terms
(Terms 1 and 2 in Eq. 1). The estimated importance values
(α) are in percentages, and the sum for all terms in the regres-
sion equals 100 %. (2) The Shapley contribution (SHAPc) is
calculated from an ML model introduced in Sect. 2.7. It is
important to note that while the multiple linear regression for

RI is trained on both the original predictors and the prod-
uct terms to account for interacting effects, the ML model is
trained only on the individual predictors, as its built-in fea-
ture contribution algorithm (see Sect. 2.7) also accounts for
the pairwise interactions, acting as a bulk measure of the im-
portance, thus the three terms in Eq. (1) (Term 1 to 3). The
importance values calculated from machine learning are nor-
malized so that their total also equals 100 %. Thus, both im-
portance metrics are expressed as percentages that sum to
100 %, making their magnitudes directly comparable. Each
α value is inherently bivariate as it quantifies the sensitivity
of snow cover fraction (SCF) to a given predictor in the pres-
ence of another predictor. The importance of AMI on snow
can thus be interpreted as the impact of MET predictors on
SCF in the presence of AER variables.

Our notion of importance parallels the chain rule repre-
sentation (the Darwinian paradigm) of the extensively stud-
ied ACI in the context of cloud radiative forcing, with cloud
fraction/cover as one of the dependencies. While the product
of sensitivities in the chain rule formulation may not fully
capture the non-linear feedback (interaction) between its de-
pendencies, we can draw a direct link between the impor-
tance of aerosol–cloud cover interactions in our definition of
AMI and ACI–cloud cover sensitivity from past studies (e.g.,
Feingold et al., 2016).

2.6 Relative importance analysis (RIA)

A multi-linear regression (MLR) model was used to regress
daily SCF (Y ) on a total of 253 predictor variables repre-
sented by the equation

Y =

22∑
i=1

αiXi +

231∑
i,j=1;j 6=i

αijXiXj (2)

=

22∑
i=1

(
αi +

21∑
j 6=i

αijXj

)
Xi, (3)

where N (= 22) is the original number of predictors (see
Fig. 1 and Table S4 for the 22 predictors: 6 aerosol, 15 mete-
orological, and 1 elevation variable) representing the main
effects, in addition to (

(
N
2

)
= 231) non-linear interaction

terms defined as product terms between these predictors (ex-
cluding square terms), thus leading to 253 (= 231+ 22) pre-
dictors in total. We explicitly define second-degree interac-
tion terms in the MLR model (only non-square terms) shown
in Eq. (2) to represent the non-linear sensitivities of our pre-
dictors to the SCF variability for each GR and each month in
the late snowmelt season. The interaction terms belong to five
groups, namely (1) AER–AER, (2) AER–MET, (3) AER–
ELEV, (4) MET–ELEV, and (5) MET–MET. Equation (3) of-
fers us an alternate understanding of such a pairwise inter-
action, where the dependence (α) on a predictor Xi is not
a constant but dependent on a second predictor (Xj ). AMI
on snow is defined herein as the sum of α (the importance on
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modulating SCF) for each predictor in the groups AER–AER
and AER–MET, along with the main predictors from AER.
We considered AER–AER to capture the snowmelt response
to the bulk effect of aerosols in the presence of meteorology.

We estimate the importance (α) of the main and interac-
tion terms using relative importance analysis (RIA) that over-
comes the issue of correlated predictors (which is very likely
in our case) (Tonidandel and LeBreton, 2011). In line with
our definition of importance, RI quantifies the impact of each
predictor (both main and interaction effects) on SCF through
fractional contribution to the total explained variance (R2).
Consequently, RI values sum up to unity or 100 % and can
thus be expressed as a percentage. A bootstrapping procedure
using subsampling is implemented to generate confidence in-
tervals for the RI estimates (Bickel et al., 2012). Details of
the RI implementation are available in Roychoudhury et al.
(2022).

2.7 Shapley Additive exPlanations using eXtreme
Gradient Boosting (SHAP-XGBoost)

We use a robust ML technique called eXtreme Gradient
Boosting (XGBoost) that gradually approximates and aggre-
gates predictor-target relationships using subsets of a dataset
(Chen and Guestrin, 2016). As in the MLR model, we train
XGBoost on the predictors and target for each month (May–
July), each GR, and each construct. XGBoost consists of
multiple hyperparameters that determine its performance.
We use a Bayesian optimization technique called adaptive
tree Parzen estimator (ATPE) to find the optimal hyperpa-
rameters by minimizing the squared error between the true
SCF and predicted SCF (Bergstra et al., 2015). The model is
trained until we achieve an R2 (total explained variance) of
95 % or more. In contrast to the MLR model (see Sect. 2.6),
we do not explicitly define second-order terms for the predic-
tors in the XGBoost model. Instead, we exploit the complex
architecture of XGBoost to capture higher-order terms from
the 22 main predictors to prevent user-defined bias during the
training.

The ability of ML algorithms to model non-linear rela-
tionships between the target and predictors comes with the
cost of decreased interpretability, given the intricate struc-
ture of XGBoost needed to model complex target–predictor
relationships. The traditional model-dependent approach to
interpret interactions in XGBoost models is through esti-
mating feature importance and understanding decision path-
ways within the models (Jiang et al., 2009). Although various
model-agnostic interpretability frameworks exist for com-
plex ML models, we interpret our trained XGBoost mod-
els using the Shapley Additive explanation (SHAP) frame-
work based on game theory, which quantifies the contribu-
tion of predictors and their interactions to the target response
(Lundberg et al., 2020). Keeping in line with our definition
of importance, we use SHAP to quantify the change in the
target due to each predictor (the main effects) and their pair-

wise interactions. Thus, we can decompose the difference in
predicted SCF into 253 (N+NC2 = 22+ 231= 253, where
N = 22) individual contributions for each XGBoost model,
out of which 22 represent the main predictors and 231 repre-
sent the pairwise interaction contribution to the target. Here,
pairwise refers to the contribution of one predictor in the
presence of a second predictor. Instead of R2 as in MLR,
each SHAP value (for a predictor) represents a fraction of
the magnitude of SCF. The SHAP values were normalized
to percentages, defined hereafter as SHAPc, by averaging
the absolute SHAP values and dividing by their sum. This
enables an analogous comparison to the RI metric as a per-
centage contribution to the total SCF (target) response. Ad-
ditional details on this implementation are available in the
Supplement (Sect. S1.4).

2.8 Leveraging model constructs

We perform our analysis based on three model constructs:
(1) the observation-to-model (Obs–Model) construct, where
SCF from MODIS is the target variable; (2) the model-to-
model (Model–Model) construct, where SCF from each re-
analysis dataset is the target against corresponding predic-
tors; and (3) the observation-to-observations (Obs–Obs) con-
struct, where we chose a set of variables directly observ-
able through satellites (MODIS SCF, MODIS LST, MAIAC
AOD, and IMERG PRECIP) to explore the non-linear sensi-
tivities between SCF and its predictors depicted in Eq. (1).

The utility of these constructs lies in their ability to rep-
resent the true Earth system response based on the sensitiv-
ity of a target phenomenon, such as snowmelt, to its drivers
(predictors) and their interactions. The Obs–Obs construct is
considered the closest to ground truth, as it relies solely on
observational data but may be overestimated since not all po-
tential drivers are currently observed. The Obs–Model con-
struct can also depict the true response of these interactions
but has an inherent bias in the drivers that the models sim-
ulate. Conversely, the Model–Model construct captures the
sensitivity of the target phenomenon to its predictors as de-
fined by the model design, offering insights into the schemes
and parameterizations defined in the model.

The regression approach from Eq. (1) is reserved only
for the Obs–Model and Model–Model constructs, while the
Obs–Obs construct is solely used to elucidate AMI that can
be observed through satellites (see Sect. 3.4). This is due to
the lack of a diverse range of predictors available from obser-
vations with consistent spatio-temporal coverage, a gap that
can be bridged by reanalysis products.

Importance estimates in the Obs–Model construct encom-
pass all three terms in Eq. (1) (especially the unresolved
stochastic processes driving SCF in Term 3 of Eq. (1)) and
are the closest approximation to an observable estimate of
AMI. The Model–Model construct sheds light on the repre-
sentation of cryospheric processes driven by AMI in each re-
analysis. Comparing the Obs–Model and Model–Model con-
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structs can thus provide insights into the processes in Term 3
of Eq. (1) and highlight any potential misattribution of im-
portance or underrepresented processes estimated in any of
the terms within the Model–Model construct.

3 Results

The motivation behind this analysis lies in the difference in
SCF across satellites and reanalyses. In Fig. S1, we show the
average spatial distribution of SCF in the late snowmelt sea-
son across four data sources (MODIS from satellite, ERA5-
Land, MERRA-2, and MATCHA) as reanalyses. SCF is very
high in ERA-Land, which can be attributed to precipitation
bias, leading to excessive snowfall in the ECMWF snow
model, while extremely low SCF in MERRA-2 can be at-
tributed to the high snow depth specified in its land model to
consider 100 % SCF, leading to lower SCF (Orsolini et al.,
2019). This disparity in SCF across different datasets alludes
to diverse model representations of processes driving SCF,
which we try to leverage in this study. SCF in MATCHA re-
sembles that of MODIS, which is a possible result of CLM-
SNICAR coupling within MATCHA’s model framework, ef-
fectively constraining SCF.

In this section, we quantify the importance of AMI on
snow and analyze the variables driving these interactions.
First, we demonstrate significant variability in SCF represen-
tation across reanalysis products (Sect. 3.1) and then quan-
tify AMI’s contribution to SCF variability using two impor-
tance metrics (RI and SHAPc) that capture different interac-
tion orders (Sect. 3.2). We identify key variables within AMI
on snow by decomposing contributions from specific aerosol
and meteorological subgroups (Sect. 3.3) and then employ
network analysis to visualize emergent connections within
AMI, revealing significant differences between observational
and model representations (Sect. 3.4). We discuss varying or-
ders of interactions, coupling strength across reanalyses, and
potential misattributions within interacting variables. Finally,
we examine observable AMI (Obs–Obs construct) on snow
using satellite observations to assess ground truth relation-
ships (Sect. 3.5), revealing relationships between SCF and
land surface temperature, precipitation, and aerosol optical
depth.

3.1 Quantifying importance of AMI to SCF

As mentioned in Sect. 2, we consider 22 predictors spanning
aerosols (AER), meteorology (MET), and elevation (ELEV)
from the three reanalyses and regress them on SCF using sta-
tistical and machine learning regression methods. We focus
specifically on the interacting terms between aerosols and
meteorology, defined as aerosol–meteorology interactions on
snow (AMIs on snow). Our analysis is based on the impor-
tance estimates from the regression algorithms, which de-
note the sensitivity of the 22 predictors and their higher-
order (second-order and/or more) terms to the target vari-

able (SCF). This sensitivity is quantified by two metrics, rel-
ative importance (RI) from multi-linear regression (Sect. 2.6)
and Shapley contribution (SHAPc) from ML (Sect. 2.7).
We also use two model constructs on this regression frame-
work to distinguish between the importance of AMI on snow
from an observational (Obs–Model construct) and reanaly-
sis (Model–Model construct) point of view. The key point
to note is that the target variable (SCF) in the regression is
used from two sources: (1) satellite data from MODIS for
the Obs–Model construct and (2) each reanalysis model for
the Model–Model construct.

In Fig. 2, we show the RI and SHAPc importance distri-
butions of AMI and MMI on snow in the Obs–Model (2b)
and Model–Model construct (2c) for LSC regions in the late
snowmelt season. The statistics (mean and standard devia-
tion) of the importances for AMI on snow are summarized
in Table 1. RI and SHAPc importances for MMI on snow
are higher than those for AMI across all datasets, with an
average contribution of 50 %–70 % (both RI and SHAPc) to
SCF variability. AMI on snow shows a consistent magnitude
across all datasets in the Obs–Model construct with an aver-
age RI of 10 %–20 % and SHAPc of 20 %–35 %, indicating
a significant contribution to SCF variability. In the Model–
Model construct, the mean values of the RI and SHAPc dis-
tributions for AMI on snow are lower by an average of 10 %
than in the Obs–Model construct. The spread in the impor-
tance distribution of AMI on snow across the constructs and
datasets (σ from 1.7 to 7.6 in Table 1) is higher than the dif-
ference in the mean importance of AMI on snow for both RI
(difference µ difference by 4.5) and SHAPc (difference in µ
by 8.2). A non-parametric Mann–Whitney test of the AMI on
snow distributions (both RI and SHAPc) shows a significant
difference (95 % level) for both constructs across the three
datasets. AMI on snow is thus significant for both constructs,
and a lower AMI on snow importance in the Model–Model
(relative to Obs–Model) construct suggests second- and/or
higher-order interaction terms that may be missing or unre-
solved within the reanalysis model framework (see Sect. 2.5).
The large spatio-temporal variability of SCF (Fig. S1) in
the late snowmelt season, combined with the difference in
AMI’s importance to snow across both constructs, suggests
the disparity in AMI-related processes that drive SCF within
each reanalysis dataset. SHAPc values for AMI on snow are
higher in both constructs compared to RI, which can be due
to the ability of XGBoost to capture the non-linear interac-
tions to a fuller extent, compared to the MLR model, where
the interactions are restrictive in their definition (only non-
square product terms).

3.2 Key variables within AMI on snow

We further decompose the importance of AMI on snow in
both constructs by meteorology (MET variables with five
subgroups of variables) and aerosols (AER variables with
four subgroups of variables) in Fig. 2a and d. Among AER
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Figure 2. Importance of aerosol–meteorology interactions on snow and their constituent variables. Distributions of importance metrics (b–
c), relative importance (RI), and Shapley contribution (SHAPc) for aerosol–meteorology interaction (AMI) and meteorology–meteorology
interaction (MMI) on snow shown for the Obs–Model (b) and Model–Model (c) construct for the three reanalyses. AMI’s importance on
snow is further decomposed into nine subgroups of predictors (four aerosol/AER and five meteorology/MET subgroups), which are shown in
the donut pie plots for the Obs–Model (a) and Model–Model (d) constructs for both RI (bottom row) and SHAPc (top row). The innermost
ring shows the contribution of each subgroup to AMI’s importance on snow from the ERA5-CAMS4 reanalysis, followed by MERRA-2 and
MATCHA in the outermost ring.

Table 1. Statistics of the importance of AMI (in %) across all three reanalyses, two constructs, and two importance metrics. µ refers to the
average importance (in %), while σ refers to the standard deviation of the importances (in %).

Construct Obs–Model Model–Model

Reanalysis
RI SHAPc RI SHAPc

µ σ µ σ µ σ µ σ

ERA5/CAMS4 16.6 2.8 33.7 6.3 13.4 1.7 25.3 6.8
MERRA-2 18.2 3.2 31.6 6.1 14.7 2.9 27.8 7.6
MATCHA 19.0 3.1 35.1 5.6 12.2 1.8 22.8 6.4

variables, carbonaceous aerosols and total AOD at 550 nm
(Others) contribute significantly to the AMI on snow impor-
tance (average 18 % and 14 % respectively), followed by dust
(average 11 %) in both the constructs and metrics. Among
MET variables, circulation-related variables contribute the
highest (average 13 %), followed by cloud cover variables
(average 10 %).

An alternate way to visualize the contribution of each
subgroup of variables across AER and MET predictors is
shown in Fig. 3. This contribution (also expressed in %)
is the importance values (α in %) of the AER and MET
predictors normalized to the total mean importance of AMI
on snow as mentioned before. We see that circulation vari-

ables contribute the most (38 %) to AMI on snow in the
Obs–Model construct, whereas radiation and temperature
dominate (23 %) in the Model–Model construct. Carbona-
ceous variables are dominant across both constructs (30 %);
however, dust contributes more in the Obs–Model construct
(24 %) than in the Model–Model construct (20 %). Addi-
tionally, the AER subgroup Others (including total AOD at
550 nm and surface sea salt) makes a significant contribution,
primarily driven by total AOD at 550 nm.

The prevalence of carbonaceous aerosols can be attributed
to increased surface BC and total aerosol optical depth
(AOD) in the vicinity of the LSC regions during the pre-
monsoon season (April–May). This includes wheat crop
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Figure 3. Contribution of different aerosol and meteorology groups to importance of AMI on snow for both constructs across all three
reanalyses. Flow diagrams depicting the sum of the contribution of four aerosol groups and five meteorology groups to AMI in low snow
cover regions during the late snowmelt period (May–July) across the Obs–Model (a) and Model–Model construct (b), similar to the donut
plots in Fig. 2a and d, except the contribution is aggregated for all three reanalyses and both importance metrics. This contribution (also
expressed in %) is the importance values (α in %) of the AER and MET predictors normalized to the total mean importance of AMI on
snow. The top row shows the contributions color-coded by aerosol groups, and the bottom row shows the same contributions color-coded by
meteorology groups. The Others aerosol group refers to the combined importance of both AOD at 550 nm and sea-salt surface mixing ratio.
The flow diagrams are made using SankeyMATIC.

residue burning in the northern part of the Indian subcon-
tinent, inducing potential interactions with large-scale syn-
optic atmospheric circulation in the subsequent months (late
snowmelt season) that lead to changes in near-surface tem-
peratures, convection, and accelerated melting (Das et al.,
2022; Kumar et al., 2011; Lau et al., 2006; Ramanathan
et al., 2007; Lau and Kim, 2018). Such interactions can also
allude to the deposition of LAPs through interactions be-
tween aerosols, geopotential height, and near-surface vari-
ables. Multi-model intercomparison of global aerosols has
also reported that carbonaceous aerosols contribute an av-
erage of 70 % to aerosol-induced absorption, a key process
in AMI on snow (Sand et al., 2021). A higher importance
can be seen across the predictor subgroups and datasets in
AMI on snow distributions within the Obs–Model relative
to the Model–Model construct for both metrics. This can be
attributed to the absence of unresolved processes and their
interactions driving SCF in the model representation of the
three reanalyses. It can, however, be the case that the ob-
servations are biased or that the modeled SCF might not be
spatially or temporally in phase with MODIS SCF. With the
current observing system, we cannot attribute this difference

in importance to the errors in the observations, the models,
or a combination of them.

The metrics, RI and SHAPc, highlight two aspects of these
interactions. The SHAPc distribution of AMI’s importance
on snow has a higher spread (σ between 5.6–7.6), indicative
of a bulk non-linear effect. This is seen in Eq. (1), where
SHAPc reflects the sensitivities in all three terms, whereas
for RI, the lower spread in the distribution of AMI’s impor-
tance on snow (σ between 1.7 to 3.2) indicates specific (lo-
cal) second-order processes captured by RI (first and second
term in Eq. 1).

3.3 Emergent connections within AMI

Moving beyond the groups of AER and MET predictors that
dominate AMI on snow, we visualize the individual interac-
tions within AMI on snow (Fig. 4) using concepts from net-
work analysis (Inglis et al., 2022). In particular, we visual-
ize the average of the RI and SHAPc importances to empha-
size the overall importance of each interaction to SCF. We do
this across both model constructs, both importance metrics,
and three reanalysis datasets (thus 12 networks). For each of
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Figure 4. Strength of aerosol–meteorology interactions on snow within each reanalysis for different metrics and constructs. Network di-
agrams depicting the interaction importance/strength for both model constructs, Obs–Model (a) and Model–Model (b), using the relative
importance (RI) and Shapley contribution (SHAPc) importance metrics of predictors within aerosol–meteorology interaction (AMI) on snow
in low snow cover regions during the late snowmelt period (May–July). The nodes denote each predictor, while the lines (edges) denote the
interaction importance on snow between the aerosol and meteorology variables, with their weights denoting the strength of the importance
(1 % to 100 %, very low–low for ≤ 25 %, low–moderate for 25 % to 50 %, moderate–high for 50 % to 75 %, and high–very high for ≥ 75 %
shown in the color bars). The node sizes differ between AER and MET predictors based on their weighted degree (number of edge connec-
tions; see Appendix A). The variable abbreviations at the nodes include the following aerosol variables: AOD for total AOD at 550 nm, SU
for surface sulfate mixing ratio, SS for sea-salt surface mixing ratio, DU for surface dust mixing ratio, OM for surface organic matter mixing
ratio, and BC for surface black carbon mixing ratio. For meteorology, the abbreviations are as follows: PRECIP for daily accumulated precip-
itation; QV2 for specific humidity at 2 m; Z500 and Z300 for geopotential height at 500 and 300 hPa; U10 and V10 for zonal and meridional
winds at 10 m; MSLP for mean sea level pressure; MCC, TCC, LCC, and HCC for medium, total, low, and high cloud cover fraction; T2 for
temperature at 2 m; SKT for skin temperature; sShf and sLhf for surface sensible and latent heat flux; and finally ELEV for elevation. Details
about these predictors can be found in Table S4.

the 12 networks, the six larger nodes (circles) represent the
AER predictors, while the smaller nodes represent the MET
predictors. The connections (edges) between the nodes are
weighted by the pairwise importance according to the impor-
tance metric (RI and SHAPc) to represent the interactions
(edge connections) and their strengths (edge widths and col-
ors) between AER and MET variables on the snow interface.
The node sizes depend on the degree of each node (number
of edge connections per node, weighted by the edges). For a
total of 21 predictors, these would lead to

21C2
2 = 105 edges

across 21 nodes for each network. These edges are weighted
by their color and width according to their interaction im-
portance (between 1 % to 100 %). For the network analysis,
we have used the networkx package (v2.8.4) and Gephi
(v0.10) for the network graph layouts.

Since we are considering interactions within AMI on
snow, we consider the pairwise interactions of six AER pre-
dictors with 15 MET predictors. As such, the degree of the
AER nodes will always be much higher than that of the MET
nodes. The concept of weighted degree is defined in Ap-
pendix A. This can be seen from the networks in Fig. 4,
where the AER nodes have a larger size relative to the MET
nodes. In the following sections, we primarily focus on the
weighted edges of these networks as the degrees of the AER
nodes are relatively similar across the networks. It is im-
portant to note here that the network edges that represent
the strength of the interaction are based on the importance
metrics (RI and SHAPc) that are calculated based on the 21
aerosol and meteorological predictors. As such, considering
a different set of predictors might thus influence these impor-
tance values and hence the network edges, which can obscure
certain interactions that are not captured due to the choice of
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Table 2. Dissortativity based on the individual networks in Fig. 4.
Dissortativity values range from 0 to −1. The values in parentheses
refer to the full range of dissortativity across using six importance
definitions (using the mean; median; and 5th, 95th, 25th, and 75th
percentile of the importance distributions for RI and SHAPc).

Dissortativity

Construct Obs–Model Model–Model

Reanalysis RI SHAP RI SHAP

ERA5/CAMS4 −0.8 (0.1) −0.7 (0.0) −0.6 (0.0) −0.4 (0.0)
MERRA-2 −0.5 (0.1) −0.8 (0.0) −0.4 (0.0) −0.7 (0.1)
MATCHA −0.6 (0.0) −0.9 (0.0) −0.7 (0.1) −0.6 (0.1)

the predictors. We further explore the possible idea of misat-
tribution of these interactions in Sect. 3.3.4.

3.3.1 Observed versus Model snow interface

A prominent feature across all the networks is the difference
between the interactions seen between the two constructs
across the three reanalyses. The networks in the Obs–Model
construct show a higher number of strong (> 50 % impor-
tance, moderate to very high) interactions, whereas the net-
works in the Model–Model construct show fewer and spe-
cific strong interactions. This suggests greater interaction
strength/importance between the AER and MET predictors
that contribute to the target (SCF) variability compared to
what the models in each reanalysis show. The higher density
of connections within the Obs–Model construct suggests sig-
nificant AMI-related interactions at the real snow interface,
compared to what the models in the reanalyses consider to be
relevant for the model snow interface. This agrees with our
observations from Fig. 2 and Table 1, where the distribution
of AMI’s importance on snow in the Obs–Model construct is
statistically significant compared to that in the Model–Model
construct. Additionally, as discussed in Sect. 2.8, the interac-
tions shown in the Obs–Model construct can reflect physical
reality, while the Model–Model construct only captures the
interactions that the model frameworks parameterize within
themselves. In Table 2, we present the dissortativity of the
networks depicted in Fig. 4 (Newman, 2002) (defined in Ap-
pendix A). Dissortativity measures the heterogeneity in con-
nection patterns between variables (nodes) of different im-
portances. It indicates whether highly connected nodes prefer
to interact primarily with less connected nodes (high dissor-
tativity) or with other highly connected nodes (low dissorta-
tivity). Variations in dissortativity, therefore, reflect how well
the networks capture the hierarchical structure of AMI on
snow. Across nearly all reanalyses (Table 2), Obs–Model net-
works exhibit consistently more dissortativity (−0.5 to−0.9)
than Model–Model networks (−0.4 to−0.7), with the largest
difference (0.3) in ERA5/CAMS4 and MERRA-2. Higher
dissortativity indicates that observed AMI on snow shows
more connections between AER and MET variables of differ-

ent importances than those within the reanalyses. This sug-
gests that models within the reanalyses underrepresent the
complexity of AMI on snow, oversimplifying the connec-
tions between key AER and MET predictors. This confirms
that real-world AMI on snow is far more complex than what
current models can fully capture, potentially contributing to
biases in modeled snow processes.

It is important to note here that the dissortativity of the
networks also indirectly depends on the skill of the predic-
tors and their interactions in capturing accurate sensitivity
to the target variable, which impacts the importance met-
rics (RI and SHAPc) and thus the edge of the networks
(using which dissortativity is calculated). This skill reflects
the accuracy of the predictors in representing correct at-
mospheric conditions and their inherent noise and internal
variability. Noise in reanalysis products, which serve as our
observational proxies, can potentially manifest as addition-
al/stronger/weaker connections in the networks, thus affect-
ing dissortativity. However, the consistency of higher dissor-
tativity values across different reanalyses and different im-
portance metrics (from Table 2) suggests that the observed
differences primarily reflect real structural limitations in
how models capture the hierarchical complexity of aerosol–
meteorology interactions on snow, rather than just artifacts
of data noise. Furthermore, the dissortativity differences (up
to 0.3) between Obs–Model and Model–Model constructs in-
dicate that these differences represent meaningful structural
variations in aerosol–meteorology interactions that exceed
what would be expected from noise alone.

To highlight the difference between the two constructs,
Fig. 5 shows the aggregated (summed) interactions between
AER and MET variables for each construct and importance
metric across all three reanalyses. This demonstrates the in-
teractions that each construct generally emphasizes. We also
show the positive difference in the interactions between the
Obs–Model and the Model–Model construct (in Fig. 5c) for
each metric, which can highlight specific interactions miss-
ing in the modeled reality (Model–Model construct). Both
RI and SHAPc emphasize interactions of surface dust (DU)
with circulation variables (particularly geopotential height
at 300 and 500 hPa, as well as mean sea level pressure) in
the Obs–Model construct, which are weaker in the Model–
Model construct. We see this in Fig. 5c, where both differ-
ence networks for both metrics highlight strong interactions
with the circulation variables, suggesting that interactions of
circulation variables, particularly with dust, are missing in
the Model–Model construct. RI also shows missing interac-
tions with temperature variables in the difference network,
which is not visible for SHAPc. On the other hand, SHAPc
emphasizes moderate–high (50 % to 75 %) interactions with
cloud cover variables (particularly medium, high, and total
cloud cover) that are missing in the Model–Model construct.
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Figure 5. Major aerosol–meteorology interactions at the snow interface for different importance metrics and constructs for all three reanal-
yses. Network diagrams depicting the interactions aggregated across all three reanalyses (a–b) for each construct and importance metric (RI
and SHAPc). Networks in (c) show underrepresented interactions captured by RI and SHAPc that should be emphasized across all three
reanalyses. The nodes are arranged in a concentric fashion, with innermost nodes representing aerosol predictors (highlighted in red in the
first network from top left) and the outermost nodes representing meteorology predictors (highlighted in blue in the first network from top
left). The interaction importances are shown through edge connections between the nodes and are weighted by colors and width denoting the
strength of the importance (1 % to 100 %, very low–low for ≤ 25 %, low–moderate for 25 % to 50 %, moderate–high for 50 % to 75 %, and
high–very high for ≥ 75 % shown in the color bar).

3.3.2 Varying orders of interactions

Comparing the networks between the RI and SHAPc metrics
provides insights into how each of these two metrics high-
lights the functional aspect of AMI on snow. As mentioned
in Sect. 2.5, RI and SHAPc highlight different orders of in-
teractions based on their definitions. In Fig. 4, we can see
that the RI importance metric focuses more on specific in-
teractions, while the networks for the SHAPc metric appear
more interconnected, with a broader distribution of impor-
tance values. In Fig. 5, we see that interactions of surface
dust (DU) are the strongest across both metrics, but RI em-
phasizes product interactions with temperature and surface
energy variables (particularly surface sensible heat flux or
sShf), while SHAPc captures the higher-order interactions
with temperature across both constructs. Both metrics fail
to capture interactions with circulation, which can be seen
in the difference networks in Fig. 5c. This emphasizes the
need to include circulation-related interactions in the model
frameworks of all three reanalyses. From the difference net-
works, we can visualize how SHAPc and RI metrics differ
between the constructs and highlight higher-order processes
that are inadequately represented in the model framework of
each reanalysis. We see that strong second-order interactions
(from RI) of DU and AOD550 with temperature and circu-

lation variables are underrepresented in all three reanalyses,
while strong higher-order interactions of AER variables with
cloud cover and circulation are missing across all the reanal-
yses. However, SHAPc does capture temperature interactions
in both constructs. Higher dissortativity in the three reanaly-
ses (Table 2) for the SHAPc metrics in the Obs–Model con-
struct suggests a greater variety of higher-order processes
across AER and MET predictors at the observed snow in-
terface compared to the model snow interface.

3.3.3 Coupling strength across the reanalyses

From Fig. S1, SCF from MATCHA agrees most with the
observed SCF during the study period (May to July). This
can be attributed to the stronger coupling within MATCHA’s
model framework, which couples aerosols, radiation, and
snow, in comparison with the other two reanalyses. This is
also reflected in the density of the connections observed in
MATCHA, particularly in the Obs–Model construct from
Fig. 4a, relative to that of ERA5/CAMS4 and MERRA2. De-
spite the tighter coupling in MATCHA, there are notable dif-
ferences between the networks across the constructs. In the
individual networks in Fig. 4, the Model–Model construct
for MATCHA emphasizes interactions with carbonaceous
aerosols, whereas the Obs–Model construct highlights dust
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Figure 6. Underrepresented and misattributed aerosol–meteorology interactions on snow in each reanalysis. Network diagrams depicting the
underrepresented and misattributed interaction importance/strength in AMI on snow across all three reanalyses. These are estimated using
the difference in the interactions between the Obs–Model and Model–Model construct for each reanalysis. The positive differences shown
by black edge connections highlight underrepresented interactions, while the negative difference shown by red edge (dashed) connections
highlight misattributed interactions. The differences in the importance of these interactions (both positive and negative) are normalized
separately (1 % to 100 %) for relative comparison. The nodes are arranged in a concentric fashion, with innermost nodes representing aerosol
predictors (highlighted in red in the first network from left) and the outermost nodes representing meteorology predictors (highlighted in blue
in the first network from left).

(DU). Ideally, the interactions in the Model–Model construct
should be similar to those in the Obs–Model construct. How-
ever, significant differences between the constructs across all
the reanalyses can indicate interactions that are inadequately
represented in each reanalysis. We explore these differences
further in Fig. 6, where we show the underrepresented in-
teractions across all the reanalyses (using the positive differ-
ences between the importance seen in the Obs–Model and the
Model–Model construct aggregated across RI and SHAPc).
For MATCHA, the major deficiency lies in representing in-
teractions of DU and carbonaceous aerosols with circulation
variables (particularly geopotential height and mean sea level
pressure). Further analysis of these interactions (as shown
in Fig. S2) reveals that MATCHA fails to adequately rep-
resent the second-order interactions (based on RI) of DU
with circulation, temperature, and surface energy variables,
as well as the higher-order processes (based on SHAPc) in-
volving absorbing aerosols with circulation and cloud cover
variables. We show the underrepresented interactions (posi-
tive difference between Obs–Model and Model–Model con-
struct) for different orders across each reanalysis, based on
RI and SHAPc in Fig. S2.

While MATCHA exhibits denser connections in the
Model–Model construct compared to ERA5 (Fig. 4), the
density of the interactions for MERRA2 is closely compa-
rable to that of MATCHA, despite differences in individ-
ual interactions. This is further evident in Fig. 6, where the
underrepresented interactions in MATCHA and MERRA-2

are significantly less compared to ERA5/CAMS4, indicat-
ing stronger coupling in both models. Both MERRA-2 and
ERA5/CAMS4 show insufficient interactions with circula-
tion and temperature variables. However, ERA5/CAMS4 ex-
hibits a greater deficiency in these interactions, extending
to cloud cover as well. Detailed analysis of the missing in-
teractions based on their order (across RI and SHAPc from
Fig. S2) reveals that in MERRA-2, second-order interactions
between DU and AOD with circulation and temperature vari-
ables are absent, as well as higher-order processes between
dust and geopotential height. In ERA5/CAMS4, the density
of the underrepresented interactions in Fig. 5 shows that a
large number of interactions are not represented adequately
in its model framework, with significant gaps in second- and
higher-order processes involving cloud cover. Dissortativity
values from Table 2 show that while all three reanalyses show
higher diversity of AMI on snow in the Obs–Model con-
struct, both MERRA-2 and MATCHA have the highest dis-
sortativity in the Obs–Model construct, especially for higher-
order processes (represented BY SHAPc).

Another approach to understanding the inadequate pro-
cesses in the reanalyses is to compare the interactions of
ERA5/CAMS4 and MERRA-2 across the two constructs
with those of MATCHA. Given the strongly coupled na-
ture of MATCHA, Fig. S3 specifically highlights predictor
interactions that ERA5/CAMS4 and MERRA-2 fail to cap-
ture compared to MATCHA. The interactions are estimated
as before by taking the positive difference between the im-
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portance of ERA5/CAMS4 and MERRA with MATCHA for
each construct. Both constructs demonstrate a lack of in-
teractions with circulation variables in the two reanalyses,
shown by the presence (absence) of strong edge connections
between circulation and AER variables in the Obs–Model
(Model–Model construct). Additionally, meteorological in-
teractions with DU are more pronounced in the Obs–Model
construct, in contrast to their almost minimal contribution
in the Model–Model construct, where carbonaceous aerosols
are more significant. The networks indicate that significant
interactions of aerosols with circulation variables should be
present in both reanalyses. However, MATCHA also fails
to adequately capture the circulation interactions as seen in
Fig. 6. Specifically, ERA5/CAMS4 should focus more on cir-
culation interactions with DU, while MERRA-2 should em-
phasize interactions with carbonaceous aerosols to capture
the coupling within MATCHA.

While these aggregated networks (in Fig. 6) can high-
light the higher-order interactions within each reanalysis, it
is necessary to consider the skill of these datasets in accu-
rately depicting these real-world interactions, which can arise
from the absence of parameterizations in their respective
model frameworks to represent these interactions, or misrep-
resenting the order of interactions between these predictors
(second-order or higher) if at all present within the reanaly-
sis framework.

3.3.4 Potential misattributions in each reanalysis

In addition to highlighting the underrepresented interactions
through the difference networks, we hint towards potential
misattributions in each reanalysis through Fig. 6 by examin-
ing interactions that are strong in the Model–Model construct
but absent in the Obs–Model construct. This is estimated us-
ing the negative difference of importances between the Obs–
Model and the Model–Model construct (shown through red
edges) instead of the positive difference for the underrepre-
sented interactions (through black edges). These discrepan-
cies highlight significant interactions and processes that the
models consider important for the model snow surface but
cannot capture for the observed snow surface. Specifically,
we find that MERRA-2 and MATCHA overemphasize the
interactions between dust (DU) and accumulated precipita-
tion (PRECIP), while ERA5/CAMS4 places undue impor-
tance on the interactions between dust (DU) and skin tem-
perature (SKT), even though interactions with 2 m tempera-
ture are much more significant in the Obs–Model construct.
Although these interactions are related to temperature, the
disparity here suggests that feedbacks between surface dust
aerosols and near-surface temperature are more significant
than those involving the surface itself.

An associated issue with misattribution is the buffering of
the snowmelt response from one predictor due to the pres-
ence of other predictors, which can obscure the true im-
pact, especially of the aerosol predictors on snowmelt, re-

sulting in inaccurate conclusions about their relative contri-
butions. Buffering of the interaction sensitivity by other dom-
inant predictors is seen in aerosol–cloud–precipitation inter-
actions, where different cloud processes can buffer the sen-
sitivity of aerosols to precipitation (Stevens and Feingold,
2009; Michibata et al., 2020). Although we can potentially
highlight where each model misattributes the snowmelt sen-
sitivity for AMI, we are unable to determine the buffering
of the snowmelt response of AER predictors by the MET
variables with the current approach. As mentioned previ-
ously, the interpretation of misattribution of these interac-
tions within each reanalysis depends on the accuracy of these
predictors in representing their sensitivity to SCF, as well as
the representation of these feedbacks within the reanalysis
frameworks.

3.3.5 Bringing it altogether

The networks reflect the complexity within each reanalysis
that reflects the feedbacks between the AER and MET vari-
ables for both observable and modeled realities (the con-
structs). The progression in importance, in terms of both
the number and strength of interactions from ERA5/CAMS4
to MATCHA (both number and strength of interactions)
from ERA5/CAMS4 to MERRA-2 to MATCHA across
both constructs signifies the degree of coupling incorpo-
rated in the three reanalyses. This progression reflects the
absence of coupling between aerosols and meteorology in
ERA5/CAMS4, in contrast to MERRA-2 and MATCHA.

The degree, or the number of relatively stronger connec-
tions to a node (predictor), reflects the strength of the cou-
pling processes in ESMs, both direct and indirect. However,
the edge strength is a function of the abundance (magnitude)
and co-variability of the interacting predictors (nodes) and
indicates the importance of the coupling/interaction. Visu-
alizing the number and strength of each interaction within
AMI on snow through the network diagrams highlights rel-
evant processes of different orders driving SCF during the
study period. These interactions are otherwise difficult to dis-
entangle due to their inherent complexity. Using constructs
and different metrics of importance allows us to demonstrate
which interactions and their complexities are necessary to be
represented in each reanalysis model. Additionally, compar-
ing these networks helps identify the misattribution of in-
teracting processes in each reanalysis. This can be analyzed
from the interactions present in the Model–Model construct
but absent in the Obs–Model construct. We see that interac-
tions between DU and PRECIP in MERRA-2 and MATCHA
are given unnecessary importance, while for ERA5/CAMS4,
it is the interactions between DU and SKT that are overem-
phasized. Previous studies have identified significant biases
in model representations of dust processes, such as over-
estimation of precipitation’s impact on dust abundance as
well as large variability in dust simulations across models
(Pu and Ginoux, 2018; Kok et al., 2017; Zhao et al., 2022),
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and the complex interactions between dust aerosols and sur-
face temperature that can lead to biased parameterizations of
near-surface processes (Stante et al., 2023). Overall, the need
to incorporate large-scale circulation-related interactions is
emphasized across the reanalyses to correctly simulate SCF
during the study period. Uncertainties associated with atmo-
spheric circulation are a pertinent problem across climate
models due to internal variability of the Earth’s climate and
errors in model representation (Shepherd, 2014). Interac-
tions of the large-scale circulation dynamics with unresolved
small-scale processes involving clouds, convection, bound-
ary layer, complex topography, and near-surface temperature
remain uncertain across models (Stevens and Bony, 2013;
Bony et al., 2015; Holtslag et al., 2013; Sandu et al., 2019).
Considering aerosols adds to this uncertainty due to inter-
actions with cloud microphysics, precipitation, and convec-
tion, making accurate representation even more challenging
(Bony et al., 2015; Dagan et al., 2023; Fan et al., 2012; Mül-
menstädt and Wilcox, 2021). Anthropogenic forcings due to
greenhouse gases and aerosols cannot be neglected as they
have been shown to influence trends in circulation variables
like geopotential height at 500 hPa and mean sea level pres-
sure (Christidis and Stott, 2015; Gillett et al., 2013; Ming
and Ramaswamy, 2011). Improving the circulation-related
interactions with aerosols in coupled ESMs can improve the
representation of monsoon, regional, and local aerosol trans-
port pathways, aerosol deposition, and cloud distribution in
complex regions like HMA (Li et al., 2016; Hu et al., 2024;
Mülmenstädt and Wilcox, 2021).

The underrepresented dust-circulation interactions from
our network analysis align directly with the physical mech-
anisms described by Lau and Kim (2018) regarding the
snow–monsoon relationship in Asia. Their modeling exper-
iments showed that the deposition of dust on snow ini-
tiates a series of interconnected processes: reduced snow
albedo, increased solar radiation absorption, and accelerated
snowmelt, with subsequent modification of regional circu-
lation patterns. Specifically, they showed that dust deposi-
tion in April–June leads to atmospheric warming and pres-
sure patterns (changes in geopotential height) that enhance
dust transport to the Himalayan–Indo-Gangetic region. Our
network diagrams reveal that these critical connections be-
tween dust and circulation variables (particularly geopoten-
tial height and mean sea level pressure) are insufficiently
captured across all three reanalyses, despite being important
for SCF variability. This explains persistent biases in SCF
and dust, particularly in LSC regions nearest to major dust
sources like the Taklamakan Desert (see Figs. S1 and S4)
(Zhao et al., 2022), which Lau and Kim (2018) identified as
contributing significantly to dust deposition on Himalayan
snow. Zhao et al. (2024) confirm the role of dust in impact-
ing the Asian summer monsoon and how more accurate dust
simulations can help constrain the monsoon circulation pat-
terns. The progression in interaction complexity we observe
from ERA5/CAMS4 to MATCHA shows improvement but

still indicates insufficiencies in representing the dust-snow-
circulation feedbacks that are crucial for regional climate dy-
namics.

Both BC and dust impact snow by modifying the snow
albedo feedback, although their relative importance to radia-
tive forcing remains uncertain, as mentioned in Sect. 1. We
see in Sect. 3.2 that while BC (as a component of carbona-
ceous aerosols) dominates the bulk contribution to AMI’s im-
portance on SCF, individual interactions of meteorology vari-
ables with DU become more prevalent when we analyze the
networks after decomposing this bulk contribution to AMI.
This is also seen across the networks, where the node sizes
for BC and DU (based on their weighted degree) are similar,
reflecting a similar number of interactions with the meteorol-
ogy variables. We allude to this disparity in Fig. S4, where we
see a higher abundance of DU (mostly natural sources) than
BC (mostly anthropogenic sources) over HMA. The spatial
distribution shows that higher values of surface BC are pri-
marily concentrated in the vicinity of the glacier regions, in-
dicating pollution sources from nearby Asian countries. A
higher concentration of surface DU is concentrated in north-
ern HMA, especially in the LSC regions, due to its proximity
to the Gobi and Taklamakan deserts. The monthly variations
of BC and DU also show a greater abundance of DU com-
pared to BC during the study period. The prevalence of in-
adequate representation of dust and circulation-related inter-
actions can thus indicate biases in the model to simulate the
abundance of these quantities over the LSC regions in HMA,
compared to the biases in simulating BC abundance.

3.4 Observable AMI on snow

Given the significance of AMI in regulating SCF during the
study period, it would be useful to interpret what these inter-
actions within AMI on snow represent through observed rela-
tionships between the predictors and SCF. While having mul-
tiple predictors from satellite observations would be ideal for
exploring AMI on snow (or any Earth system interactions) to
its fullest extent, we consider four such variables from satel-
lite observations, MAIAC AOD, MODIS LST, and IMERG
PRECIP, and visualize their relationship with MODIS SCF,
which we defined as the Obs–Obs construct in Sect. 2.8. Ex-
ploring the relationship between predictors in the Obs–Obs
construct will provide a basis of ground truth for relative
comparison with findings in the other two constructs and aid
in understanding the relationships between the chosen pre-
dictors and their SCF response.

In Fig. 7, we show the relationship between MODIS
SCF and the predictors MODIS LST and IMERG PRECIP,
weighted by the distribution of MAIAC AOD for LSC re-
gions during May–July. We observe an overall trend of ex-
ponential decay of MODIS SCF with MODIS LST above
0 °C, dominated by high values of MAIAC AOD, especially
at higher LST and lower SCF. Such behavior can point to the
radiative effects of absorbing aerosols, causing warmer tem-
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Figure 7. Relationships between aerosols and meteorology to snow cover fraction in low snow cover regions across all three constructs. Scat-
ter density of AOD at 550 nm based on snow cover fraction (SCF) in the y axis with land surface temperature/skin temperature (LST/SKT)
(top row) and daily accumulated precipitation (PRECIP) (bottom row) in the x axes across the Obs–Obs construct (a), Obs–Model con-
struct (b, d) and Model–Model construct (c, e). The variables are of daily resolution and masked for the low snow cover regions. The scatter
densities are classified (colored) by quantiles of AOD at 550 nm (shown in the legend) based on the respective aerosol datasets across the
three constructs (MAIAC AOD for Obs–Obs, reanalysis AOD for the other two). The color bar represents the quantiles of AOD at 550 nm
from very low to very high (0th, 25th, 50th, 75th, and 100th percentiles), computed across all three constructs (Obs–Obs, Obs–Mod, and
mod–mod construct). The bar graphs denote the non-linear sensitivity (quantified by max-normalized mutual information between 0 and 1)
of SCF to LST/SKT and PRECIP at various quantiles of AOD for relative comparison of the sensitivity across different AOD quantiles.

peratures (high LST) and accelerated snowmelt (low SCF).
However, this does not imply causality as it might be at-
tributed to the warmest areas in the domain (with high LST)
located at lower elevations and directly affected by air pol-
lution (high AOD) or the fact that spatial resolution of 0.75°
in the datasets might include non-snow-covered regions with
high temperatures. We use a mutual-information-based met-
ric to quantify the bulk non-linear association of SCF to LST
(as shown by the bars in Fig. 7) (Kraskov et al., 2004). The
strongest association between MODIS LST and SCF occurs
for low to moderate values of AOD (values within 0.04–
0.10). Compared to satellite observations, MATCHA shows
a similar relationship between SCF and LST compared to
the other two datasets (for both Obs–Model and Model–
Model constructs). Given that MATCHA is the only frame-
work among the three datasets with coupling between snow,
radiation, and LAPs, this similarity confirms the ability of
parameterizations in MATCHA to represent AMI on snow
better than datasets from MERRA-2 or ERA5/CAMS4. In
the Model–Model construct, MERRA-2 shows the strongest
relationship between SCF and LST at moderate to very

high values of AOD (0.1–6.8), suggesting an overestimated
aerosol loading (compared to AOD in Obs–Obs) in LSC re-
gions during the late snowmelt season that might contribute
to the lower SCF values over HMA seen in Fig. S1 for
MERRA-2. On the other hand, ERA5/CAMS4 has stronger
SCF–LST sensitivities for values below high AOD (< 0.21),
which can allude to a lack of coupling related to aerosol ra-
diative feedbacks within the ERA5 model that translates to an
absence of strong SCF–LST dependencies to the AOD dis-
tribution in CAMS-EAC4. The strong SCF response to LST
for ERA5 at lower AOD values (below high AOD, < 0.21)
can either allude to the buffering of aerosol effect reflected in
the lack of coupling within ERA5 related to aerosol radiative
feedbacks. This can thus indicate misattribution of the SCF
response to aerosols in the presence of meteorology.

We also see an exponential decay between MODIS SCF
and IMERG PRECIP in the Obs–Obs construct, with strong
SCF–PRECIP dependency at low to moderate values of AOD
(0.04–0.10). This might indicate potential removal (wet scav-
enging) of absorbing aerosols by precipitation that can result
in lesser amounts of exposed absorbing aerosols onto snow,
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hence reducing snow darkening and its impact on snowmelt
(Gryspeerdt et al., 2015). As mentioned earlier regarding the
SCF–LST relationship, direct causality is not implied as the
wetter areas in the domain (high PRECIP) can be located
at lower elevations and directly impacted by air pollution
(high AOD), and the spatial resolution of 0.75° might in-
clude areas with non-snow-covered regions with high pre-
cipitation. MATCHA also exhibits the most similarity in the
SCF–PRECIP relationship to the Obs–Obs construct com-
pared to the other two datasets, with strong sensitivity of SCF
to PRECIP in the low–moderate AOD range. This reflects the
degree of coupling within MATCHA compared to MERRA-
2 and ERA5/CAMS4. MERRA-2 reflects the underestima-
tion of SCF as seen in Fig. S1, and the SCF–PRECIP rela-
tionship is strong for moderate to very high values of AOD
(0.1–6.8) compared to the other datasets (where the SCF–
PRECIP is strong for values below high AOD), suggesting
overestimated AOD within the model (compared to AOD
in Obs–Obs) in LSC regions during the study period. High
SCF in ERA5/CAMS4 is dominated by low to moderate
AOD (0.04–0.10) in the Model–Model construct (as com-
pared to high SCF when AOD is low or< 0.04 for Obs–Obs).
This can indicate higher-than-usual aerosol loading within
CAMS-EAC4 in the study region during the late snowmelt
season.

4 Summary and implications

4.1 Main findings

We evaluated three state-of-the-art reanalysis frameworks in
their ability to capture a particular case of Earth-system inter-
actions, those pertaining to feedbacks between aerosols and
meteorology that affect snowmelt over HMA. By employ-
ing a data-driven approach across 22 distinct geophysical
quantities (six aerosol and 15 meteorological), we assessed
aerosol–meteorology interactions (AMIs) at the snow inter-
face over low snow cover (LSC) regions of HMA through
interactions of various orders of these variables. Our main
findings are as follows:

1. Importance of AMI to SCF variability. We estimated the
importance of AMI on snow in driving SCF variability
across three reanalyses and two importance metrics dur-
ing the late snowmelt season, building on our previous
work (Roychoudhury et al., 2022). While interactions
within meteorology at the snow interface (MMIs) con-
tribute the most to the variability of SCF (∼ 60 % contri-
bution), drivers related to AMI account for an average
of 20 % of the SCF variability. The robustness of the
importance of AMI on snow was established (1) using
two regression-based algorithms – one statistical and
one machine learning-based, (2) using model constructs
to distinguish between model versus observable rela-
tionships that impact SCF, and (3) using three state-of-

the-art reanalysis with varying degrees of coupling pa-
rameterizations to quantify the importance of non-linear
interactions to snowmelt and characterize them within
AMI.

2. Significant drivers within AMI on snow. By introduc-
ing the concept of constructs for the regression algo-
rithms that correspond to observed and model reality
(within each reanalysis), we determined which group of
aerosols and meteorology variables contributes most to
the importance of AMI on snow. Dominant contribu-
tions from carbonaceous aerosols (30 %), dust (24 %),
and large-scale circulation variables (38 %) contribute
to AMI at the observed snow interface, whereas vari-
ables related to near-surface temperature (22 %) and
surface energy fluxes (23 %) are given priority at the
model snow interface.

3. Underestimation of AMI on snow across the reanalyses.
Comparative analysis between the constructs through
network visualizations reveals (1) individual interac-
tions between aerosols and meteorology variables that
are underrepresented in each reanalysis and (2) the
underestimation of AMI’s importance to SCF within
the reanalyses compared to satellite-based SCF, which
highlights a significant disparity between observed and
modeled data. Furthermore, by applying the concept of
assortative mixing in networks (Newman, 2002), we can
observe differences in the diversity of AMI interactions
across both constructs for each reanalysis.

4. Underrepresented interactions within AMI on snow.
Circulation-related interactions with dust aerosols, par-
ticularly those involving geopotential height and mean
sea level pressure, are found to be significant yet in-
sufficiently represented in the models within each re-
analysis. Previous studies have mentioned the uncer-
tainty with dust and circulation across models and how
the interactions between the two initiate feedbacks af-
fecting monsoon and snowmelt in HMA (discussed in
Sect. 3.3.5). The importance of circulation-related inter-
actions suggests that interactions of absorbing aerosols
and smaller sub-grid processes with large-scale atmo-
spheric circulation involving clouds, convection, and
transport across the boundary layer need to be addressed
for more accurate snow hydrology and understanding of
Asian monsoon dynamics.

5. Complexity of coupling across each reanalysis. Results
suggest that reanalysis from NSF NCAR (MATCHA)
strongly resembles the relationships between aerosols
and meteorology to observed SCF, considering that the
degree of coupling parameterizations interfacing the at-
mosphere and land (cryosphere) is highest in MATCHA
due to the inclusion of feedbacks in its model between
aerosol, radiation, and snow through CLM-SNICAR.
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Using available aerosol and meteorology observations
from satellites in Sect. 3.4 also shows that MATCHA
captures the joint sensitivities between aerosol and me-
teorology variables observed across satellites. Although
both MERRA-2 and MATCHA incorporate some de-
gree of coupling within their models, our study sug-
gests that interactions of dust with circulation variables
would need more attention within the two. The models
in both these reanalyses seem to overemphasize inter-
actions of aerosols (particularly dust) with daily accu-
mulation precipitation, instead of coupling with circu-
lation variables such as geopotential height and mean
sea level pressure. From our interpretation of the net-
works, it seems that ERA5/CAMS4 relies extensively
on its non-coupled model framework and assimilation
of observations and needs extra attention to circulation
and cloud-cover-related interactions in the future devel-
opment of the ECMWF model. The variability in the
importance distribution of AMI on snow across the re-
analyses is also lower than the difference in the variabil-
ity of AMI’s importance on snow from both constructs
(Fig. 2 and Table 1), indicating that the coupling within
MATCHA is far from ideal. Thus, the need for parame-
terizations that represent the feedbacks between snow
and aerosol abundances, including relevant snowmelt
drivers like circulation-related variables, is necessary to
consider in the development of future ESMs.

6. Physics-informed insights. The consistent importance
of aerosol–meteorology interactions on snow over
HMA across two regression algorithms and constructs
suggests that the sensitivities observed of these inter-
actions to snowmelt are not merely statistically in-
ferred but rooted in physics-informed insights. Avail-
able observations from satellites confirm these insights
by demonstrating similar relationships between aerosol
and meteorology variables, especially the strongly cou-
pled reanalysis (MATCHA) as seen in Sect. 3.4. The
radiative effect of absorbing aerosols, as well as wet
scavenging of these aerosols by accumulated precipita-
tion, is seen across the observations and the reanalyses,
in addition to their inherent biases in representing these
processes.

4.2 Implications for Earth system predictability

The synergistic approach combining (1) model constructs,
(2) statistical regression and machine learning methods, and
(3) network analysis serves as a viable complement to con-
ventional, resource-intensive feedback separation methods
used within the community. This highlights the potential
of our methodology to detect non-linear relationships, not
only at the atmosphere–cryosphere interface but also across
other Earth system processes. Beyond quantifying the rel-
evance of these coupled processes, this approach allows

us to identify key variables driving these interactions and
pinpoint deficiencies in their representation across different
models. While current benchmarking frameworks for evalu-
ating ESMs utilize diverse statistical metrics and assess mod-
els’ ability to represent different climate modes of variability,
our approach can assist in identifying specific interactions
that are highly uncertain and complex for any Earth system
phenomena, extending beyond snowmelt in the Third Pole
(Lee et al., 2024; Lauer et al., 2020).

Our results emphasize the need to (1) incorporate rele-
vant non-linear interactions involving circulation, tempera-
ture, and cloud cover between aerosol and meteorological
variables within ESMs for improved predictions of snow hy-
drology; (2) inform specific variables that need to be assim-
ilated in the design of observing systems; and (3) include a
broader array of observable variables across different Earth
system components (e.g., aerosols and meteorology in this
study) in future phases of the Coupled Model Intercompari-
son Project (CMIP) and its related ESM-SnowMIP initiative,
to assess co-variability across both aerosols and meteorology
(Krinner et al., 2018). Based on our findings in Figs. 2–3 and
the individual interactions within the networks in Figs. 4–6,
we emphasize the incorporation of variables related to large-
scale atmospheric circulation, near-surface temperature, as
well as refined proxies for absorbing aerosols, particularly
dust, in future CMIP and ESM outputs. Considering the
future direction of ESMs toward Integrated Earth System
Model and Analysis (IESM, IESA) with an emphasis on ob-
servationally constrained coupled chemistry–climate models
(CCMs), joint assimilation of AMI-relevant variables is es-
sential for this development (Bocquet et al., 2015; National
Academies Press, 2018). Furthermore, with the advent of
ML forecast models such as GraphCast trained on ERA5
data (Lam et al., 2023), it is more important than ever to
assess how existing reanalyses represent the representation
of coupling of relevant interactions. Diagnosing and quanti-
fying the strength of such interactions across Earth system
processes is essential to reduce uncertainties in Earth sys-
tem predictions and to minimize the false attribution of ob-
served environmental changes (National Academies of Sci-
ences, Engineering, and Medicine, 2022; Ripple et al., 2023).
Identifying underrepresented interactions in ESMs has the
potential to enhance medium-range and sub-seasonal to sea-
sonal forecasts of high-impact weather events, particularly
water cycle extremes that can support greater resilience of
vulnerable populations in climate-sensitive regions such as
HMA (NOAA Science Advisory Board, 2021).

4.3 Limitations and future directions

It is important to recognize that while this study specifi-
cally analyzes the coupling among aerosols, meteorology,
and snowmelt over HMA, our primary objective is to demon-
strate a systems-science approach that can assist in unravel-
ing interactions within any Earth system phenomenon, iden-
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tify its key drivers, and highlight the inconsistencies among
different models in their representation of coupled Earth sys-
tem processes. This study serves as a proof of concept for
employing a variety of methods (statistical, ML, model con-
structs, and network theory) to identify the biases in the rep-
resentation of Earth system interactions within ESMs. While
our analysis focuses on low snow cover regions in HMA
and the late snowmelt season, further assessments of AMI
in high snow cover (HSC) regions within HMA and during
the snow accumulation period are also necessary. The more
transient changes in seasonal snowpacks within LSC regions
exhibit significant sensitivity of AMI to snow, whereas the
non-seasonal snowpacks in HSC regions are influenced by
longer timescales (Liu et al., 2021a). Preliminary results for
HSC regions, shown in Fig. S5, also highlight the strong im-
portance of AMI on snow in these regions, albeit with higher
variability (reflected in the spread of the AMI distribution)
compared to LSC regions. Additional observational datasets
for SCF and other snow properties (e.g., snow albedo) also
need to be explored to improve the robustness of our find-
ings (Wu et al., 2021; Liu and Margulis, 2021; Rittger et al.,
2021). Observational datasets across all the predictors, when
possible, also need to be explored to strengthen our findings
and facilitate a detailed analysis of the process-level physics
underlying these interactions, as discussed in Sect. 3.4.

While our focus is on AMI on snow over HMA, a simi-
lar analysis of the interactions within meteorology and with
elevation will provide further insights into these complex
processes and their representation in models over the Third
Pole. Beyond improving ESMs, our methodology can also
inform a more optimal design of field campaigns in climate-
vulnerable regions such as HMA. By identifying the key vari-
ables and interactions that affect snowmelt (or any other phe-
nomenon of interest) and determining when and where these
interactions are more pronounced, our approach can help op-
timize the allocation of limited observational resources. This
would enable more strategic selection of the variables, lo-
cations, and periods to yield the most valuable information
on critical Earth system processes in these regions. In addi-
tion, exploring the uncertainty within the networks would be
valuable, allowing us to quantify the confidence in the infer-
ences drawn in this study. Observational datasets for predic-
tors that are currently derived primarily from reanalyses are
also needed to conduct a more comprehensive analysis, be-
yond what we presented in Sect. 3.4, where we evaluated the
joint distributions of interacting variables in relation to the
target variable.

We acknowledge that the insights from our approach are
dependent on the choice of variables to represent these
processes. Thus, future studies incorporating other relevant
variables (e.g., net surface radiation fluxes, boundary layer
height, vertical profiles of thermodynamic variables, and
wind) will also be valuable. Moreover, reanalysis datasets
are known to exhibit biases, particularly in high-elevation re-
gions (see Sect. 2.1); hence, their relative skill and accuracy

must be taken into account when interpreting their sensitivity
to the target variable. An additional avenue to explore is the
separation of misattribution and buffering among the drivers
in the identified couplings, which is limited in our current
approach. Specifically, our approach does not fully separate
compounding or buffering effects where multiple drivers im-
pact simultaneously. For example, circulation patterns identi-
fied as important may themselves be influenced by other fac-
tors not captured in our analysis. This potential for misattri-
bution is an inherent limitation in our diagnostic framework
and underscores the importance of interpreting our results as
indicative of correlative relationships, rather than definitive
causal links. Furthermore, identifying specific upper-level
circulation patterns that drive SCF variability could build
upon our findings for deeper insights. While our approach
identifies the importance of circulation-related variables and
their interactions across different reanalyses, a detailed as-
sessment of circulation regimes would complement our sta-
tistical analyses with a more process-based understanding.
It is also important to consider that estimates from inter-
pretability frameworks within explainable ML (e.g., SHAP)
are inherently dependent on the prediction of the ML model.
Thus, employing a combination of different interpretability
techniques, along with more generalizable and/or complex
ML algorithms (e.g., deep neural/graph neural networks),
can offer a more comprehensive understanding of Earth sys-
tem interactions.

Our methodology primarily serves as a diagnostic tool to
compare how different reanalysis products represent Earth
system interactions, rather than to identify physical mech-
anisms. The value lies in (1) identifying biases across dif-
ferent models in representing non-linear interactions, which
is crucial for investing in more computationally expensive
process-based modeling, and (2) bridging the gap between
process understanding and model evaluation by quantifying
specific biases in the representation of interactions, beyond
estimating general biases in the model outputs. We recognize
that our approach is statistical in nature and does not directly
identify physical mechanisms. While we can identify signif-
icant relationships and interactions among variables, estab-
lishing definitive causality requires detailed, process-based
investigations. As such, our findings should be interpreted as
highlighting potential relationships that can inform and guide
subsequent detailed physics-based modeling efforts. As re-
analyses and ESMs continue to evolve, our approach can
support these development efforts by pinpointing the most
critical coupling processes. Given the proof-of-concept na-
ture of our study, applying similar analyses to other regions
or phenomena could yield equally valuable insights into the
model representation of Earth system interactions.
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Appendix A: Measures of network properties

A1 Weighted degree

For a network with N nodes, the weighted degree di of node
i can be mathematically represented as

di =

N∑
i,j=1

wij , (A1)

where wij is the interaction importance of the edge between
node i and node j .

A2 Assortativity/dissortativity

Assortativity (dissortativity) quantifies the tendency of nodes
in a network to connect to other nodes with similar (as-
sortative) or dissimilar (dissortative) importance, with val-
ues ranging from −1 (perfect dissortativity) to +1 (perfect
assortativity). Positive values indicate that high-importance
(high-degree) nodes preferentially connect with other high-
importance nodes, whereas negative values indicate that
high-importance nodes tend to connect with low-importance
nodes. In our networks in Fig. 4 and Table 2), we see strong
negative assortativity (i.e., high dissortativity). This arises
because six aerosol (AER) nodes each link to 15 meteo-
rological (MET) nodes, producing a clear hierarchy: pri-
mary/higher degree (AER) nodes connect more with sec-
ondary/lower degree (MET) nodes. Higher dissortativity
therefore reflects greater heterogeneity in interaction impor-
tance, reflecting a complex hierarchical structure in AMI on
snow across all networks.

The assortativity coefficient r is given by

r =

∑
jkjk(ejk − qjqk)

σ 2
q

, (A2)

where ejk is the joint probability distribution of the node de-
grees, qj and qk are the remaining degree distributions, and
σq is the standard deviation of the distribution q. The joint
probability distribution of the node degrees ejk is the proba-
bility that an edge connects nodes of degree j and k, where
the weighted degree is calculated using Eq. (A1). Specific
details on calculating network assortativity/dissortativity can
be found in Newman (2002).

Appendix B: List of all abbreviations used in this
paper

ACI Aerosol–cloud interaction
AER Aerosol variables
AMI Aerosol–meteorology interaction at

the snow interface
AOD Aerosol optical depth at 550 nm
ATPE Adaptive tree Parzen estimator
BC Black carbon
BrC Brown carbon
CCM Coupled chemistry–climate model
CLM-SNICAR Community Land Model – Snow, ICe,

and Aerosol Radiative
CMIP Coupled Model Intercomparison Project
DU Surface dust mixing ratio
ECMWF European Centre for Medium-Range

Weather Forecasts
ELEV Elevation
ES Earth system
ESP Earth system predictability
ESM Earth system model
GMTED Global Multi-resolution Terrain

Elevation Data
GR Glacial region
HMA High Mountain Asia
HSC High snow cover regions in High

Mountain Asia
IESM/IESA Integrated Earth System

Model/Analysis
IMERG Integrated Multi-satellitE Retrievals

for GPM
LAPs Light-absorbing particles
LSC Low snow cover regions in High

Mountain Asia
MAIAC Multi-Angle Implementation of

Atmospheric Correction
MATCHA Model for Atmospheric Transport and

Chemistry in Asia
MET Meteorology variables
ML Machine learning
MLR Multi-linear regression
MODIS Moderate Resolution Imaging

Spectroradiometer
MOPITT Measurements of Pollution in

the Troposphere
NASA GMAO NASA Global Modeling and

Assimilation Office
NCAR National Center for Atmospheric

Research
PRECIP Accumulated precipitation
R22 Roychoudhury et al. (2022) (reference)
RI Relative importance
RGI Randolph Glacier Inventory v6.0
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RRTMG Rapid Radiative Transfer Model for
General Circulation Models

SCF Snow cover fraction
SHAP Shapley additive explanation
SHAPc Shapley contribution
WRF-Chem Weather Research and Forecasting

Model coupled with Chemistry
XGBoost eXtreme Gradient Boosting
PRECIP Daily accumulated precipitation
QV2 Specific humidity at 2 m
ssHF Sensible heat flux at the surface
ssLF Latent heat flux at the surface
T2 Temperature at 2 m
SKT Skin temperature
T/H/M/L CC Total/high/medium/low cloud cover
Z500/Z300 Geopotential height at 500 or 300 hPa
MSLP Mean sea level pressure
U10 Zonal wind speed at 10 m
V10 Meridional wind speed at 10 m
SS Sea-salt surface mixing ratio
SU Sulfate surface mixing ratio
DU Dust surface mixing ratio
BC Black carbon surface mixing ratio
OM Organic matter surface mixing ratio
τ Aerosol optical depth at 550 nm

Data availability. Satellite and reanalysis data are available
in the public domain. ERA5/ERA5-Land data were down-
loaded from the Copernicus Climate Data Store available at
https://cds.climate.copernicus.eu/datasets?q=era5&limit=30 (last
access: 27 July 2025; https://doi.org/10.24381/cds.bd0915c6,
Hersbach et al., 2023a; https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2023b; https://doi.org/10.24381/cds.e2161bac,
Muñoz Sabater, 2019). CAMS-EAC4 data were down-
loaded from the Atmospheric Data Store available at https:
//doi.org/10.24381/d58bbf47 (Copernicus Atmosphere Monitoring
Service, 2020). MERRA-2 (https://disc.gsfc.nasa.gov/datasets?
page=1&project=MERRA-2&temporalResolution=1hour, last
access: 27 July 2025; https://doi.org/10.5067/3Z173KIE2TPD,
Global Modeling and Assimilation Office (GMAO), 2015a;
https://doi.org/10.5067/LTVB4GPCOTK2, Global Modeling and
Assimilation Office (GMAO), 2015b; https://doi.org/10.5067/
WWQSXQ8IVFW8, Global Modeling and Assimilation Office
(GMAO), 2015c; https://doi.org/10.5067/KLICLTZ8EM9D,
Global Modeling and Assimilation Office (GMAO), 2015d;
https://doi.org/10.5067/7MCPBJ41Y0K6, Global Modeling and
Assimilation Office (GMAO), 2015e; https://doi.org/10.5067/
RKPHT8KC1Y1T, Global Modeling and Assimilation Office
(GMAO), 2015f; https://doi.org/10.5067/Q9QMY5PBNV1T,
Global Modeling and Assimilation Office (GMAO), 2015g) and
IMERG (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_
07/summary?keywords=imergfinal, last access: 27 July 2025;
https://doi.org/10.5067/GPM/IMERGDF/DAY/07, Huff-
man et al., 2023) final run data were downloaded from
NASA GES DISC available at https://disc.gsfc.nasa.gov/
(last access: 27 July 2025). MODIS SCF, LST, and MA-

IAC AOD were downloaded from NASA Earthdata https:
//search.earthdata.nasa.gov/search (last access: 27 July 2025; https:
//doi.org/10.5067/MODIS/MYD10C1.061, Hall and Riggs, 2021a;
https://doi.org/10.5067/MODIS/MOD10C1.061, Hall and Riggs,
2021b; https://doi.org/10.5067/MODIS/MCD19A2CMG.061,
Lyapustin, 2023; https://doi.org/10.5067/MODIS/MOD11C1.006,
Wan et al., 2015). The MATCHA dataset was recently re-
leased at the NSIDC (National Snow and Ice Data Center) for
public use at https://doi.org/10.5067/CG4OT8DJX2Z7 (Kumar
et al., 2024). An introductory article on MATCHA’s model
design is provided at https://himat.org/topic/matcha/ (HiMAT,
2025). A GitHub repository at https://github.com/chayanroyc/
Aerosol-Meteorology-Snow-HMA (Roychoudhury, 2025) con-
tains the necessary information on the methodology associated
with this paper.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/esd-16-1237-2025-supplement.
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