Articles | Volume 14, issue 5
https://doi.org/10.5194/esd-14-1015-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-1015-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advancing the estimation of future climate impacts within the United States
Climate Change Division, Office of Atmospheric Protection, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Erin E. McDuffie
Climate Change Division, Office of Atmospheric Protection, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Karen Noiva
Industrial Economics, Incorporated, 2067 Massachusetts Ave, Cambridge,
MA 02140, USA
Marcus Sarofim
Climate Change Division, Office of Atmospheric Protection, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Bryan Parthum
National Center for Environmental Economics, Office of Policy, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Jeremy Martinich
Climate Change Division, Office of Atmospheric Protection, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Sarah Barr
Climate Change Division, Office of Atmospheric Protection, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Jim Neumann
Industrial Economics, Incorporated, 2067 Massachusetts Ave, Cambridge,
MA 02140, USA
Jacqueline Willwerth
Industrial Economics, Incorporated, 2067 Massachusetts Ave, Cambridge,
MA 02140, USA
Allen Fawcett
Climate Change Division, Office of Atmospheric Protection, U.S.
Environmental Protection Agency, Washington, DC 20004, USA
Related authors
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Dawn L. Woodard, Alexey N. Shiklomanov, Ben Kravitz, Corinne Hartin, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 4751–4767, https://doi.org/10.5194/gmd-14-4751-2021, https://doi.org/10.5194/gmd-14-4751-2021, 2021
Short summary
Short summary
We have added a representation of the permafrost carbon feedback to the simple, open-source global carbon–climate model Hector and calibrated the results to be consistent with historical data and Earth system model projections. Our results closely match previous work, estimating around 0.2 °C of warming from permafrost this century. This capability will be useful to explore uncertainties in this feedback and for coupling with integrated assessment models for policy and economic analysis.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Dawn L. Woodard, Alexey N. Shiklomanov, Ben Kravitz, Corinne Hartin, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 4751–4767, https://doi.org/10.5194/gmd-14-4751-2021, https://doi.org/10.5194/gmd-14-4751-2021, 2021
Short summary
Short summary
We have added a representation of the permafrost carbon feedback to the simple, open-source global carbon–climate model Hector and calibrated the results to be consistent with historical data and Earth system model projections. Our results closely match previous work, estimating around 0.2 °C of warming from permafrost this century. This capability will be useful to explore uncertainties in this feedback and for coupling with integrated assessment models for policy and economic analysis.
Marcus C. Sarofim and Michael R. Giordano
Earth Syst. Dynam., 9, 1013–1024, https://doi.org/10.5194/esd-9-1013-2018, https://doi.org/10.5194/esd-9-1013-2018, 2018
Short summary
Short summary
The 100-year GWP is the most widely used metric for comparing the climate impact of different gases such as methane and carbon dioxide. However, there have been recent arguments for the use of different timescales. This paper uses straightforward estimates of future damages to quantitatively determine the appropriate timescale as a function of how society discounts the future and finds that the 100-year timescale is consistent with commonly used discount rates.
Cameron Wobus, Ethan Gutmann, Russell Jones, Matthew Rissing, Naoki Mizukami, Mark Lorie, Hardee Mahoney, Andrew W. Wood, David Mills, and Jeremy Martinich
Nat. Hazards Earth Syst. Sci., 17, 2199–2211, https://doi.org/10.5194/nhess-17-2199-2017, https://doi.org/10.5194/nhess-17-2199-2017, 2017
Short summary
Short summary
We linked modeled changes in the frequency of historical 100-year flood events to a national inventory of built assets within mapped floodplains of the United States. This allowed us to project changes in inland flooding damages nationwide under two alternative greenhouse gas (GHG) emissions scenarios. Our results suggest that more aggressive GHG reductions could reduce the projected monetary damages from inland flooding, potentially saving billions of dollars annually by the end of the century.
Cited articles
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R.,
Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J.,
and Lenton, T. M.: Exceeding 1.5 ∘C global warming could trigger
multiple climate tipping points, Science, 377, eabn7950,
https://doi.org/10.1126/science.abn7950, 2022.
Barron, A. R.: Time to refine key climate policy models, Nat. Clim. Change,
8, 350–352, https://doi.org/10.1038/s41558-018-0132-y, 2018.
Carleton, T. and Greenstone, M.: A Guide to Updating the US Government's
Social Cost of Carbon, Rev. Environ. Econ. Policy, 16, 196–218,
https://doi.org/10.1086/720988, 2022.
Carleton, T., Jina, A., Delgado, M., Greenstone, M., Houser, T., Hsiang, S.,
Hultgren, A., Kopp, R. E., McCusker, K. E., Nath, I., Rising, J., Rode, A.,
Seo, H. K., Viaene, A., Yuan, J., and Zhang, A. T.: Valuing the Global
Mortality Consequences of Climate Change Accounting for Adaptation Costs and
Benefits, Q. J. Econ., 137, 2037–2105,
https://doi.org/10.1093/qje/qjac020, 2022.
Council of Economic Advisers (CEA): Discounting for public policy: Theory and recent evidence on the merits of updating the discount rate, Issue brief, Washington, DC: Executive Office of the President, 2017.
Cromar, K. R., Anenberg, S. C., Balmes, J. R., Fawcett, A. A., Ghazipura,
M., Gohlke, J. M., Hashizume, M., Howard, P., Lavigne, E., Levy, K.,
Madrigano, J., Martinich, J. A., Mordecai, E. A., Rice, M. B., Saha, S.,
Scovronick, N. C., Sekercioglu, F., Svendsen, E. R., Zaitchik, B. F., and
Ewart, G.: Global Health Impacts for Economic Models of Climate Change: A
Systematic Review and Meta-Analysis, Ann. Am. Thorac. Soc., 19, 1203–1212,
https://doi.org/10.1513/AnnalsATS.202110-1193OC, 2022.
Depsky, N., Bolliger, I., Allen, D., Choi, J. H., Delgado, M., Greenstone, M., Hamidi, A., Houser, T., Kopp, R. E., and Hsiang, S.: DSCIM-Coastal v1.0: An Open-Source Modeling Platform for Global Impacts of Sea Level Rise, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-198, 2022.
EPA: Multi-Model Framework for Quantitative Sectoral Impacts Analysis: A
Technical Report for the Fourth National Climate Assessment, U.S.
Environmental Protection Agency, EPA 430-R-17-001, 2017a.
EPA: Updates To The Demographic And Spatial Allocation Models To Produce
Integrated Climate And Land Use Scenarios (Iclus), EPA/600/R-16/366F,
2017b.
EPA: Climate Change and Social Vulnerability in the United States: A Focus
on Six Impacts, U.S. Environmental Protection Agency, EPA 430-R-21-003,
2021a.
EPA: Technical Documentation on the Framework for Evaluating Damages and
Impacts (FrEDI), U.S. Environmental Protection Agency, EPA 430-R-21-004,
2021b.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., et al.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, in:
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 923–1054, https://doi.org/10.1017/9781009157896.009, 2021.
U.S. Government Accountability Office (GAO): Climate Change: Information on Potential Economic Effects Could Help Guide Federal Effort to Reduce Fiscal Exposure GAO-17-720. October, https://www.gao.gov/products/gao-17-720 (last access: 12 October 2022), 2017.
Heutel, G., Miller, N. H., and Molitor, D.: Adaptation and the Mortality
Effects of Temperature across U.S. Climate Regions, Rev. Econ. Stat., 103,
740–753, 2021.
Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S.,
Rasmussen, D. J., Muir-Wood, R., Wilson, P., Oppenheimer, M., Larsen, K.,
and Houser, T.: Estimating economic damage from climate change in the United
States, Science, 356, 1362–1369, https://doi.org/10.1126/science.aal4369,
2017.
Hultgren, A., Carleton, T., Delgado, M., Gergel, D. R., Greenstone, M.,
Houser, T., Hsiang, S., Jina, A., Kopp, R. E., Malevich, S. B., McCusker, K.
E., Mayer, T., Nath, I., Rising, J., Rode, A., and Yuan, J.: Estimating
Global Impacts to Agriculture from Climate Change Accounting for Adaptation,
https://doi.org/10.2139/ssrn.4222020, 2022.
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P.,
Gehrels, W. R., Hay, C. C., Mitrovica, J. X., Morrow, E. D., and Rahmstorf,
S.: Temperature-driven global sea-level variability in the Common Era, P.
Natl. Acad. Sci. USA, 113, 1434–1441,
https://doi.org/10.1073/pnas.1517056113, 2016.
Kotchen, M. J.: Which Social Cost of Carbon? A Theoretical Perspective, J.
Assoc. Environ. Resour. Econ., 5, 673–694, https://doi.org/10.1086/697241,
2018.
Lay, C. R., Sarofim, M. C., Vodonos Zilberg, A., Mills, D. M., Jones, R. W.,
Schwartz, J., and Kinney, P. L.: City-level vulnerability to
temperature-related mortality in the USA and future projections: a
geographically clustered meta-regression, Lancet Planet. Health, 5,
338–346, https://doi.org/10.1016/S2542-5196(21)00058-9, 2021.
Lorie, M., Neumann, J. E., Sarofim, M. C., Jones, R., Horton, R. M., Kopp,
R. E., Fant, C., Wobus, C., Martinich, J., O'Grady, M., and Gentile, L. E.:
Modeling coastal flood risk and adaptation response under future climate
conditions, Clim. Risk Manag., 29, 100233,
https://doi.org/10.1016/j.crm.2020.100233, 2020.
Martinich, J. and Crimmins, A.: Climate damages and adaptation potential
across diverse sectors of the United States, Nat. Clim. Change, 9, 397–404,
https://doi.org/10.1038/s41558-019-0444-6, 2019.
Martinich, J., DeAngelo, B., Diaz, D., Ekwurzel, B., Franco, G., Frisch, C.,
McFarland, J., and O'Neill, B.: Reducing Risks Through Emissions Mitigation. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II, edited by: Reidmiller, D. R., Avery, C. W., Easterling, D. R., Kunkel, K. E., Lewis, K. L. M., Maycock, T. K., and Stewart, B. C., U.S. Global Change Research Program, Washington, DC, USA, 1346–1386, https://doi.org/10.7930/NCA4.2018.CH29, 2018.
McDuffie, E., Hartin, C., Parthum, B.: USEPA/FrEDI_NPD: Accepted Paper (Version v1), Zenodo [data set, code], https://doi.org/10.5281/zenodo.8211790, 2023.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P.,
Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A.,
Nicolsky, D. J., and Marchenko, S. S.: Climate change damages to Alaska
public infrastructure and the economics of proactive adaptation, P. Natl.
Acad. Sci. USA, 114, 122–131, https://doi.org/10.1073/pnas.1611056113, 2017.
National Academies of Sciences (NAS): Engineering, and Medicine, Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press, https://doi.org/10.17226/24651, 2017.
Nordhaus, W. D.: Revisiting the social cost of carbon, P. Natl. Acad.
Sci. USA, 114, 1518–1523, https://doi.org/10.1073/pnas.1609244114, 2017.
Office of Management and Budget (OMB): Circular A-4, Regulatory Analysis. OMB, https://obamawhitehouse.archives.gov/omb/circulars_a004_a-4/ (last access: 12 October 2022), 2003.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Glob.
Environ. Change, 42, 169–180,
https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Rennert, K., Prest, B. C., Pizer, W., Newell, R. G., Anthoff, D., Kingdon,
C., Rennels, L., Cooke, R., Raftery, A. E., Sevcikova, Hana, and Errickson,
F.: The Social Cost of Carbon: Advances in Long-Term Probabilistic
Projections of Population, GDP, Emissions, and Discount Rates, Resour.
Future, Working Paper 21–28, 2021.
Rennert, K., Prest, B. C., Pizer, W. A., Newell, R. G., Anthoff, D., Kingdon, C., Rennels, L., Cooke, R., Raftery, A. E., Ševčíková, H., and Errickson, F.: Resources for the Future Socioeconomic Projections (RFF-SPs) (Version 5), Zenodo [code], https://doi.org/10.5281/zenodo.6016583, 2022a.
Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer,
W., Kingdon, C., Wingenroth, J., Cooke, R., Parthum, B., Smith, D., Cromar,
K., Diaz, D., Moore, F. C., Müller, U. K., Plevin, R. J., Raftery, A.
E., Ševèíková, H., Sheets, H., Stock, J. H., Tan, T.,
Watson, M., Wong, T. E., and Anthoff, D.: Comprehensive Evidence Implies a
Higher Social Cost of CO2, Nature, 1–3,
https://doi.org/10.1038/s41586-022-05224-9, 2022b.
Revesz, R., Greenstone, M., Hanemann, M., Livermore, M., Sterner, T., Grab,
D., Howard, P., and Schwartz, J.: Best cost estimate of greenhouse gases,
Science, 357, 655–655, https://doi.org/10.1126/science.aao4322, 2017.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., et al.:
The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environ. Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Rising, J. and Devineni, N.: Crop switching reduces agricultural losses from
climate change in the United States by half under RCP 8.5, Nat. Commun., 11,
4991, https://doi.org/10.1038/s41467-020-18725-w, 2020.
Rising, J., Tedesco, M., Piontek, F., and Stainforth, D. A.: The missing
risks of climate change, Nature, 610, 643–651,
https://doi.org/10.1038/s41586-022-05243-6, 2022.
Rode, A., Carleton, T., Delgado, M., Greenstone, M., Houser, T., Hsiang, S.,
Hultgren, A., Jina, A., Kopp, R. E., McCusker, K. E., Nath, I., Rising, J.,
and Yuan, J.: Estimating a social cost of carbon for global energy
consumption, Nature, 598, 308–314,
https://doi.org/10.1038/s41586-021-03883-8, 2021.
Sarofim, M. C., Martinich, J., Neumann, J. E., Willwerth, J., Kerrich, Z.,
Kolian, M., Fant, C., and Hartin, C.: A temperature binning approach for
multi-sector climate impact analysis, Clim. Change, 165, 22,
https://doi.org/10.1007/s10584-021-03048-6, 2021.
Sarofim, M. C., Saha, S, Hawkins, M. D., Mills, D. M., Horton, R., Kinney, P.,
Schwartz, J., and St. Juliana, A.: Ch. 2: Temperature-Related Death and
Illness. The Impacts of Climate Change on Human Health in the United States:
A Scientific Assessment., U.S. Global Change Research Program, Washington,
DC, 43–68, 2016.
Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR v1.3: a simple emissions-based impulse response and carbon cycle model, Geosci. Model Dev., 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018, 2018a.
Smith, C., Millar, R., Nicholls, Z., Allen, M., Forster, P., Leach, N., Passerello, G., and Regayre, L.: FAIR – Finite Amplitude Impulse Response Model (multi-forcing version), in: Geoscientific Model Development (v1.3.2). Zenodo [code], https://doi.org/10.5281/zenodo.1247898, 2018b.
Weitzman, M.: GHG Targets as Insurance Against Catastrophic Climate Damages,
J. Publ. Econ. Theory, 14, 221–244, 2012.
Wong, T. E., Bakker, A. M. R., Ruckert, K., Applegate, P., Slangen, A. B. A., and Keller, K.: BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections, Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017, 2017.
Wong, T. E., Rennels, L., Errickson, F., Srikrishnan, V., Bakker, A.,
Keller, K., and Anthoff, D.: MimiBRICK.jl: A Julia package for the BRICK
model for sea-level change in the Mimi integrated modeling framework, J.
Open Source Softw., 7, 4556, https://doi.org/10.21105/joss.04556, 2022.
Woodard, D. L., Shiklomanov, A. N., Kravitz, B., Hartin, C., and Bond-Lamberty, B.: A permafrost implementation in the simple carbon–climate model Hector v.2.3pf, Geosci. Model Dev., 14, 4751–4767, https://doi.org/10.5194/gmd-14-4751-2021, 2021.
Chief editor
This study assesses climate impacts on the economy and society of the USA, using a model that can downscale impacts to regional scale. The findings are thus both scientifically and policy-relevant.
This study assesses climate impacts on the economy and society of the USA, using a model that...
Short summary
This study utilizes a reduced-complexity model, Framework for Evaluating Damages and Impacts (FrEDI), to assess the impacts from climate change in the United States across 10 000 future probabilistic emission and socioeconomic projections. Climate-driven damages are largest for the health category, with the majority of damages in this category coming from the valuation estimates of premature mortality attributable to climate-driven changes in extreme temperature and air quality scenarios.
This study utilizes a reduced-complexity model, Framework for Evaluating Damages and Impacts...
Altmetrics
Final-revised paper
Preprint