Articles | Volume 10, issue 4
https://doi.org/10.5194/esd-10-617-2019
https://doi.org/10.5194/esd-10-617-2019
Research article
 | Highlight paper
 | 
15 Oct 2019
Research article | Highlight paper |  | 15 Oct 2019

Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model

Maarten C. Braakhekke, Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (01 Jul 2019) by Govindasamy Bala
AR by Maarten Braakhekke on behalf of the Authors (15 Jul 2019)  Manuscript 
Download
Short summary
We developed a computer model that simulates forests plantations at global scale and how fast such forests can take up CO2 from the atmosphere. Using this new model, we performed simulations for a scenario in which a large fraction (14 %) of global croplands and pastures are either converted to planted forests or natural forests. We find that planted forests take up CO2 substantially faster than natural forests and are therefore a viable strategy for reducing climate change.
Altmetrics
Final-revised paper
Preprint