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Supplemental information 

S1. Target growth curve derivation 

The growth curves for the three FPFTs were derived from observations and LPJmL predictions for the 

corresponding natural PFTs using Bayesian non-linear regression. We assume that observed stemwood 

C is given by: 

𝐶SWC
obs (𝑡) = 𝐶SWC

pred(𝑡) +  𝜀𝑡 =  𝐶SWC,max(1 − 𝑒−𝑘 𝑡)
𝑝

+  𝜀𝑡 , 

where 𝜀𝑡 is the model-data residual, assumed to be stochastic. We used normal priors for the 

parameters of the growth curve. For 𝐶SWC,max strong priors were used, based on maximum stemwood 

C for the corresponding natural PFTs predicted by LPJmL (see section 2.3.1 in the main text; 

𝑁(5.43, 1.88), 𝑁(14.0, 2.40),  and 𝑁(6.16, 1.24) for the temperate, tropical and boreal FPFT, 

respectively). For 𝑘 and 𝑝 weaker priors were used (𝑁(0.05, 1) and 𝑁(2 , 20), respectively, for all three 

FPFTs), allowing them to be more strongly influenced by the observations. Model-data residuals can 

be expected to scale with stemwood C, since both predictions and observations cannot be lower than 

zero. This is exacerbated by the fact that we incorporate a strong prior for 𝐶SWC,max, which may to 

some extent be inconsistent with the data, leading to a stronger misfit for higher plantation ages. 

Ignoring this heteroscedasticity may result in biased parameter estimates. Therefore we assumed that 

the variance of 𝜀𝑡 scales linearly with predicted stemwood C: 

𝜀𝑡~𝑁 (0, 𝜎𝑠𝐶SWC
pred(𝑡)) 

where 𝜎𝑠 is a scaling factor, simultaneously determined in the fitting, using a weak prior (𝑁(1, 10)). 

The fitting was carried out with Markov Chain Monte Carlo sampling, implemented in the Stan 

programming language (Carpenter et al., 2017), linked to Matlab (Stan Development Team, 2017). 

Specifically, we used the No-U-Turn-Sampler (NUTS; Hoffman and Gelman, 2014) with four chains of 

10,000 samples each, and a warmup period of 10,000 iterations per chain. Figure S1 depicts the 

marginal posterior distributions of the four estimated parameters for the three FPFTs, together with 

the prior distributions. The parameter set with highest posterior density, together with variance over 

the complete sample, was used for the target growth curve in the LPJmL calibration (see table S2). 



2 

 

 

 

 

Figure S1. Results of the Monte Carlo sampling to determine the parameters of the target growth curves for 
temperate (a), tropical (b), and boreal (c) forest plantations. Note that the multivariate posterior mode, 
determined as the sample with highest posterior density (yellow lines in the graphs), deviates from the 
marginal modes (peak of the histograms), due to non-linear parameter correlations. 
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S2. LPJmL calibration 

The optimization of the FPFT parameters in this study comprised minimization of a Bayesian cost-

function, essentially negative log posterior density. The cost-function is defined as he sum of a log-

likelihood term and log prior density term. Prior distributions on the parameters were defined by 

gaussian probability density functions, defined on logit scale, for 𝛼𝑎, and log-scale for all other 

parameters. Similarly, the observations were log- or logit-transformed as well. For a given parameter 

set 𝜃 the overall cost 𝐶(𝜃) is given by: 

 

𝐶(𝜃) = ∑
(𝑓𝑖  (𝜃𝑖) − 𝜇𝜃𝑖

)2

𝜎𝜃𝑖

2

𝐼

𝑖=1

+ ∑
(𝑓𝑗(𝜑𝑗) − 𝜇𝜑𝑗

)2

𝜎𝜑𝑗
2

𝐽

𝑗=1

, (1) 

 The first term on the right-hand size of (3) represents the prior in which: 𝐼 is the number of optimized 

parameters (15), 𝜃𝑖 and 𝑓𝑖 are the value and the transformation function (logit or log) of parameter 𝑖, 

and 𝜇𝜃𝑖
 and 𝜎𝜃𝑖

2  are the mean and variance of the prior for parameter 𝑖 on transformed scale. 

Additionally, bounds were enforced on the parameters. The lower bound was at 0 and the upper bound 

at the 99% quantile of the prior distributions, except for 𝛼𝑎, for which it was set at 1. Table S1 shows 

𝜇𝜃𝑖
, 𝜎𝜃𝑖

2 , and the upper bound of all parameters for the three FPFTs. The second term on the right-

hand size of (3) represents the likelihood, in which: 𝐽 is the number of observations (5), 𝜑𝑗  and 𝑓𝑗  are 

the LPJmL output (based on parameter set 𝜃) and transformation function (logit or log) of observation 

variable 𝑗, and 𝜇𝜑𝑗
 and 𝜎𝜑𝑗

2  are the mean and variance of observation variable 𝑗 on transformed scale. 

Table S2 shows the 𝜇𝜑𝑖
, 𝜎𝜑𝑖

2  for all observations for the three FPFTs. 

  Table S1. Mean (𝜇), variance (𝜎2), and upper bound (u.b.) of the prior distributions on 
the parameters used in the LPJmL calibration. Note that 𝜇 and 𝜎2 are defined on 
transformed (log or logit) scale, while the upper bound is defined on untransformed scale. 

Parameter 

(𝒊) 

Transfor

mation 

(𝒇𝒊) 

Temperate Tropical Boreal 

𝝁𝜽𝒊
 𝝈𝜽𝒊

𝟐  u.b. 𝝁𝜽𝒊
 𝝈𝜽𝒊

𝟐  u.b. 𝝁𝜽𝒊
 𝝈𝜽𝒊

𝟐  u.b. 

𝜶𝒂 logit 0.00 0.700 1.00 0.00 0.700 1.00 0.00 0.700 1.00 

𝒈𝐦𝐢𝐧 log -0.693 0.300 2.41 -0.693 0.300 2.41 -1.20 0.300 1.45 

𝑬𝐦𝐚𝐱 log 1.61 0.300 24.1 1.95 0.300 33.8 1.61 0.300 24.1 

𝒓 log 0.182 0.300 5.79 -1.61 0.300 0.965 0.182 0.300 5.79 

𝒌𝐚𝐥𝐥𝐨𝐦𝟏 log 4.61 0.300 481 4.61 0.300 4.61 4.70 0.300 530 

𝒌𝐚𝐥𝐥𝐨𝐦𝟐 log 3.69 0.300 193 3.69 0.300 193 3.69 0.300 193 

𝒌𝐚𝐥𝐥𝐨𝐦𝟑 log -0.400 0.300 3.23 -0.40 0.300 3.23 -0.40 0.300 3.23 

𝐥𝐫𝐦𝐚𝐱 log 0.00 0.300 4.83 0.00 0.300 4.83 0.00 0.300 4.83 

𝐂𝐬𝐚𝐩𝐰𝐨𝐨𝐝;𝐬𝐚𝐩𝐥 log 0.182 0.300 5.79 0.182 0.300 5.79 0.182 0.300 5.79 

𝐋𝐀𝐈𝐬𝐚𝐩𝐥 log 0.405 0.300 7.24 0.405 0.300 7.24 0.405 0.300 7.24 

𝜶𝐥𝐞𝐚𝐟 log -0.693 0.300 2.41 0.693 0.300 9.65 1.39 0.300 19.3 

𝝉𝐬𝐚𝐩𝐰𝐨𝐨𝐝 log 3.00 0.300 96.5 3.00 0.300 96.5 3.00 0.300 96.5 

𝝉𝐥𝐞𝐚𝐟,𝐫𝐨𝐨𝐭 log 0.00 0.300 4.83 0.693 0.300 9.65 1.39 0.300 19.3 

𝑷𝐢𝐧𝐢𝐭 log -1.90 0.300 0.724 -1.90 0.300 0.724 -1.90 0.300 0.724 

𝒌𝐦𝐨𝐫𝐭𝟏 log -3.51 0.300 0.145 -3.51 0.300 0.145 -3.51 0.300 0.145 
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Table S2.  Mean (𝜇), variance (𝜎2), of the likelihood functions for the observations 

used in the LPJmL calibration. Note that 𝜇 and 𝜎2 are defined on transformed (log or 

logit) scale.  

Obser-

vation 

(𝒋) 

Transfor-

mation 

(𝒇𝒋) 

Temperate Tropical Boreal 

𝝁𝝋𝒋
 𝝈𝝋𝒋

𝟐  𝝁𝝋𝒋
 𝝈𝝋𝒋

𝟐  𝝁𝝋𝒋
 𝝈𝝋𝒋

𝟐  

𝐂𝐒𝐖𝐂,𝐦𝐚𝐱 log 8.82 0.0163 9.66 0.00989 8.92 0.0150 

𝒌 log -1.63 0.431 -2.87 0.0389 -3.00 0.300 

𝒑 log 1.36 0.865 0.465 0.00889 1.45 0.164 

𝐂𝐔𝐄 logit -0.488 0.200 -0.169 0.0262 -0.159 0.123 

𝝉𝐯𝐞𝐠𝐂 log 2.82 0.0500 3.09 0.0500 3.10 0.05 

 

The parameter set 𝜃 at which the cost is minimal was obtained using the genoud (GENetic Optimization 

Using Derivatives) algorithm. Genoud is a hybrid optimization scheme that combines a genetic 

algorithm with gradient-search approach (Sekhon and Mebane, 1998). Genetic algorithms are schemes 

that search for solutions to optimization problems with complex, non-smooth functions. These 

problems are often difficult to solve using gradient-search algorithms (e.g. Newton-Raphson), which 

rely on derivatives in order to determine successive steps. Genetic algorithms use an approach inspired 

by the process of natural selection, working with a population of candidate solutions (parameter sets), 

which are evolved in successive generations. This is done by means of “genetic operators”, which 

combine and mutate individuals in the population. While genetic algorithms are highly suitable for 

irregular functions, they are often slower than gradient-search algorithms in the neighborhood of the 

global solution, where the surface is usually smooth and concave. Therefore, genoud employs a 

gradient-search algorithm on the best candidate solution in the population after each generation. The 

parameter value resulting from this gradient-search step is used in next generation. The algorithm is 

implemented in R language and available as the rgenoud package (Mebane Jr. and Sekhon, 2011). In 

our calibrations we used a population size of 1000 individuals and a maximum number of 20 

generations. For the gradient-search algorithm the BGFS scheme was used. 
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Figure S2. Total ecosystem C after 300 years for a global simulation with only natural vegetation and only 
forest plantations. 

 

 

 

 

Figure S3. Development of land-use fractions for the transient afforestation scenario (FP) and accompanying 
scenarios for natural regrowth (NR) and the baseline (BL) with constant land-use after 2015. “Total managed 
land” refers to the sum of croplands, pasture, and forest plantations. 
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Figure S4. Forest plantation land use fraction for the transient afforestation scenario. (a) global total 
afforestation area versus time; (b) afforested grid cells from 2100. 

 


