Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.866
IF3.866
IF 5-year value: 4.135
IF 5-year
4.135
CiteScore value: 7.0
CiteScore
7.0
SNIP value: 1.182
SNIP1.182
IPP value: 3.86
IPP3.86
SJR value: 1.883
SJR1.883
Scimago H <br class='widget-line-break'>index value: 33
Scimago H
index
33
h5-index value: 30
h5-index30
ESD | Articles | Volume 9, issue 2
Earth Syst. Dynam., 9, 717–738, 2018
https://doi.org/10.5194/esd-9-717-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Earth system at a global warming of 1.5°C and 2.0°C

Earth Syst. Dynam., 9, 717–738, 2018
https://doi.org/10.5194/esd-9-717-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Jun 2018

Research article | 07 Jun 2018

Spatial–temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China

Ran Zhai et al.

Viewed

Total article views: 1,934 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,327 537 70 1,934 199 56 66
  • HTML: 1,327
  • PDF: 537
  • XML: 70
  • Total: 1,934
  • Supplement: 199
  • BibTeX: 56
  • EndNote: 66
Views and downloads (calculated since 14 Nov 2017)
Cumulative views and downloads (calculated since 14 Nov 2017)

Viewed (geographical distribution)

Total article views: 1,888 (including HTML, PDF, and XML) Thereof 1,882 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 29 Nov 2020
Publications Copernicus
Download
Short summary
This study investigated the changes in runoff and terrestrial ecosystem water retention (TEWR) across China under 1.5 and 2.0 °C warming scenarios by four bias-corrected GCMs using the VIC hydrological model. Results showed that TEWR remained relatively stable than runoff under warming scenarios and there were more water-related risks under the 2.0 °C than under the 1.5 °C warming scenario. Our findings are useful for water resource management under different warming scenarios.
This study investigated the changes in runoff and terrestrial ecosystem water retention (TEWR)...
Citation
Altmetrics
Final-revised paper
Preprint