Articles | Volume 16, issue 3
https://doi.org/10.5194/esd-16-841-2025
https://doi.org/10.5194/esd-16-841-2025
Research article
 | 
11 Jun 2025
Research article |  | 11 Jun 2025

Estimating lateral nitrogen transfers over the last century through the global river network using a land surface model

Minna Ma, Haicheng Zhang, Ronny Lauerwald, Philippe Ciais, and Pierre Regnier

Related authors

Representing dynamic grassland density in the land surface model ORCHIDEE r9010
Siqing Xu, Sebastiaan Luyssaert, Yves Balkanski, Philippe Ciais, Nicolas Viovy, Liang Wan, and Jean Sciare
Geosci. Model Dev., 19, 1–25, https://doi.org/10.5194/gmd-19-1-2026,https://doi.org/10.5194/gmd-19-1-2026, 2026
Short summary
Improved Comparability and System-Wide Verification to Support a Scalable Carbon Credit Market
Jean-Francois Lamarque, Pierre Friedlingstein, Brian Osias, Steve Strongin, Venkatramani Balaji, Kevin W. Bowman, Josep G. Canadell, Philippe Ciais, Heidi Cullen, Kenneth J. Davis, Scott C. Doney, Kevin R. Gurney, Alicia R. Karspeck, Charles D. Koven, Galen McKinley, Glen P. Peters, Julia Pongratz, Britt Stephens, and Colm Sweeney
EGUsphere, https://doi.org/10.5194/egusphere-2025-6457,https://doi.org/10.5194/egusphere-2025-6457, 2026
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Global biogenic isoprene emissions 2013–2020 inferred from satellite isoprene observations
Hui Li, Philippe Ciais, Pramod Kumar, Didier A. Hauglustaine, Frédéric Chevallier, Grégoire Broquet, Dylan B. Millet, Kelley C. Wells, Jinghui Lian, and Bo Zheng
Earth Syst. Sci. Data, 17, 7035–7054, https://doi.org/10.5194/essd-17-7035-2025,https://doi.org/10.5194/essd-17-7035-2025, 2025
Short summary
Using explainable AI to diagnose the representation of environmental drivers in process-based soil organic carbon models
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
Biogeosciences, 22, 7845–7863, https://doi.org/10.5194/bg-22-7845-2025,https://doi.org/10.5194/bg-22-7845-2025, 2025
Short summary
Ten years of measurements (2012–2022) of the atmospheric composition at Saclay/SIRTA Observatory in the Ile de France Region as part of ICOS and ACTRIS
Laura Bouillon, Valérie Gros, Morgan Lopez, Nicolas Bonnaire, Carole Philippon, Camille Yver Kwok, Leslie David, Olivier Perrussel, Olivier Sanchez, Simone Kotthaus, Jean-Eudes Petit, Philippe Ciais, and Michel Ramonet
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-602,https://doi.org/10.5194/essd-2025-602, 2025
Preprint under review for ESSD
Short summary

Cited articles

Aitkenhead-Peterson, J. A., Alexander, J. E., and Clair, T. A.: Dissolved Organic Carbon and Dissolved Organic Nitrogen Export from Forested Watersheds in Nova Scotia: Identifying Controlling Factors, Global Biogeochem. Cy., 19, GB4016, https://doi.org/10.1029/2004GB002438, 2005. 
Akbarzadeh, Z., Maavara, T., Slowinski, S., and Cappellen, P. V.: Effects of Damming on River Nitrogen Fluxes: A Global Analysis, Global Biogeochem. Cy., 33, 1339–1357, https://doi.org/10.1029/2019GB006222, 2019. 
Alexander, R. B., Böhlke, J. K., Boyer, E. W., David, M. B., Harvey, J. W., Mulholland, P. J., Seitzinger, S. P., Tobias, C. R., Tonitto, C., and Wollheim, W. F.: Dynamic Modeling of Nitrogen Losses in River Networks Unravels the Coupled Effects of Hydrological and Biogeochemical Processes, Biogeochemistry, 93, 91–116, https://doi.org/10.1007/s10533-008-9274-8, 2009. 
Andreadis, K. M., Schumann, G. J. P., and Pavelsky, T.: A Simple Global River Bankfull Width and Depth Database, Water Resour. Res., 49, 7164–68, https://doi.org/10.1002/wrcr.20440, 2013. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment Part I: model development, JAWRA J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 
Download
Short summary
A new offline model (LSM_Nlateral_Off) was developed to simulate the lateral transfer of nitrogen from land to oceans through the river network, incorporating the decomposition of DON (dissolved organic N) and PON (particulate organic N) and denitrification of DIN (dissolved inorganic N) during fluvial transport. Evaluations using observational data indicate that the model reproduces observed rates and seasonal variations in water discharge and N flow well.
Share
Altmetrics
Final-revised paper
Preprint