Articles | Volume 16, issue 3
https://doi.org/10.5194/esd-16-841-2025
https://doi.org/10.5194/esd-16-841-2025
Research article
 | 
11 Jun 2025
Research article |  | 11 Jun 2025

Estimating lateral nitrogen transfers over the last century through the global river network using a land surface model

Minna Ma, Haicheng Zhang, Ronny Lauerwald, Philippe Ciais, and Pierre Regnier

Related authors

Representing dynamic grass density in the land surface model ORCHIDEE r9010
Siqing Xu, Sebastiaan Luyssaert, Yves Balkanski, Philippe Ciais, Nicolas Viovy, Liang Wan, and Jean Sciare
EGUsphere, https://doi.org/10.5194/egusphere-2025-3382,https://doi.org/10.5194/egusphere-2025-3382, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Representing high-latitude deep carbon in the pre-industrial state of the ORCHIDEE-MICT land surface model (r8704)
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev., 18, 6043–6062, https://doi.org/10.5194/gmd-18-6043-2025,https://doi.org/10.5194/gmd-18-6043-2025, 2025
Short summary
A fused canopy height map of Italy (2004–2024) from spaceborne and airborne LiDAR, and Landsat via deep learning and Bayesian averaging
Yang Su, Nikola Besic, Xianglin Zhang, Yidi Xu, Saverio Francini, Giovanni D'Amico, Gherardo Chirici, Martin Schwartz, Ibrahim Fayad, Sarah Brood, Agnes Pellissier-tanon, Ke Yu, Haotian Chen, Songchao Chen, Alexandre d'Aspremont, and Philippe Ciais
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-378,https://doi.org/10.5194/essd-2025-378, 2025
Preprint under review for ESSD
Short summary
High spatiotemporal resolution traffic CO2 emission maps derived from Floating Car Data (FCD) for 20 European cities (2023)
Qinren Shi, Philippe Ciais, Nicolas Megel, Xavier Bonnemaizon, Rohith Teja Mittakola, Richard Engelen, and Chuanlong Zhou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-458,https://doi.org/10.5194/essd-2025-458, 2025
Preprint under review for ESSD
Short summary
Global biogenic isoprene emissions 2013–2020 inferred from satellite isoprene observations
Hui Li, Philippe Ciais, Pramod Kumar, Didier A. Hauglustaine, Frédéric Chevallier, Grégoire Broquet, Dylan B. Millet, Kelley C. Wells, Jinghui Lian, and Bo Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-424,https://doi.org/10.5194/essd-2025-424, 2025
Preprint under review for ESSD
Short summary

Cited articles

Aitkenhead-Peterson, J. A., Alexander, J. E., and Clair, T. A.: Dissolved Organic Carbon and Dissolved Organic Nitrogen Export from Forested Watersheds in Nova Scotia: Identifying Controlling Factors, Global Biogeochem. Cy., 19, GB4016, https://doi.org/10.1029/2004GB002438, 2005. 
Akbarzadeh, Z., Maavara, T., Slowinski, S., and Cappellen, P. V.: Effects of Damming on River Nitrogen Fluxes: A Global Analysis, Global Biogeochem. Cy., 33, 1339–1357, https://doi.org/10.1029/2019GB006222, 2019. 
Alexander, R. B., Böhlke, J. K., Boyer, E. W., David, M. B., Harvey, J. W., Mulholland, P. J., Seitzinger, S. P., Tobias, C. R., Tonitto, C., and Wollheim, W. F.: Dynamic Modeling of Nitrogen Losses in River Networks Unravels the Coupled Effects of Hydrological and Biogeochemical Processes, Biogeochemistry, 93, 91–116, https://doi.org/10.1007/s10533-008-9274-8, 2009. 
Andreadis, K. M., Schumann, G. J. P., and Pavelsky, T.: A Simple Global River Bankfull Width and Depth Database, Water Resour. Res., 49, 7164–68, https://doi.org/10.1002/wrcr.20440, 2013. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment Part I: model development, JAWRA J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 
Download
Short summary
A new offline model (LSM_Nlateral_Off) was developed to simulate the lateral transfer of nitrogen from land to oceans through the river network, incorporating the decomposition of DON (dissolved organic N) and PON (particulate organic N) and denitrification of DIN (dissolved inorganic N) during fluvial transport. Evaluations using observational data indicate that the model reproduces observed rates and seasonal variations in water discharge and N flow well.
Share
Altmetrics
Final-revised paper
Preprint