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Abstract. Lateral nitrogen (N) transport from land to oceans through rivers is an important component of the
global N cycle. We developed a new model of this aquatic system, called LSM_Nlateral_Off (Land Surface
Model Nitrogen lateral Offline), which simulates the routing of water in rivers, and the pertaining transport
of dissolved inorganic N (DIN), dissolved organic N (DON), and particulate organic N (PON) as well as the
accompanying biogeochemical processes of DON and PON decomposition and denitrification during transit
from land to oceans through the global river network. Evaluation against global observation-based datasets shows
that the model effectively captures both the magnitude and seasonal variations in riverine water discharges and
total nitrogen (TN) flows. Our model was then applied to reconstruct the historical evolution of global N flows
and transformations from land to rivers and, ultimately, the oceans. Model simulation results indicate that, driven
by anthropogenic activities (e.g. application of mineral fertilisers and manure, sewage water injection in rivers,
and land use change) and indirect effects of climate change and rising atmosphere CO2, TN exports increased
from 27.5 Tg N yr−1 during the 1901–1920 period to 40.0 Tg N yr−1 during the 1995–2014 period, with DIN
contributing most (80 %) of this increase. Simulation results reveal substantial spatial heterogeneities in annual
mean TN flows and denitrification rates, while their seasonal amplitude is of similar magnitude to the large-scale
spatial variability. Compared to previously published regional or global aquatic N transfer models (IMAGE-
GNM, FrAMES-N, MBM, DLEM, and GlobalNEWS2), our model produces similar global- and continental-
scale TN exports to the ocean but shows distinct patterns at the finer scale of river basins. LSM_Nlateral_Off is
here coupled to the land surface model (LSM) ORCHIDEE, but the offline approach implemented in this work
facilitates its coupling with other land surface models in the future such as those synthesised by the Global N2O
Model Intercomparison Project (NMIP). Our modelling approach provides a comprehensive simulation of N
transport and transformations from terrestrial ecosystems to oceans at 0.5° spatial resolution and daily temporal
resolution, globally.
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1 Introduction

Reactive nitrogen (N) is a vital element for all life on Earth,
playing a fundamental role in biological processes. The nitro-
gen cycle interacts with the Earth’s climate system and envi-
ronment in multiple ways. One notable interaction is through
nitrous oxide (N2O), a potent greenhouse gas that influences
the Earth’s energy balance in a similar way to carbon dioxide
(CO2) but with a global warming potential nearly 300 times
greater on a per-molecule basis (Sainju et al., 2014). N also
plays a critical role in the carbon (C) cycle, influencing CO2
and CH4 fluxes by limiting primary production rates in many
terrestrial, freshwater, and marine ecosystems (Thornton et
al., 2007; Morée et al., 2013; Zaehle et al., 2014; Seiler et
al., 2024). As a result, the N cycle is a key regulator of the C
cycle and climate change. This role underscores the need for
a comprehensive analysis of N dynamics in the context of a
changing C cycle, shifting climate conditions, and intensify-
ing anthropogenic activities.

From an Earth system perspective, the critical connec-
tion between terrestrial and marine nitrogen (N) cycles via
the Land-to-Ocean Aquatic Continuum (LOAC) has been in-
sufficiently addressed (Galloway, 2003; Billen et al., 2013;
Maranger et al., 2018; Battin et al., 2023). Existing studies
have largely treated the land and open ocean cycles sepa-
rately, ignoring the N processes occurring along the LOAC
(Fowler et al., 2013; Zhang et al., 2021). The representa-
tion of N processes within the LOAC is however required to
achieve a dynamic coupling between land surface and ocean
biogeochemical models, as this route plays a pivotal role in
controlling the coupled terrestrial C–N cycles and their per-
turbations from anthropogenic activities (Gruber and Gal-
loway, 2008; Regnier et al., 2013, 2022). Over the past sev-
eral decades, the cumulative effects of climate change, popu-
lation growth, industrialisation, and increased use of agricul-
tural fertilisers have accelerated the global N cycle and hence
increased N leaching into the aquatic environment (Bouw-
man et al., 2005; Gruber and Galloway, 2008; Kim et al.,
2011; Swaney et al., 2012; Beusen et al., 2016a). This has
resulted in negative human health and environmental im-
pacts, such as the degradation of drinking water quality and
an increase in the frequency and severity of eutrophication
events (Dodds and Smith, 2016; Huang et al., 2017; Costa
et al., 2018; Lee et al., 2019; Dai et al., 2023). Most land
surface models (LSMs) include N leaching into aquatic sys-
tems; however, this process is rarely evaluated in quantita-
tive terms using observations collected within the fluvial net-
work. It has been shown that N leaching is inaccurate in
most LSMs (Feng et al., 2023), which in turn affects the
simulation of the response of terrestrial C and N cycles to
anthropogenic activities and climate change (Thomas et al.,
2013). Furthermore, an explicit representation of the fate of
the land-derived N inputs into the LOAC is required to bet-
ter constrain the response of the ocean C cycle to increased
nutrient inputs (Lacroix et al., 2021; Resplandy et al., 2024)

as well as to assess the extent to which N pollution reduc-
tion scenarios can mitigate (Satter et al., 2014) eutrophica-
tion in riverine and coastal aquatic ecosystems (Hashemi et
al., 2016; Desmit et al., 2018; Battin et al., 2023).

The representation of N lateral transfers through aquatic
systems is challenging as it requires multiple N sources,
transformation, transport, and retention processes to be rep-
resented along the global fluvial network. A variety of mod-
els with different structures and representations of the water
and N cycles have been developed to address this complex-
ity (Luscz et al., 2015, 2017). Models such as the Soil and
Water Assessment Tool (SWAT) (Arnold et al., 1998; Liu et
al., 2017), the Hydrologic Simulation Program – FORTRAN
(HSPF) (Bicknell et al., 2005; Wang and Zhang, 2015), and
the HYdrological Predictions for the Environment (HYPE)
(Lindström et al., 2010; Donnelly et al., 2014) were designed
to represent hydrological processes as well as N transport
and transformation in rivers but mainly for catchment-scale
applications. Therefore, their complexity and high require-
ments for hard-to-get forcing datasets constrain their appli-
cability, in particular for the long-term evolution of global
N fluxes and transformation processes. Simplified empirical
approaches provide an alternative for large-scale simulations.
For instance, the Global Nutrient Export from Watersheds
2 (GlobalNEWS2) model allows us to estimate riverine N
exports to the ocean as a function of N deliveries from the
surrounding catchment with a highly simplified representa-
tion of N transport and in-stream N processes (Seitzinger et
al., 2005; Mayorga et al., 2010; Lee et al., 2016a). The In-
tegrated Model to Assess the Global Environment – Global
Nutrient Model (IMAGE-GNM) provides a more process-
based representation of the river networks as it relies on a
globally distributed, spatially explicit hydrological model,
PCR-GLOBWB (PCRaster Global Water Balance), to esti-
mate N delivery to surface waters and its subsequent trans-
port (Beusen et al., 2015, 2016a, 2022; Vilmin et al., 2018).
This model however still simulates N retention using empiri-
cal formulas and is not dynamically coupled with vegetation–
soil N processes. Furthermore, it only provides annually av-
eraged fluxes, hence ignoring the seasonal fluctuations in-
duced by the hydrology and N cycling on land and in the
river network. The Dynamic Land Ecosystem Model (DLEM
2.0) provides a significant advancement as it simulates river-
ine N flow from terrestrial ecosystems to rivers and coastal
oceans using a unified process-based representation. So far,
however, the model’s simulation of N lateral transfer has only
been evaluated at the regional scale, specifically in eastern
North America (Yang et al., 2015), or for N2O emissions on
the global scale (Tian et al., 2018; Yao et al., 2020). To com-
plement these studies, we develop here a new N lateral trans-
fer model that can be linked to the outputs of different LSMs.
This model captures the hydrological dynamics and N trans-
formation processes in the global river network at a temporal
resolution from days to months, i.e. at a temporal resolution
relevant to biogeochemical processes in coastal and marine
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ecosystems. At the same time, this model has the capacity to
reconstruct and forecast the long-term (decadal- to century-
scale) evolution of the aquatic N cycle as a result of a wide
variety of anthropogenic factors, including climate change.
To achieve this aim, we apply an offline approach in which
lateral N transfers are constrained by outputs from an LSM.
The resulting model, called LSM_Nlateral_Off (Land Sur-
face Model Nitrogen lateral Offline), is in the present study
coupled to ORCHIDEE, an LSM developed by the Institute
Pierre-Simon Laplace (IPSL, France).

ORCHIDEE is a widely used land surface model (Krinner
et al., 2005), with many versions (or branches) focusing on
different aspects of the terrestrial C cycle and associated bio-
elements. Here, we leverage ORCHIDEE-CNP, the branch
simulating the coupled cycles of C, N, and phosphorus (P) in
the terrestrial biosphere (Sun et al., 2021), and ORCHIDEE-
Clateral, the branch simulating the leaching and erosion of
C along the soil–inland-water continuum (Lauerwald et al.,
2017, 2020; Zhang et al., 2022). Our study is structured as
follows: (1) we present the development of the offline N lat-
eral transfer model (LSM_Nlateral_Off) driven by outputs
from ORCHIDEE-Clateral and ORCHIDEE-CNP, (2) we
evaluate our model using a collection of water discharge and
N concentration observations, (3) we investigate the spatio-
temporal dynamics of N lateral transfers over the historical
period of 1901–2014, and (4) we compare model results with
those obtained from previously published models.

2 Methods and data

2.1 Model development

2.1.1 The LSM_Nlateral_Off model

The LSM, here ORCHIDEE, comprehensively simulates the
cycling of energy, water, and C in terrestrial ecosystems
(Krinner et al., 2005). As the model evolved, many versions
(or branches) emerged with various foci on additional land
surface processes impacting the climate system. In particular,
the ORCHIDEE-CNP branch features a detailed representa-
tion of the coupled cycling of C, N, and P within vegetation
and soil (e.g. root uptake of N, the allocation of N in the tis-
sue of different parts of vegetation biomass, N turnover in
litter and soil organic matter) and the leaching of NH+4 and
NO−3 from soils to inland waters (Goll et al., 2017, 2018; Sun
et al., 2021). The ORCHIDEE-Clateral branch simulates the
large-scale lateral transfer and fate of water, sediment, par-
ticulate organic carbon (POC), dissolved organic C (DOC),
and CO2 along the land–river–ocean continuum (Lauerwald
et al., 2017; Hastie et al., 2019; Bowring et al., 2020; Zhang
et al., 2022).

Based on the land-to-river inputs of water, POC,
DOC, and inorganic N simulated by ORCHIDEE-CNP
and ORCHIDEE-Clateral, we developed LSM_Nlateral_Off
(Land Surface Model Nitrogen lateral Offline), simulating

the transfers and transformations of reactive N through the
global river network. The offline strategy provides a com-
putationally efficient numerical model in which the mathe-
matical representation of aquatic biogeochemical processes
can easily be implemented, calibrated, and evaluated. Fur-
thermore, by construction, it can also be used to route the N
leaching fluxes produced by any other LSM in the future, al-
lowing for applications at various scales and across different
regions. In this offline scheme, ORCHIDEE-CNP provides
as input the leaching rates of terrestrial dissolved inorganic N
(DIN) with surface runoff and subsoil drainage and dissolved
organic N (DON) leaching from manure. Inputs of terrestrial
DON and particulate organic N (PON) are derived from the
leaching and erosional fluxes of DOC and POC simulated by
ORCHIDEE-Clateral and stoichiometric C : N ratios of dis-
solved organic matter (DOM) and particulate organic matter
(POM); please refer to Sect. 2.1.2 for further details (Fig. 1).

N discharge from sewage is also included as an additional
input to LSM_Nlateral_Off, using the N sewage dataset
(1900–2010, gridded maps every 5 years) reported by Beusen
et al. (2016b). Indeed, during the 20th century, global N
(DIN and DON) discharge from sewage to surface waters
has increased about 3.5-fold to 7.7 Tg N yr−1 and thus has a
large impact on trends in global N lateral transfers. Sewage-
derived N comes from three main sources: human waste
from urban environments, animal waste, and industrial waste,
each of which follows distinct pathways. For further details,
please refer to Van Drecht (2009) and Morée et al. (2013).

Following delivery, PON, DON, and DIN are then trans-
ported by water flow advection from soils to rivers and
through the river network all the way to the coast. Within
the river network, parts of the transported DON and PON
are decomposed into DIN, while part of the DIN is re-
leased back to the atmosphere through denitrification. Fol-
lowing previous global modelling approaches (Aitkenhead-
Peterson et al., 2005; Bernot and Dodds, 2005; Wollheim
et al., 2008), LSM_Nlateral_Off simulates the denitrification
process without explicit representation of the different DIN
species (i.e. NO−3 and NH+4 ) or their interconversion via ni-
trification (Fig. 1).

2.1.2 Water and N delivery from soils to the river
network

LSM_Nlateral_Off was developed to simulate N lateral
transfer and transformation during 1901–2014 in this study.
The runoff and drainage simulated by ORCHIDEE-Clateral
were used to constrain water inputs from land to rivers.
This input dataset had a spatial resolution of 1° and a tem-
poral resolution of daily time steps (Table 1). The data
were downscaled to the LSM_Nlateral_Off spatial reso-
lution of 0.5° using nearest-neighbour resampling (Patil,
2018). Runoff and drainage are critical components that
determine DIN, DON, and PON fluxes. ORCHIDEE-CNP
and ORCHIDEE-Clateral used the same scheme to simu-
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Figure 1. Sources of driving data extracted from other models (left) and main aquatic N transformation processes represented in
LSM_Nlateral_Off (right).

late soil hydrology (Sun et al., 2021; Zhang et al., 2022),
and they have been run with the same climate forcing
data, land cover map, and soil parameters maps (Table 1).
The climate forcing data during 1901–2014 were obtained
from Global Soil Wetness Project Phase 3 (GSWP 3). Both
ORCHIDEE-CNP and ORCHIDEE-Clateral used the ESA-
CCI LUH2v2 plant functional type (PFT) distribution, which
combines the ESA-CCI land cover map for 2015 with the
historical land cover reconstruction from LUH2 (Lurton
et al., 2020). Soil parameters in these two models follow
Reynolds et al. (1999) and the Harmonized World Soil
Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). There-
fore, the differences in runoff (0.9 %) and drainage (1.7 %)
simulated by the two ORCHIDEE branches are relatively
small (Fig. S1).

The lateral transfer of DOC and POC from land to rivers
was used to constrain inputs of DON and PON. PON erosion
with runoff originates from three soil organic matter (SOM)
pools, each characterised by distinct C : N ratios set at 12,
25, and 8 for active, slow, and passive SOM pools, respec-
tively (Zhang et al., 2022). The PON erosion from each pool
is calculated by dividing the POC erosion flux from the same
SOM pool by its corresponding C : N ratio. For DON leach-
ing with runoff and drainage, the calculation relies upon mea-
surements of the stoichiometry of dissolved organic matter,
which report C : N ratios in soil and rivers between 8 and
25, with an average value of around 12 (Kirkby et al., 2011;
Lutz et al., 2011; Tipping et al., 2016; Maranger et al., 2018;
Rodríguez-Cardona et al., 2021). Therefore, the leaching of
DON with runoff and drainage was quantified using the DOC
fluxes simulated by ORCHIDEE-Clateral and an average
C : N ratio of 12. It is important to note that this resulting flow
excludes DON leaching sourced from manure application, as

this source is not included in the ORCHIDEE-Clateral sim-
ulations. The spatial and temporal resolution of the resulting
DON and PON fluxes used to force LSM_Nlateral_Off was
1° with a daily time step (Table 1), and these inputs were
resampled to the nominal resolution of LSM_Nlateral_Off
(0.5°) using the nearest-neighbour resampling (Patil, 2018).

DIN (i.e. NH+4 and NO−3 ) inputs from soils to rivers were
prescribed from a simulation of ORCHIDEE-CNP (Goll et
al., 2017, 2018; Sun et al., 2021), which include DIN leach-
ing from both natural and cultivated (e.g. cropland and pas-
ture) ecosystems and account for changes induced by atmo-
spheric N deposition, fertiliser use, and manure application.
DON inputs to rivers from manure application were also pre-
scribed using ORCHIDEE-CNP. The approach relies on a
DON pool and a leaching factor, with a dedicated manure-
derived DON pool incorporated into ORCHIDEE-CNP to
participate in subsequent N cycling and leaching processes.
The spatial and temporal resolution of this input dataset was
2° with a daily time step, and the data were downscaled to the
LSM_Nlateral_Off spatial resolution of 0.5° using nearest-
neighbour resampling (Patil, 2018) (Table 1).

Finally, total nitrogen (TN) inputs from sewage
(https://doi.org/10.17026/dans-zgs-9k9m), provided at
0.5° globally with a 5-year time step (Beusen et al., 2016b),
were evenly redistributed across each day of the year (Ta-
ble 1). TN from sewage was then partitioned into different N
species following the approach of Naden et al. (2016), which
assumes that 10 % of sewage TN is DON and the remaining
90 % is DIN.

2.1.3 N transport and transformation in the river network

LSM_Nlateral_Off simulates water discharge using a dis-
tributed routing scheme (Vörösmarty et al., 2000). As shown
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Table 1. List of (1) forcing data used to run ORCHIDEE-Clateral, ORCHIDEE-CNP, and LSM_Nlateral_Off and (2) observational data
used to evaluate the simulation results. Sres and Tres are the original spatial and temporal resolutions of the forcing data, respectively.

Data Sres Tres Data source

Forcing data of
ORCHIDEE-Clateral
and ORCHIDEE-CNP

Climatic forcing data (precipitation,
temperature, incoming
shortwave/longwave radiation, air
pressure, wind speed, relative
humidity)

1° 3 h Global Soil Wetness
Project
Phase 3 (GSWP 3)
(Kim, 2017)

Land cover 0.5° 1 year ESA-CCI LUH2v2
(Lurton et al., 2020)

Soil texture class 0.5° / Reynolds et al. (1999)

Soil bulk density and pH 30′′ / HWSD v1.2
(FAO/IIASA/IS-
RIC/ISSCAS/JRC,
2012)

Fertiliser application 0.5° 1 year Lu and Tian (2017)

Manure application 5′ 1 year Zhang et al. (2017)

Nitrogen deposition 0.5 1 year IGAC/SPARC CCMI

Forcing data of LSM-
Nlateral-Off

Runoff 1° 1 d
ORCHIDEE-Clateral
(Zhang et al., 2022;
Zhang et al., 2025)

Drainage

DOC and POC with runoff

DOC and POC with drainage

Soil temperature

DIN with runoff and drainage 1° 1 d ORCHIDEE-CNP
(Sun et al., 2021)

DON leaching from manure
application

DIN and DON with sewage 0.5° 5 years Beusen et al. (2016b)

Flow direction 0.5° / Vörösmarty et al.
(2000)

Topographic index (ftopo)

Evaluation data
Riverine water discharge / 1 d GRDCa

Riverine TN and NO−3 concentration / point measurement GRQAb

Riverine TN concentration / point measurement Table S1

a Global Runoff Data Centre (GRDC) (Federal Institute of Hydrology, https://grdc.bafg.de/data/data_portal/, last access: 15 April 2022). b Global River Water
Quality Archive (GRQA) (Virro et al., 2021).

in Fig. 2, surface runoff (FRO) and belowground drainage
(FDR), both derived from ORCHIDEE-Clateral, serve as in-
puts to LSM_Nlateral_Off. FRO first feeds into the “fast”
water reservoir (Sfast_H2O), while FDR feeds into the “slow”
water reservoir (Sslow_H2O). The delayed outflows from
these reservoirs then feed into the “stream” water reservoir
(Sstream_H2O). Water in the stream reservoir (Sstream_H2O) in
grid cell i then flows downstream into the stream reservoir
of grid cell i+ 1 (Fstreamout_H2O, m3 d−1). The outflow rates

from the fast (Ffastout_H2O), slow (Fslowout_H2O), and stream
(Fstreamout_H2O) reservoirs are calculated at a daily time step
based on a grid-cell-specific topographic index ftopo (unit-
less; Vörösmarty et al., 2000) (Table 1) and a reservoir-
specific water turnover factor τ , which translates ftopo into
a water residence time for each reservoir attached to each
river segment (Eq. 1).

Fout_H2O =
SH2O

τ × ftopo
, (1)
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where Fout_H2O (m3 d−1) represents water outflow rates
from the fast (Ffastout_H2O), slow (Fslowout_H2O), or stream
(Fstreamout_H2O) reservoir; SH2O (m3) represents water stock
in the fast (Sfast_H2O), slow (Sslow_H2O), or stream reservoir
(Sstream_H2O); τ represents water residence time for each
reservoir, equal to 3.0, 25.0, and 0.24 d for the fast, slow,
and stream reservoirs, respectively (Ngo-Duc et al., 2006);
and ftopo represents the grid-cell-specific topographic index
(unitless; Vörösmarty et al., 2000).

Following the routing scheme of water in
LSM_Nlateral_Off, N contained in surface runoff (FRO)
and belowground drainage (FDR) flows into the fast and
slow reservoir, respectively. Subsequently, the N stocks in
these reservoirs are subject to decomposition and losses via
denitrification, which are governed by the water residence
time. The remaining fractions further flow into the stream
reservoirs, which also receive direct N inputs from sewage
(Fig. 2). Within stream reservoirs, N is transformed by
biogeochemical reactions and flows from one grid cell to
the next along the river routing scheme. The timescale of
these biogeochemical transformation processes scales to
the water residence time (and hence topography) within
the river network, and the fraction of N that is not lost to
the atmosphere via denitrification is ultimately exported to
the coast. Biogeochemical reactions within each reservoir
include the decomposition of PON and DON to DIN, as
well as the denitrification of DIN to N gas which is assumed
to all be released into the atmosphere (Fig. 2). The mass
balance equations for the N stocks in different reservoirs are
calculated as follows:

dSfast_PON

dt
= FRO_PON−Ffastout_PON −Rfast_PON, (2)

dSfast_DON

dt
= FRO_DON−Ffastout_DON −Rfast_DON, (3)

dSfast_DIN

dt
= FRO_DIN−Ffastout_DIN −Rfast_DIN, (4)

dSslow_DON

dt
= FDR_DON−Fslowout_DON −Rslow_DON, (5)

dSslow_DIN

dt
= FDR_DIN−Fslowout_DIN −Rslow_DIN, (6)

dSstream_PON

dt
= Ffastout_PON +Fupstream_PON

−Rstream_PON−Fdownstream_PON, (7)
dSstream_DON

dt
= Ffastout_DON+Fslowout_DON

+Fupstream_DON+Fsewage_DON

−Rstream_DON−Rdownstream_DON, (8)
dSstream_DIN

dt
= Ffastout_DIN+Fslowout_DIN

+Fupstream_DIN+Fsewage_DIN

+Rstream_PON+Rstream_DON

−Rstream_DIN−Fdownstream_DIN, (9)

where Fupstream_PON (g N d−1), Fupstream_DON (g N d−1),
and Fupstream_DIN (g N d−1) represent the inflow rates of
PON, DON, and DIN from upstream grids, respectively,
and Fstreamout_PON (g N d−1), Fstreamout_DON (g N d−1), and
Fstreamout_DIN (g N d−1) represent outflow rates of PON,
DON, and DIN from the given grid to downstream grid,
respectively. For each N species, the N inputs to a stream
reservoir in a given grid cell (Fupstream_PON, Fupstream_DON,
and Fupstream_DIN) are equal to the sum of N outflow from
the upstream stream reservoir in the adjacent grid cells
(Fstreamout_PON, Fstreamout_PON, and Fstreamout_PON), as calcu-
lated in Eq. (10). Rfast_PON and Rstream_PON (g N d−1) repre-
sent PON decomposition rates in the fast and stream reser-
voirs, respectively. Rfast_DON, Rslow_DON, and Rstream_DON
(g N d−1) represent DON decomposition rates in the
fast, slow, and stream reservoirs, respectively. Rfast_DIN,
Rslow_DIN, and Rstream_DIN (g N d−1) represent DIN denitri-
fication rates in the fast, slow, and stream reservoirs, respec-
tively.

We assume that N concentrations are homogeneously dis-
tributed within each reservoir of each grid and that N trans-
fers between reservoirs simply follow that of water. N trans-
fers are calculated as follows:

Fout_N = SN×
Fout_H2O

SH2O
, (10)

where SH2O represents water stocks (m3), and FH2O repre-
sents flow rates of water (m3 d−1). Fout_N represents PON
flow rates from fast (Ffastout_PON) or stream (Fstreamout_PON)
reservoirs; DON flow rates from fast (Ffastout_DON), slow
(Fslowout_DON), or stream (Fstreamout_DON) reservoirs; and
DIN flow rates from fast (Ffastout_DIN), slow (Fslowout_DIN),
or stream (Fstreamout_DIN) reservoirs. The same principle ap-
plies to the SN (N stocks) terms.

Temperature controls the decomposition rates of organic
N in rivers (Ferreira et al., 2020). Following the algorithm of
Xia et al. (2013), the decomposition rates of PON and DON
in each reservoir are calculated using first-order kinetics of
the corresponding N stock and a Q10 temperature depen-
dence based on water temperature.

RON = SON×KON×Q10
TW−Tref1

10 (11)

RON (g N d−1) represents the decomposition rate of organic
N (ON, i.e. PON and DON). SON (g N) represents ON stocks
in each reservoir. KON represents the average PON decom-
position rate (KPON = 0.028 d−1) (Islam et al., 2012) and the
average DON decomposition rate (KDON = 0.07 d−1) at the
reference temperature of 20°C in water (Xia et al., 2013).
Q10 is the temperature sensitivity of PON and DON decom-
position rates set to 2.0 (Yang et al., 2015; Liu et al., 2021).
TW is the water temperature (°C) and Tref1 is the reference
temperature for PON and DON decomposition, set to 20°C.
RON (g N d−1) represents PON decomposition rates in fast
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Figure 2. Schematic plot for the reservoirs and flows of water and N in LSM_Nlateral_Off. Ssoil is the soil pool. Sfast, Sslow, and Sstream
are the “fast”, “slow”, and “stream” water reservoirs, respectively. FRO and FDR are surface runoff and below-ground drainage (also called
sub-surface runoff in other studies), respectively. Ffastout is the flow from fast reservoir to stream reservoir. Fslowout is the flow from slow
reservoir to stream reservoir. Fupstream and Fstreamout are the upstream inputs from basin i− 1 and downstream outputs to basin i+ 1,
respectively. FD is the wet and dry deposition of DIN from the atmosphere.

(Rfast_PON) or stream (Rstream_PON) reservoirs and DON de-
composition rates in fast (Rfast_DON), slow (Rslow_DON), or
stream (Rstream_DON) reservoirs.

The denitrification rates decrease with stream depth be-
cause most denitrification happens in benthic sediments
rather than in the water column, so high benthic area-
to-water-volume ratios result in high denitrification rates
(Aitkenhead-Peterson et al., 2005; Bernot and Dodds, 2005).
In addition, denitrification rates are also controlled by tem-
perature (Jung et al., 2014; Ma et al., 2022). The denitrifica-
tion process is simulated by adapting equations from Pauer
and Auer (2008):

RDIN =
SDIN

depth
×KDIN×FT _DIN, (12)

FT _DIN = e

−(TW−Tref2)2

(Tref2)2 , (13)

depth=max(e2.56
×Q0.423, 1.0), (14)

where RDIN (g N d−1) represents denitrification rates in fast
(Rfast_DIN), slow (Rslow_DIN), or stream (Rstream_DIN) reser-
voirs; KDIN (0.15 d−1) represents the denitrification rate in
water at 25°C (Alexander et al., 2009); FT _DIN (unitless) rep-
resents the dependency of denitrification on temperature (Ma
et al., 2022); Tref2 is the reference temperature for denitrifica-
tion (= 25°C); 1

depth (unitless) represents the factor that sim-
ulates the role of the benthic surface-area-to-water-volume

ratio, which serves as a key control factor of denitrification
rates. The stream depth is simulated according to the method
in Raymond et al. (2012). Therefore, aside from the availabil-
ity of DIN stocks, denitrification rates are spatially and tem-
porally dependent through the effects of water residence time
(controlled by topography), temperature, and water depths
(controlled by discharge). Tables A1 and A2 provide a sum-
mary of all variables, fluxes, and processes incorporated in
LSM_Nlateral_Off.

2.2 Observational data

Riverine water discharge from the Global Runoff Data Cen-
tre (GRDC) (Federal Institute of Hydrology, https://grdc.
bafg.de/data/data_portal/, last access: 15 April 2022) and
riverine TN and NO−3 concentrations from the Global River
Water Quality Archive (GRQA) (Virro et al., 2021) were
used to evaluate LSM_Nlateral_Off (Fig. 3). We obtained
observed water discharge data from the GRDC website
for 346 gauging stations with a catchment area exceeding
50 000 km2. Each station has over 12 months of observa-
tional records and more than 25 observations per month
(Fig. S4). For GRQA data, only time series with more than
two observations per month in 1 year were retained for model
evaluation. For N concentrations, after removing duplicates
in the GRQA database, we obtained TN data for 3507 sites
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and NO−3 data for 1841 sites. Moreover, since observations
of NO−3 at a given site are generally more frequent and cover
a longer time span than those for TN, we used the strong
correlation between these two species to estimate TN con-
centrations from NO−3 when only NO−3 data were available
(represented by yellow dots in Fig. 3). The prediction equa-
tion applied in this study (Eq. 15, Fig. S2) was obtained based
on GRQA data at 148 sites with simultaneous concentrations
of both TN and NO−3 (R2

= 0.78):

CTN_obs = 1.33×CNO3_obs+ 0.56, (15)

where CTN_obs (mg L−1) and CNO3_obs (mg L−1) represent
the observed concentrations of TN and NO−3 , respectively.

The TN flow rates are equal to the water discharge rates
multiplied by N concentrations. Therefore, for each GRDC
site, the nearest GRQA site with reported N concentration
(McDowell et al., 2021) was systematically selected to cal-
culate the flux. We first calculated the monthly average N
concentrations and monthly total water discharge and then
determined the monthly N fluxes using Eq. (16). The total
annual N flow is then obtained by summing the monthly N
fluxes over the entire year.

FTN_obs = FW_obs×CTN_obs, (16)

where FTN_obs (g N d−1) and FW_obs (m3 d−1) represent ob-
served rates of TN flow and water discharge, respectively.

Since TN concentrations for several large rivers (e.g. Ama-
zon and Chinese rivers) were missing in GRQA, we comple-
mented this dataset by collecting additional observational TN
data from the peer-reviewed literature (represented by green
dots in Fig. 3), resulting in the addition of 20 sites to our
database (see details of observed sites in Table S1).

2.3 Simulation protocol and analysis of model results

2.3.1 Simulation protocol

LSM_Nlateral_Off was applied to simulate the lateral trans-
fer of PON, DON, and DIN; the decomposition of PON and
DON; and the loss of DIN by denitrification within the river
network from 1901–2014. The model was run at 0.5° spa-
tial resolution and daily temporal resolution using the down-
scaled terrestrial forcings as inputs (see Sect. 2.1.2). Run-
ning LSM_Nlateral_Off on a daily step allows for the evalu-
ation of the model’s performance in capturing not only long-
term trends but also seasonality in lateral N transfers and
transformations within the global river network. The model
was evaluated on a daily time step by comparing the simu-
lated and observed TN lateral transfer at three sites with long
time series of observed TN flows. We also evaluated the per-
formance of LSM_Nlateral_Off in simulating annual lateral
TN transfer using observational data from 189 sites world-
wide, each with records of both water discharge rates and N
concentrations. The simulated total amounts of PON, DON,

and DIN from land to river and from river to ocean were
further compared with previously published global N mod-
els, namely IMAGE-GNM (Vilmin et al., 2018), the Frame-
work for Aquatic Modeling in the Earth System (FrAMES-
N) (Wollheim et al., 2008), the mass balance model (MBM)
(Green et al., 2004), and GlobalNEWS2 (Mayorga et al.,
2010).

Table 1 summarises the forcing and evaluation data along
with their spatio-temporal resolution and references to the
gridded products and point datasets.

2.3.2 Model evaluation metrics

To evaluate the performance of LSM_Nlateral_Off in repro-
ducing the spatial variations in water and N flow, the mean
bias error (MBE) and the coefficient of determination (R2)
were determined. R2 represents how much variation in the
observations can be explained by the model. For the defini-
tion of R2, please refer to Renaud and Victoria-Feser (2010).
MBE quantifies the degree to which LSM_Nlateral_Off over-
estimates or underestimates observations of water discharge
and TN flow at the grid level.

MBE=
M −O

O
× 100%, (17)

whereM is the mean of simulated values, andO is the mean
of observed values.

To assess the performance of LSM_Nlateral_Off in repro-
ducing time series of TN and water flows, the relative root
mean square root (RRMSE) and Nash–Sutcliffe efficiency
(NSE) coefficient were calculated.

RRMSE=

√∑n
j=1(Mj−Oj )2

n

O
, (18)

NSE= 1−

∑n
j=1

(
Mj −Oj

)2∑n
j=1

(
Oj −O

)2 , (19)

where n represents the total number of days/months with
available observations at a given site, and Oj and Mj repre-
sent the observed and modelled values of water /TN flow on
day/month j . The NSE can take values between 1 and −∞.
An NSE of 1 indicates a perfect fit between observed and
simulated values, and an NSE of 0 means that using the mean
observed value as a constant simulated value would lead to
as much deviation between observed and predicted values
as using the actual simulated values. If the NSE is negative,
there is more deviation between simulated and observed val-
ues than between the observed values and their mean.

2.3.3 Seasonality analysis

To explore the seasonal variability in water discharge, TN
flow, TN concentration, and denitrification rates during
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Figure 3. Location of observational sites for N concentrations. Pink dots represent sites with observations of total nitrogen (TN) con-
centrations, 116 sites; yellow dots represent sites with observations of NO−3 concentrations, 53 sites; and green dots represent sites with
observations of TN concentrations from the published literature, 20 sites (Table S1). Black stars represent sites with daily time series of
water discharge and TN flow.

1995–2014 at the global scale, we constructed spatial maps
of monthly anomalies following the method by Roobaert et
al. (2019). If FV denotes the rate of water flow (km3 yr−1),
denitrification (Gg N yr−1), TN flow (Gg N yr−1), or TN con-
centration (mg L−1) in rivers, then for each grid cell, the
monthly anomaly of FV can be calculated as the difference
between the FV value in a given month and the correspond-
ing annual mean value:

FVAt = FVt −FV, (20)

where FVAt represents the anomaly of FV in month t , while
FVt and FV represent the values of FV in month t and the
annual mean, respectively.

The seasonality, defined as the amplitude of seasonal vari-
ations in water discharge, N flow rates, N concentrations,
and denitrification rates, is expressed as the root mean square
(RMS) of the monthly FVA.

seasonFVA =

√
1

12
×

∑12
t=1

(FVAt )2 (21)

3 Results and discussion

3.1 Model evaluation

The evaluation of the simulated water discharge using GRDC
data indicates that for major rivers with drainage areas larger
than 50 000 km2 spread over the globe, LSM_Nlateral_Off
reproduces the magnitude and seasonal variations in water
discharge well. Overall, the model simulation explains 90 %

of the spatial variations in the observed long-term average
water discharges (Fig. 4a). The absolute values of MBE for
the simulated average water discharges are mostly smaller
than 50 % (Fig. S3a). At 25 sites (13 % of all sites), the
absolute values of MBE are larger than 100 %, but the an-
nual mean water discharge at each of these sites is less than
100 km3 yr−1 (about 3200 m3 s−1), indicating that large er-
rors tend to occur at sites where water discharge is low
(Fig. S3a). The discrepancy between model simulations and
observations at these sites may be caused by three fac-
tors: (1) a potential discrepancy between the stream rout-
ing scheme (delineation of catchment boundaries) defined
by the 0.5° resolution forcing data and the real river net-
work; (2) the presence of stream channel bifurcations that
are poorly resolved by the model (Zhang et al., 2022); and
(3) biases in runoff and drainage simulated by ORCHIDEE-
Clateral, which may stem from deviations in meteorologi-
cal data and the parameterisation of soil hydraulic properties.
At some sites, such as the Columbia, Rhine, and Mississippi
rivers, for which continuous time series in TN flows are avail-
able, LSM_Nlateral_Off also captures the seasonal variation
in water discharges well, with RRMSEs ranging from 30 %
to 37 % (Fig. 5a1–3).

Area-averaged TN flows simulated by LSM_Nlateral_Off
are generally consistent with observed TN flows at the
189 sites extracted from the GRQA database and addi-
tional published literature. LSM_Nlateral_Off explains 77 %
of the observed spatial variations in long-term TN flows
across sites (Fig. 4b). The absolute values of MBE for
the simulated average TN flows are mostly below 50 %
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(Fig. S3b). LSM_Nlateral_Off significantly underestimated
(MBE<−100 %) or overestimated (MBE >100 %) the ob-
served TN flows at 32 sites (17 % of all sites), all located in
regions with relatively low water discharge (Fig. S3b). At 9
of these 32 sites (28 %), the MBE of TN flow is very close to
that of water discharge, showing that discrepancies between
observed and modelled TN flows at these locations stem pri-
marily from water discharge rather than nitrogen concentra-
tions. The results reveal that the MBE of TN flow is rela-
tively small in large rivers, such as at sites located in the
lower reaches of the Columbia, Rhine, and Mississippi rivers,
where MBE values are −25 %, −16 %, and 1 %, respec-
tively. LSM_Nlateral_Off also basically reproduces the sea-
sonal patterns of TN flow in these rivers, with RRMSEs rang-
ing from 30 % to 62 % (Fig. 5b1–3). At the Rhine River site,
the NSE of TN flow is negative, revealing that although the
seasonal pattern of TN flow simulated by LSM_Nlateral_Off
is similar to that observed, the model does not capture accu-
rate trends on the daily scale (Fig. 5b2).

The seasonality in water discharge is an important con-
trol factor for the seasonality in TN fluxes. Therefore, the
observational data derived from GRDC were used to further
assess the performance of LSM_Nlateral_Off in reproduc-
ing the monthly seasonality of water discharge. At the 346
GRDC sites with continuous measurements (Fig. S4), we
computed the monthly average value, taken as the observed
water discharge of that month. For the world’s 20 largest
rivers (Dai and Trenberth, 2002), which account for approx-
imately 31 % of the total global river discharge (Table S2,
Fig. S4), LSM_Nlateral_Off effectively simulates both the
magnitude and seasonality of water discharge (Fig. S5). The
Nash–Sutcliffe efficiency (NSE) values range from 0.07 to
0.92, with 17 out of the 20 rivers achieving an NSE greater
than 0.5 (Fig. S5). However, the model demonstrates a signif-
icantly weaker accuracy in capturing the seasonality of wa-
ter discharge in some low-flow rivers, with NSE values be-
low zero at 84 (24 % of the sites contributing to 17 % of the
global river discharge) of the 346 GRDC sites (Fig. S6). The
model’s limitations in capturing seasonality are attributed to
three main reasons, as discussed above.

As an additional evaluation, we compared our model re-
sults against observed N concentrations and water discharges
across the United States provided by the U.S. Geologi-
cal Survey (USGS). Based on these data, a previous study
(Scott et al., 2007) calculated the long-term (1975–2004)
mean annual loads of total organic N (TON) and TON frac-
tions (TON yield / TN yield) at 854 stations nationwide.
LSM_Nlateral_Off simulates a spatial pattern for the TON
fraction which closely matches that reported by Scott et
al. (2007), with high values in western regions and low values
in the east (Fig. S7). This suggests that LSM_Nlateral_Off
not only effectively simulates TN fluxes but also captures
the organic and inorganic fractions across the United States
relatively well. Moreover, the simulated DIN concentrations
display similar spatial patterns as those obtained from a re-

cent observation-based machine learning (ML) assessment
(Marzadri et al., 2021) in regions such as North Amer-
ica, western Europe, eastern China, and India (Fig. S8).
However, in regions such as the Amazon, Africa, and Aus-
tralia, LSM_Nlateral_Off simulates lower DIN concentra-
tions compared to the ML assessment (Fig. S8). These lower
DIN concentrations are attributed to different factors. In Aus-
tralia, low N inflow into rivers results in low DIN concen-
trations, whereas in the Amazon and tropical rainforests of
Africa, high denitrification rates are primarily responsible for
the low DIN concentrations in the model (Fig. 7). The ML in-
volves a significant degree of empirical modelling and there-
fore does not fully reflect real-world conditions. Therefore,
this comparison cannot be regarded as a direct evaluation of
the model based on observational data. However, the consis-
tency between the two models across most regions globally
(e.g. North America, western Europe, eastern China, and In-
dia) suggests that LSM_Nlateral_Off overall performs rea-
sonably well in simulating DIN lateral transfer processes.

3.2 Temporal and spatial patterns of N flows

Input data for LSM_Nlateral_Off are provided by
ORCHIDEE-CNP and ORCHIDEE-Clateral. Therefore, the
magnitude and spatio-temporal patterns of N inflows from
land to rivers are exclusively derived from these two model
branches. In contrast, the quantification of denitrification
and N exports to oceans results from the combined influence
of the input data from ORCHIDEE and from the process
representation implemented in LSM_Nlateral_Off. In the
following, we investigate spatial, seasonal, and decadal
trends resulting from the offline coupling of these three
models.

3.2.1 Trends in global N flows

Averaged over the 1995–2014 period, the annual TN input
from soils to rivers, TN exports to oceans, and denitrifica-
tion in transit amount to 64.4, 40.0, and 24.4 Tg N yr−1,
respectively. These three N fluxes show increasing trends
from 1901 to 2014. The global annual TN input to rivers in-
creased by 72.4 %, from 37.4 Tg N yr−1 during 1901–1920
to 64.4 Tg N yr−1 during 1995–2014 (Fig. 6a). The global
annual TN export to oceans increased by 45.6 % from 27.4
to 40.0 Tg N yr−1. Most of this increase is attributed to DIN,
which doubled over the simulation period, rising from 10.0 to
19.9 Tg N yr−1, while, in absolute terms, DON exports show
a much smaller but still substantial relative increase of 50.6 %
(Fig. 6b). In contrast, PON exports to oceans show a slightly
decreasing trend. This decrease is mainly attributed to global
greening, which enhances vegetation cover (Cortés et al.,
2021; Wang et al., 2022) and reduces soil erosion, resulting
in lower PON inputs from the land and, thus, PON exports to
oceans. The increase in global denitrification mostly follows
the rise in DIN inputs, with a relative increase of 146.6 %,
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Figure 4. Evaluation of LSM_Nlateral_Off. Global-scale comparison between observed and modelled annual mean water discharge (a) and
TN flow (b). Pink symbols represent sites with observations of TN concentrations from GRQA, yellow symbols represent GRQA sites for
which TN concentrations were estimated from observations of NO−3 concentrations, and green symbols represent sites with observations of
TN from the published literature.

Figure 5. Time series of water discharge (a) and TN flow (b). Panels (a1) and (b1) represent the Columbia River (46.18° N, 123.18° W),
(a2) and (b2) the Rhine River (51.84° N, 6.11° E), and (a3) and (b3) the Mississippi River (32.25° N, −91.25° W).
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from 9.9 Tg N yr−1 during 1901–1920 to 24.4 Tg N yr−1 dur-
ing 1995–2014 (Fig. 6a).

The global TN input into rivers, TN export to oceans, and
denitrification in rivers all show a slight peak between 1926
and 1931 due to the relatively higher surface runoff dur-
ing this period (Fig. S9). This higher runoff results mostly
from meteorological forcings, as the global total amount of
heavy rainfall (> 25 mm d−1) was higher during this period
(Fig. S9). Note that Probst and Tardy (1989) provide empir-
ical evidence for elevated global runoff during this period,
and we thus consider this peak to be realistic.

3.2.2 Spatial patterns in N flows and concentrations

In this section, we examine the spatial distribution of con-
temporary N flows and their changes compared to the early
20th century. Given the rapid increase in N flows since 1960
and the interannual variability induced by climate, we use
the 1995–2014 average to represent contemporary N flows
and the 1901–1920 average to represent early 20th-century
conditions.

Annual mean TN input into rivers during 1995–2014
shows large spatial heterogeneity, with higher values mainly
located in eastern North America, South America, western
Europe, tropical Africa, South Asia, Southeast Asia, and
southeast China (Fig. 7a). When compared with 1901–1920,
TN inflow into rivers increased in most areas (about 62 %),
with the highest increase (exceeding 300 %) appearing in
China, the United States, Canada, Germany, France, and
Spain (Fig. 8a). The annual mean contemporary denitrifica-
tion rates (1995–2014) also exhibit large spatial heterogene-
ity (Fig. 7b) with high denitrification rates in large tropical
and subtropical rivers, such as the Amazon, Nile, and Congo
rivers. Over the entire simulation period, the grid cells with
the highest relative denitrification increases are mostly lo-
cated in the subtropical and north temperate zone (Fig. 8b).

The TN export to oceans during 1995–2014 also varies
substantially across regions (Fig. 7c). The riverine TN ex-
ports are relatively low for the Arctic Ocean; the western
and southern coasts of Australia; and the coastal zone ad-
jacent to desert areas in South America (e.g. the Atacama
Desert and the Patagonian Desert), Africa (the Sahara Desert
and the Namib Desert), and Asia (e.g. the Arabian Desert,
the Thar Desert in India, the deserts of eastern Iran, and the
Syrian Desert) (Fig. 7c). In contrast, the Amazon region in
South America, the African rainforest region, western Eu-
rope, South Asia, and southeast China are prominent hotspots
of riverine TN exports (Fig. 7c). Unsurprisingly, TN exports
to oceans have increased in approximately half of the coastal
areas since the early 20th century (Fig. 8c). In several re-
gions, such as the southeastern coastal areas of China and
the eastern coast of the United States, TN exports to oceans
have even increased by more than 100 % from 1901–1920 to
1995–2014 (Fig. 8c).

The annual mean contemporary concentration of TN at
river mouths also exhibits significant spatial heterogeneity
(Fig. 7d), which differs from that of TN export to oceans
(Fig. 7c). For instance, the Amazon region is one of the
hotspots for TN exports, but its TN concentrations are low
(< 1 mg L−1) because the water discharge and denitrification
rates are both high (Figs. 7b, S10a). The highest TN concen-
trations (> 5 mg L−1) are found in areas with intense human
activity, for example the San Francisco area, Chile, Spain,
Egypt (Nile River estuary), and the southeastern coastal ar-
eas of China (Bu et al., 2019; Hou et al., 2022; Yang et al.,
2023).

The spatial distribution of changes in TN concentrations
from 1901–1920 to 1995–2014 differs from that of TN ex-
ports (Fig. 8c, d). For example, along the western coast
of Chile and the western coast of Guinea, Sierra Leone,
and Liberia, TN exports to oceans decreased by more than
10 %, while TN concentrations increased by more than 10 %
(Fig. 8c, d). This phenomenon is due to negative trends in wa-
ter discharge from the corresponding watersheds (Fig. S10b).
In most regions, the ratio of changes in TN fluxes to changes
in TN concentrations ranges between 0 and 10, indicating
that TN flux changes are driven by the combined effects of
changes in water discharge and TN concentrations (TN in-
puts into rivers) (Fig. 9).

3.2.3 Seasonal variability in N flows and concentrations

The seasonality of TN inputs into rivers during the period
1995–2014 is most pronounced in the central United States,
Europe, South Asia, Southeast Asia, and southeast China
(Fig. 10a). The frequency distribution of the seasonal am-
plitude in inputs (Fig. 10a) is broadly similar to that of the
mean annual inputs (Fig. 7a), suggesting a seasonal vari-
ability of similar magnitude to the broad, global-scale spa-
tial variability. A similar pattern is observed for denitrifica-
tion rates, with seasonal and spatial variations of comparable
magnitudes (Figs. 7b, 10b).

The seasonal amplitudes of TN exports to oceans
during the period 1995–2014 show the highest values
(> 10 Gg N yr−1) along the coasts of South Asia, southeast
China, and Mexico and to a lesser extent (1–10 Gg N yr−1)
along the coastline of the Amazon region, the rainforest re-
gions of Africa, and western Europe (Fig. 10c). As expected,
a significant portion of this seasonal variability is due to river
discharge (Fig. S11a). Our results indicate that the spatial
pattern of seasonal amplitudes in TN concentrations at river
mouths differs from that of TN exports (Figs. 10, S12, S13).
This result is important because the ocean biogeochemical
modelling community typically uses annual mean TN fluxes
derived from Global News to force their simulations (e.g. Lee
et al., 2016b; Stock et al., 2020; Tjiputra et al., 2020; Lacroix
et al., 2021) and downscales these inputs to monthly values
under the assumption that the seasonal variability in the flux
is entirely driven by river discharge. Our simulations thus
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Figure 6. Trends in global N flows during 1901–2014: (a) yearly mean TN inputs into rivers, TN exports to oceans, and denitrification rates
and (b) yearly mean DIN, DON, and PON exports to oceans. TN: total nitrogen; DIN: dissolved inorganic nitrogen; DON: dissolved organic
nitrogen; PON: particulate organic nitrogen.

Figure 7. Spatial patterns of annual mean N fluxes and concentrations during 1995–2014: (a) TN inputs into rivers, (b) denitrification rates
in rivers, (c) TN exports to oceans, and (d) TN concentrations at river mouths. To display the spatial patterns of denitrification in rivers better,
we excluded data with denitrification rates less than 0.001 Gg N yr−1 per grid.

stress the need for models that explicitly resolve the seasonal
variability in fluxes and concentrations.

We also normalised the seasonality by the mean value of
N flux or concentrations. For TN inputs into rivers, deni-
trification, and TN exports, the normalised seasonal maps
all show higher values in the middle and high latitudes of
the Northern Hemisphere and lower values in the low lat-
itudes and the Southern Hemisphere (Fig. S12). Moreover,
the regional-scale heterogeneity in the normalised seasonal-

ity of TN concentration is a little weaker than that of the TN
flux (Figs. S12c and d).

3.3 Comparison with other models

We compared the trends of global DIN input into rivers sim-
ulated by ORCHIDEE-CNP with those generated by the re-
cently published IMAGE-GNM model (Vilmin et al., 2018).
Overall, both models capture a similar increasing trend in
global DIN delivery from land to rivers during 1901–2001
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Figure 8. Spatial patterns of changes from 1901–1920 to 1995–2014 of (a) TN inputs into rivers, (b) denitrification, (c) TN exports to
oceans, and (d) TN concentrations.

Figure 9. Ratio of changes in TN exports to changes in TN concentrations from 1901–1920 to 1995–2014.

(Fig. 11a). During 1961–2000, the global-scale interannual
variability in DIN simulated by ORCHIDEE-CNP is com-
paratively stronger than that simulated by IMAGE-GNM
(Fig. 11a). This discrepancy may be partially explained by
differences in the temporal resolution of the two models
(daily for ORCHIDEE-CNP, yearly for IMAGE-GNM) and
the associated climate forcings. In other words, ORCHIDEE-
CNP calculates the annual means from daily fluxes, whereas
IMAGE-GNM does not resolve the intra-annual variabil-
ity. In contrast, the organic nitrogen (ON=PON+DON)

fluxes simulated by ORCHIDEE-Clateral and derived from
IMAGE-GNM differ significantly. The ON inflow simu-
lated by IMAGE-GNM shows a substantial increase from
24.9 Tg N yr−1 during 1901–1910 to 37.9 Tg N yr−1 during
1991–2000, while ON simulated by ORCHIDEE-Clateral
exhibits a weaker increasing trend over the same period, from
26.5 to 32.4 Tg N yr−1. The weaker trend in ORCHIDEE-
Clateral can primarily be explained by the increasing DON
inflow being offset by a decreasing PON inflow (Fig. 11c).
The fundamental reason for the discrepancy among the two
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Figure 10. Spatial distribution of the seasonal amplitude (period 1995–2014) in (a) TN inputs into rivers, (b) rates of denitrification, (c) TN
exports to oceans, and (d) TN concentrations at river mouths.

models stems from their distinct structures and algorithms. In
ORCHIDEE-Clateral, the ON flows into rivers are calculated
separately for the dissolved and particulate compounds using
a process-based representation of the soil C stock dynamics
and C : N ratios, as well as the rates of runoff and drainage.
The approach is different in IMAGE-GNM, which calculates
the bulk ON flows (DON+PON) based on empirical formu-
las (Vilmin et al., 2018). Specifically, IMAGE-GNM calcu-
lates ON delivery from land to rivers with drainage based on
the TN delivery rate with drainage, assuming that 50 % of
TN flux is in the form of ON. For ON flows into rivers with
runoff, IMAGE-GNM distinguishes two runoff mobilisation
pathways, i.e. losses from recent nutrient applications in the
form of fertiliser and manure, and a memory effect related
to long-term historical changes in soil nutrient inventories.
These two pathways both are simulated based on empirical
formulas (Vilmin et al., 2018). In ORCHIDEE-Clateral, the
default C : N ratio in different SOM pools was used to cal-
culate the PON erosional fluxes from soils using a process-
based approach, and a constant C : N ratio (averaged values
from references) was applied to simulate DON flows out of
soils. The assumption of a constant C : N ratio for dissolved
matter in soil may contribute to the weaker trend in ON de-
livery to rivers simulated by LSM_Nlateral_Off, since some
studies have revealed that DOC : DON ratios vary with time
and land cover (Li et al., 2019; Yates et al., 2019).

The simulated lateral N flows from land to rivers and
N exports to oceans in this study are now compared with

those simulated by other models across different time hori-
zons, noting that each model covers different time periods
(Fig. 12). Focusing first on the global N flows from land to
rivers, we find that for different time horizons, the N inputs
used as forcings for LSM_Nlateral_Off (i.e. simulated by
ORCHIDEE-Clateral and ORCHIDEE-CNP) are very close
to those estimated by IMAGE-GNM (Vilmin et al., 2018)
and FrAMES-N (Wollheim et al., 2008), with differences
between our simulations and other models never exceeding
7 % across different time horizons. Although the fraction of
DIN in TN over 1901–1910 simulated by LSM_Nlateral_Off
(27 %) is slightly lower than that of IMAGE-GNM (29 %),
the DIN fractions simulated by these two models both show
obvious increasing trends with time, LSM_Nlateral_Off and
IMAGE-GNM reporting DIN fractions for the 1991–2000
period reaching 48 % and 43 %, respectively (Fig. 12a).
These results are consistent with a comprehensive cross-
biome assessment of N composition in rivers that also re-
vealed a shift in the dissolved N from highly heterogeneous
to primarily inorganic N in response to human disturbances
(Wymore et al., 2021). This change in the composition of TN
inputs from land to rivers is primarily caused by the excess
inorganic N released from agricultural (due to the utilisation
of fertilisers) and urban (due to the release of sewage) areas.

The global N export from rivers to oceans simulated by
LSM_Nlateral_Off is also comparable to estimates from
other models. During 1901–1910, the global riverine N ex-
port to oceans is 29.0 Tg N yr−1, a value that falls within the
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Figure 11. Global terrestrial N flows into rivers during 1901–2001 simulated by ORCHIDEE model versions and IMAGE-GNM (Vilmin et
al., 2018): (a) DIN, (b) ON (DON+PON), and (c) DON and PON derived from ORCHIDEE-Clateral.

range simulated by IMAGE-GNM (19.0 Tg N yr−1; Vilmin
et al., 2018) and DLEM (29.4 Tg N yr−1; Tian and Li, 2024)
(Fig. 12b). For the most recent period (2000s), the simu-
lated riverine N export to oceans is converging, with differ-
ences of less than 10 % compared to other models such as
GlobaNEWS2 (Mayorga et al., 2010), IMAGE-GNM, and
DLEM (Fig. 12b). Although the global riverine TN export
to oceans simulated by LSM_Nlateral_Off is close to that
simulated by GlobalNEWS2 (1970–2010), the TN export re-
ported here contains a slightly larger fraction of DIN and a
slightly lower fraction of PON compared to GlobalNEWS2
(Fig. 12b).

The TN export to oceans simulated by LSM_Nlateral_Off
and GlobalNEWS2 is also comparable at continental scale
(Fig. 13a), with the largest TN exports from Asia and the
lowest exports from Australia. However, the simulated pro-
portions of N species in the overall TN export show distinct
behaviours between these two models. For example, com-
pared to GlobalNEWS2, the DIN proportion in TN exports
simulated by LSM_Nlateral_Off is larger in Asia, Africa, and
South America but smaller in Europe (Fig. 13a).

The magnitude of TN exports simulated by
LSM_Nlateral_Off and GlobalNEWS2 continues to di-
verge at basin scale (Fig. 13b). In 8 of the top 20 basins
by area, the difference between the two models is less
than 50 %, such as in the Congo, Mississippi, Ob, Paraná,

Yenisei, Changjiang, Mackenzie, and Nelson basins. Larger
discrepancies can however be observed in several large
river systems. For instance, in the Amazon basin, the TN
export simulated by GlobaNEWS2 is about 2.5 times larger
than that simulated by LSM_Nlateral_Off. The evaluation
of LSM_Nlateral_Off simulation results against measure-
ments of TN flow rates in the Amazon River indicates that
LSM_Nlateral_Off underestimates the TN flow in this basin
(Fig. 4). At Manacapuru and Óbidos, two observation sites
on the main channel of the Amazon River, the observed TN
flow is 1.90 and 2.82 Tg N yr−1, but the simulated values are
0.92 and 1.57 Tg N yr−1, respectively. To evaluate whether
this underestimation is caused by less TN inflow into rivers,
we set the N transformation processes (decomposition of
DON and PON and denitrification) in rivers to zero and
found that the TN flows are 1.56 Tg N yr−1 at Manacapuru
and 2.35 Tg N yr−1 at Óbidos. Therefore, even with no
N removal, LSM_Nlateral_Off still underestimates the
observed TN flows at these two sites, suggesting that N
delivery from terrestrial ecosystems to rivers (as simulated
by ORCHIDEE) is too low in the Amazon basin. In the
Nile basin, the TN export simulated by LSM_Nlateral_Off
is 30 times larger than that simulated by GlobalNEWS2.
Observed annual exports of DIN and DON amount to
0.079 and 0.038 Tg N yr−1, respectively (Badr, 2016).
These observed values are of the same magnitude as those
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simulated by LSM_Nlateral_Off, 0.113 Tg N yr−1 for DIN
and 0.048 Tg N yr−1 for DON. This finding suggests that
LSM_Nlateral_Off better captures the observed N export for
this specific basin than GlobalNEWS2.

It should be noted that GlobalNEWS2 and IMAGE-GNM
both have an IMAGE part to simulate N inputs into inland
rivers but were developed using different hydrological mod-
els and different methods to calculate N transport and reten-
tion along the global river network. The hydrological model
embedded in GlobalNEWS2 is the water balance model
(WBMplus) (Fekete et al., 2010), and the NEWS models
were then developed to calculate nutrient retention in streams
and reservoirs (Seitzinger et al., 2005, 2010; Mayorga et
al., 2010). The hydrological model used in IMAGE-GNM is
the PCRaster Global Water Balance (PCR-GLOBWB) (Van
Beek et al., 2011), and IMAGE-GNM then applied the nu-
trient spiralling approach (Newbold et al., 1981) to describe
in-stream retention of both N and P with a yearly time step
(following Wollheim et al., 2008).

In summary, the global total N input to rivers and N export
to oceans simulated by the different models are comparable,
but the spatial distribution of N export to oceans at finer spa-
tial scales shows increasing discrepancies, as does the chem-
ical speciation. This is mainly due to differences in model
structures, spatial and temporal resolutions, and forcing data.
Although our model has been evaluated against the largest
dataset of river discharge and N concentrations from the re-
cently assembled global GRDC and GRQA database, signif-
icant cross-model discrepancies emerge as the analysis is re-
fined to regional patterns and individual river basins. This
highlights the necessity for improvements in model structure
and quality of both forcing data and evaluation data, as well
as the implementation of ensemble-mean assessments, akin
to the recent approach applied to constrain carbon exports to
the oceans (Liu et al., 2024).

3.4 Model limitations and priorities for future research

LSM_Nlateral_Off currently relies on a simplified represen-
tation of the N processes in benthic sediments and water
without explicit simulation of the hyporheic exchange be-
tween sediments and water. The importance of these pro-
cesses is estimated using a scaling factor based on water
depth, which itself relies on a coarse approximation of the
stream channel geometry based on empirical formulas (Ray-
mond et al., 2012). Global-scale databases on the geomor-
phic properties of river channels, including river depth and
width, are available (Andreadis et al., 2013) and could be
used in the future to further refine the representation of
N processes in river channels, including the hyporheic ex-
change between sediments and water. The residence time
method was used to estimate water and N transport within
river networks. This method is simple and has been widely
used in large-scale simulations of fluvial water, carbon, and
N transports (Beusen et al., 2015; Jepsen et al., 2019; Zhang

Figure 12. Comparison of global TN fluxes estimated by different
models: (a) global TN inputs to rivers and (b) global TN exports to
oceans. IMAGE-GNM: Integrated Model to Assess the Global En-
vironment – Global Nutrient Model (Vilmin et al., 2018); FrAMES-
N: Framework for Aquatic Modeling in the Earth System (Wollheim
et al., 2008); MBM: mass balance model (Green et al., 2004); Glob-
alNEWS2: Global Nutrient Export from Watersheds 2 (Mayorga et
al., 2010); and DLEM: Dynamic Land Ecosystem Model (unpub-
lished, Tian and Li, 2024).

et al., 2022). However, it may not fully capture the seasonal-
ity of water and N flows accurately in some regions (Fig. 5a2
and b2). To improve the accuracy of simulating fluvial water
and N transport, the residence time method currently used in
LSM_Nlateral_Off could be replaced with hydrological ki-
netic equations in future versions of the model.

The current version of LSM_Nlateral_Off also has sev-
eral limitations in terms of biogeochemistry. One limitation
is the use of a constant C : N ratio to simulate DON fluxes
from soils to rivers. Research has shown that the C : N ratio
varies over time and across different land cover types (Li et
al., 2019; Yates et al., 2019). The use of a constant C : N ra-
tio may thus reduce the accuracy and informativeness of the
estimated DON flux. Addressing this limitation is an urgent
priority for future research.

At present, few studies have accounted for the effects of
PON deposition and resuspension on lateral N transfer in
rivers because of the challenge of representing these pro-
cesses at the global scale. Moreover, PON deposition is
mainly controlled by the rate of sediment deposition, a pro-
cess which is not represented in the current model version.
Therefore, PON deposition has not been simulated either.
Recent results from ORCHIDEE-Clateral suggest that about
22 % of POC entering the global river network is deposited
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Figure 13. Comparison of present-day (2001–2010) TN export to
oceans simulated by LSM_Nlateral_Off and GlobalNEWS2 (May-
orga et al., 2010) at (a) continental scale and (b) basin scale.

with sediments before reaching the coast (Zhang et al., 2025).
Assuming a similar fraction of deposited PON, global PON
export to oceans simulated by LSM_Nlateral_Off could be
approximately 20 % lower (about 2 Tg N yr −1) than esti-
mated here.

The role of autotrophic production is another process
currently omitted. Autotrophs (aquatic macrophytes, algae,
cyanobacteria, bryophytes, some protists, and bacteria) in
freshwater systems take up DIN from the water column
(King et al., 2014) and may play a significant role in N cy-
cling within rivers (Wachholz et al., 2024). In future model
developments, the role of autotrophic production in N re-
tention should thus be considered, although the large domi-
nance of the heterotrophic metabolism on a global scale sug-
gests that in situ aquatic production is a second-order con-
trol on N cycling (Battin et al., 2023). The transformation
of PON to DON is also not included in the current version
of LSM_Nlateral_Off. A previous study suggests that the
in-stream transformation of POC to DOC is limited (about
0.3 %) (Zhang et al., 2022). It can thus be assumed that the
fraction of PON transformed to DON is also rather negligi-
ble. Nevertheless, we plan to incorporate this transformation
process into our model in the next phase of our research.

In the present version of LSM_Nlateral_Off, river–
floodplain dynamics and channel erosion are currently not
represented because of the incomplete understanding of how
these processes affect lateral N transfer and the lack of reli-
able parameters from field studies to quantify their impacts

at global scale. Floodplain inundation not only facilitates N
inputs into rivers but also significantly influences N reten-
tion efficiency in rivers (Martí et al., 1997; Hanrahan et al.,
2018) and N cycling (e.g. nitrification and denitrification)
in flooded soils (Sánchez-Rodríguez et al., 2019; Hu et al.,
2020). For instance, in the Jiulong River watershed in south-
east China, flood events exported 47 % and 42 % of the an-
nual land-derived ammonium (NH+4 ) and NO−3 , respectively,
although they only occurred 24 % of the time (Gao et al.,
2018). This highlights the critical role of flood events in N
transport and cycling, emphasising the need to incorporate
floodplain processes in future model development.

LSM_Nlateral_Off includes the major sources of river-
ine N with runoff and drainage from natural, agricultural,
and urban ecosystems (Fig. 1). Yet, several sources are still
missing, for example atmospheric N deposition directly onto
rivers and N release from aquaculture (Filoso et al., 2003;
Bouwman et al., 2013; Beusen et al., 2016a; Gao et al.,
2020), suggesting that the N exports to oceans simulated by
LSM_Nlateral_Off might be conservative. On the other hand,
N retention and recycling in lakes and artificial reservoirs are
currently missing, which have the potential to decrease lat-
eral N flows because they offer ideal conditions for N burial
in sediment or permanent loss via denitrification (Saunders
and Kalff, 2001; Harrison et al., 2009; Akbarzadeh et al.,
2019). The absence of these processes in the current model
may lead to an overestimation of N exports to oceans.

The forcing data used by LSM_Nlateral_Off (Table 1) in-
troduce additional uncertainties into the simulation results.
The routing scheme of water and N is driven by a map of
streamflow direction at 0.5° spatial resolution (Vörösmarty et
al., 2000). There are obvious discrepancies between this rout-
ing scheme and the real river network (Zhang et al., 2022).
This deviation of flow direction induces uncertainties in the
simulated riverine water discharge and N flow because the
flow direction directly determines the area of each catchment
and the routing of the river.

Finally, although LSM_Nlateral_Off effectively repro-
duces the magnitude and seasonal variations in water and N
transfer from land to rivers and oceans (Figs. 4 and 5), spa-
tial and temporal biases in observational data also affect the
evaluation of model performance. Most observations of river-
ine N are distributed in North America, South America, and
Europe, highlighting the crucial need to collect more mea-
surements in other regions of the world, especially in Africa.
In addition, despite the strong correlation between TN and
NO−3 concentrations, the application of an empirical equa-
tion (Eq. 15) to estimate TN from NO−3 introduces additional
uncertainties in the observational dataset (Pisani et al., 2017;
Niu et al., 2022).
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4 Conclusions

We developed a global N lateral transfer model from land
to oceans through the river network, incorporating the de-
composition of DON and PON and denitrification of DIN
during fluvial transport. Evaluations using observational data
from GRDC and GRQA indicate that LSM_Nlateral_Off
reproduces observed rates and seasonal variations in wa-
ter discharge and N flow well. The global simulation of
LSM_Nlateral_Off shows that global TN inputs into rivers,
TN exports to oceans, and riverine denitrification rates in-
creased significantly over the last century. In particular, the
TN exports to oceans increased from 27.5 Tg N yr−1 dur-
ing 1901–1920 to 40.0 Tg N yr−1 during 1995–2014, with
DIN contributing 80 % to the TN increase. Our results re-
veal significant spatial heterogeneity in the global distri-
bution of N inputs, transformation, and exports to oceans,
with East Asia and Southeast Asia identified as hotspots
of N lateral transfers and their increase. The seasonal am-
plitude of TN export is of similar magnitude to the large-
scale spatial heterogeneity in TN fluxes. Although the global-
and continental-scale TN exports to oceans simulated by
LSM_Nlateral_Off are similar to those of another widely
used model (GlobalNEWS2), their spatial distributions at the
basin scale reveal significant discrepancies. One key strength
of LSM_Nlateral_Off is its ability to resolve N processes at
the daily timescale, using a framework fully compatible with
land surface model (LSM) outputs. This compatibility en-
ables the model to account for the effects of climate change,
atmospheric composition changes, land use change, and agri-
cultural practices (e.g. manure and fertiliser use) in a fully
consistent way.

LSM_Nlateral_Off has however its own limitations, and
we plan to further enhance its capabilities with additional
processes (e.g. autotrophy, variable C : N ratios, erosion and
deposition on riverbed), additional sources (e.g. aquacul-
ture, direct N deposition), and interconnections with other
(semi-)aquatic and benthic systems (hyporheic zone, lakes,
reservoirs, floodplains). Furthermore, additional observa-
tional data will be collected to further calibrate and evalu-
ate LSM_Nlateral_Off. Last but not least, LSM_Nlateral_Off
is currently being dynamically embedded into ORCHIDEE
(Vuichard et al., 2019), the land surface scheme of the
IPSL Earth System Model. This coupling opens new av-
enues towards fully coupled simulations of the land–ocean–
atmosphere N cycle. Additionally, the current offline version
of our model could also be easily coupled to other LSMs
representing N cycling in terrestrial ecosystems, enabling
broader applications and cross-model comparisons.
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Appendix A

Table A1. Abbreviations used in the text.

Abbreviation Meaning Unit

FDR_DIN leaching rates of DIN with drainage g N d−1

FDR_DON leaching rates of DON with drainage g N d−1

FRO_DIN leaching rates of DIN with runoff g N d−1

FRO_DON leaching rates of DON with runoff g N d−1

FRO_PON erosion rates of PON with runoff g N d−1

Fsewage_DIN DIN inflow rates from sewage g N d−1

Fsewage_DON DON inflow rates from sewage g N d−1

Ffastout_H2O outflow rates of water from fast reservoirs to stream reservoirs m3 d−1

Ffastout_DIN outflow rates of DIN from fast reservoirs to stream reservoirs g N d−1

Ffastout_DON outflow rates of DON from fast reservoirs to stream reservoirs g N d−1

Ffastout_PON outflow rates of PON from fast reservoirs to stream reservoirs g N d−1

Fslowout_H2O outflow rates of water from slow reservoirs to stream reservoirs m3 d−1

Fslowout_DIN outflow rates of DIN from slow reservoirs to stream reservoirs g N d−1

Fslowout_DON outflow rates of DON from slow reservoirs to stream reservoirs g N d−1

Fstreamout_H2O outflow rates of H2O to downstream reservoirs m3 d−1

Fstreamout_DIN outflow rates of DIN to downstream reservoirs g N d−1

Fstreamout_DON outflow rates of DON to downstream reservoirs g N d−1

Fstreamout_PON outflow rates of PON to downstream reservoirs g N d−1

Rfast_DIN denitrification rates in fast reservoirs g N d−1

Rfast_DON decomposition rates of DON in fast reservoirs g N d−1

Rfast_PON decomposition rates of PON in fast reservoirs g N d−1

Rslow_DIN denitrification rates in slow reservoirs g N d−1

Rslow_DON decomposition rates of DON in slow reservoirs g N d−1

Rstream_DIN denitrification rates in stream reservoirs g N d−1

Rstream_DON decomposition rates of DON in stream reservoirs g N d−1

Rstream_PON decomposition rates of PON in stream reservoirs g N d−1

Sfast_H2O water stock in fast reservoir m3

Sfast_DIN DIN stock in fast reservoir g N
Sfast_DON DON stock in fast reservoir g N
Sfast_PON PON stock in fast reservoir g N
Sslow_H2O water stock in slow reservoir m3

Sslow_DIN DIN stock in slow reservoir g N
Sslow_DON DON stock in slow reservoir g N
Sstream_H2O water stock in stream reservoir m3

Sstream_DIN DIN stock in stream reservoir g N
Sstream_DON DON stock in stream reservoir g N
Sstream_PON PON stock in stream reservoir g N
TW water temperature °C
FT _DIN dependency of denitrification on temperature unitless
depth depth of rivers m
Q water discharge km3 yr−1
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Table A2. Values of the key parameters used in LSM_Nlateral_Off to simulate the lateral transfer of N.

Parameter Value Description Source

τfast 3.0 d a factor which translates the topographic index into the water residence time
of the fast reservoir (Eq. 1)

Ngo-Duc et al. (2006)

τslow 25.0 d a factor which translates the topographic index into the water residence time
of the slow reservoir (Eq. 1)

Ngo-Duc et al. (2006)

τstream 0.24 d a factor which translates the topographic index into the water residence time
of the stream reservoir (Eq. 1)

Ngo-Duc et al. (2006)

KPON 0.028 d−1 the average PON decomposition rate at 20°C in water (Eq. 11) Islam et al. (2012)

KDON 0.07 d−1 the average DON decomposition rate at 20°C in water (Eq. 11) Xia et al. (2013)

KDIN 0.15 d−1 the average denitrification rate in water at 25°C (Eq. 12) Alexander et al. (2000)

Q10 2.0 the temperature sensitivity of PON and DON decomposition rates (Eq. 11) Liu et al. (2021)
Tref1 20°C the reference temperature for PON and DON decomposition (Eq. 11) Zang et al. (2020)

Tref2 25°C the reference temperature for denitrification (Eq. 13) Ma et al. (2022)

Code and data availability. The source code of the
LSM_Nlateral_Off model is available online (https:
//zenodo.org/records/13309551, Ma, 2024). All forcing and
validation data used in this study are publicly available online. The
specific sources for these data can be found in Table 1.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/esd-16-841-2025-supplement.
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