Articles | Volume 16, issue 1
https://doi.org/10.5194/esd-16-215-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-215-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global terrestrial moisture recycling in Shared Socioeconomic Pathways
Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, the Netherlands
Pim Meijer
Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, the Netherlands
National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
Maganizo Kruger Nyasulu
Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Obbe A. Tuinenburg
Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, the Netherlands
Stefan C. Dekker
Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, the Netherlands
Related authors
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal
Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, https://doi.org/10.5194/essd-12-3177-2020, 2020
Short summary
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
Obbe A. Tuinenburg and Arie Staal
Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, https://doi.org/10.5194/hess-24-2419-2020, 2020
Short summary
Short summary
Several models exist to track water through the atmosphere from its evaporation location to the next rain location. These models are typically driven by atmospheric wind and humidity data. Recently, a new version of these driving data sets has become available, with a higher spatial resolution of about 25 km. Here, we test the assumptions of these atmospheric moisture tracking models, given the high-resolution forcing data and find that the vertical mixing assumptions are the most important.
A. Staal and B. M. Flores
Biogeosciences, 12, 5563–5566, https://doi.org/10.5194/bg-12-5563-2015, https://doi.org/10.5194/bg-12-5563-2015, 2015
Short summary
Short summary
Remote sensing studies indicate that tropical forest and savanna can be alternative stable states maintained by a feedback between tree cover and fire. Veenendaal et al. (2015) attempted to refute this hypothesis with an extensive field study of the vegetation structure and soil conditions at forest–savanna transition zones. With a re-analysis of their data and a conceptual model, we show that in fact the results agree with the idea of forest–savanna bistability.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal
Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, https://doi.org/10.5194/essd-12-3177-2020, 2020
Short summary
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
Obbe A. Tuinenburg and Arie Staal
Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, https://doi.org/10.5194/hess-24-2419-2020, 2020
Short summary
Short summary
Several models exist to track water through the atmosphere from its evaporation location to the next rain location. These models are typically driven by atmospheric wind and humidity data. Recently, a new version of these driving data sets has become available, with a higher spatial resolution of about 25 km. Here, we test the assumptions of these atmospheric moisture tracking models, given the high-resolution forcing data and find that the vertical mixing assumptions are the most important.
John O'Connor, Maria J. Santos, Karin T. Rebel, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 23, 3917–3931, https://doi.org/10.5194/hess-23-3917-2019, https://doi.org/10.5194/hess-23-3917-2019, 2019
Short summary
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194, https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage. The presented results provide information needed for predictive modelling of plants as ecological engineers to speed up soil forming processes in the construction of wetlands with soft cohesive sediment.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
Rémon Saaltink, Stefan C. Dekker, Jasper Griffioen, and Martin J. Wassen
Biogeosciences, 13, 4945–4957, https://doi.org/10.5194/bg-13-4945-2016, https://doi.org/10.5194/bg-13-4945-2016, 2016
Short summary
Short summary
We identified biogeochemical plant–soil feedback processes that occur when oxidation, drying and modification by plants alter sediment conditions. Wetland construction in Markermeer (a lake in the Netherlands) is used as a case study. Natural processes will be utilized during and after construction to accelerate ecosystem development. We conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineer.
Stefan C. Dekker, Margriet Groenendijk, Ben B. B. Booth, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, https://doi.org/10.5194/esd-7-525-2016, 2016
Short summary
Short summary
Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901–2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.
Zun Yin, Stefan C. Dekker, Bart J. J. M. van den Hurk, and Henk A. Dijkstra
Biogeosciences, 13, 3343–3357, https://doi.org/10.5194/bg-13-3343-2016, https://doi.org/10.5194/bg-13-3343-2016, 2016
Short summary
Short summary
Bimodality is found in aboveground biomass and mean annual shortwave radiation in West Africa, which is a strong evidence of alternative stable states. The condition with low biomass and low radiation is demonstrated under which ecosystem state can shift between savanna and forest states. Moreover, climatic indicators have different prediction confidences to different land cover types. A new method is proposed to predict potential land cover change with a combination of climatic indicators.
Patrick W. Bogaart, Ype van der Velde, Steve W. Lyon, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 20, 1413–1432, https://doi.org/10.5194/hess-20-1413-2016, https://doi.org/10.5194/hess-20-1413-2016, 2016
Short summary
Short summary
We analyse how stream discharge declines after rain storms. This "recession" behaviour contains information about the capacity of the catchment to hold or release water. Looking at many rivers in Sweden, we were able to link distinct recession regimes to land use and catchment characteristics. Trends in recession behaviour are found to correspond to intensifying agriculture and extensive reforestation. We conclude that both humans and nature reorganizes the soil in order to enhance efficiency.
A. Staal and B. M. Flores
Biogeosciences, 12, 5563–5566, https://doi.org/10.5194/bg-12-5563-2015, https://doi.org/10.5194/bg-12-5563-2015, 2015
Short summary
Short summary
Remote sensing studies indicate that tropical forest and savanna can be alternative stable states maintained by a feedback between tree cover and fire. Veenendaal et al. (2015) attempted to refute this hypothesis with an extensive field study of the vegetation structure and soil conditions at forest–savanna transition zones. With a re-analysis of their data and a conceptual model, we show that in fact the results agree with the idea of forest–savanna bistability.
J. Mao, K. G. J. Nierop, M. Rietkerk, and S. C. Dekker
SOIL, 1, 411–425, https://doi.org/10.5194/soil-1-411-2015, https://doi.org/10.5194/soil-1-411-2015, 2015
Short summary
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
M. Baudena, S. C. Dekker, P. M. van Bodegom, B. Cuesta, S. I. Higgins, V. Lehsten, C. H. Reick, M. Rietkerk, S. Scheiter, Z. Yin, M. A. Zavala, and V. Brovkin
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, https://doi.org/10.5194/bg-12-1833-2015, 2015
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Earth Syst. Dynam., 5, 257–270, https://doi.org/10.5194/esd-5-257-2014, https://doi.org/10.5194/esd-5-257-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, https://doi.org/10.5194/gmd-7-821-2014, 2014
Related subject area
Topics: Climate change | Interactions: Land/atmosphere interactions | Methods: Earth system and climate modeling
The European summer heatwave 2019 – a regional storyline perspective
Intensified future heat extremes linked with increasing ecosystem water limitation
First comprehensive assessment of industrial-era land heat uptake from multiple sources
Detecting the human fingerprint in the summer 2022 western–central European soil drought
Tatiana Klimiuk, Patrick Ludwig, Antonio Sanchez-Benitez, Helge F. Goessling, Peter Braesicke, and Joaquim G. Pinto
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-16, https://doi.org/10.5194/esd-2024-16, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Our study examines potential changes in heatwaves in Central Europe due to global warming, using the 2019 summer heatwave as an example. By producing high-resolution storylines, we offer insights into how future heatwaves might spread, persist longer, and where stronger or weaker temperature increases may occur. This research helps understand regional thermodynamic responses and highlights the importance of local strategies to protect communities from future heat events.
Jasper M. C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and René Orth
Earth Syst. Dynam., 15, 717–734, https://doi.org/10.5194/esd-15-717-2024, https://doi.org/10.5194/esd-15-717-2024, 2024
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation. Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Cited articles
Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R., and AghaKouchak, A.: Biases beyond the mean in CMIP6 extreme precipitation: a global investigation, Earths Future, 9, e2021EF002196, https://doi.org/10.1029/2021EF002196, 2021.
Arias, P. A., Rendón, M. L., Martínez, J. A., and Allan, R. P.: Changes in atmospheric moisture transport over tropical South America: an analysis under a climate change scenario, Clim. Dynam., 61, 4949–4969, https://doi.org/10.1007/s00382-023-06833-4, 2023.
Bagley, J. E., Desai, A. R., Dirmeyer, P. A., and Foley, J. A.: Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets, Environ. Res. Lett., 7, 014009, https://doi.org/10.1088/1748-9326/7/1/014009, 2012.
Baker, J. C. A. and Spracklen, D. V.: Divergent representation of precipitation recycling in the Amazon and the Congo in CMIP6 models, Geophys. Res. Lett., 49, e2021GL095136, https://doi.org/10.1029/2021GL095136, 2022.
Baudena, M., Tuinenburg, O. A., Ferdinand, P. A., and Staal, A.: Effects of land-use change in the Amazon on precipitation are likely underestimated, Glob. Change Biol., 27, 5580–5587, https://doi.org/10.1111/gcb.15810, 2021.
Benedict, I., van Heerwaarden, C. C., van der Ent, R. J., Weerts, A. H., and Hazeleger, W.: Decline in terrestrial moisture sources of the Mississippi river basin in a future climate, J. Hydrometeorol., 21, 299–316, https://doi.org/10.1175/JHM-D-19-0094.1, 2019.
Bochow, N. and Boers, N.: The South American monsoon approaches a critical transition in response to deforestation, Sci. Adv., 9, eadd9973, https://doi.org/10.1126/sciadv.add9973, 2023.
Bosmans, J. H. C., van Beek, L. P. H., Sutanudjaja, E. H., and Bierkens, M. F. P.: Hydrological impacts of global land cover change and human water use, Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, 2017.
Cheng, T. F. and Lu, M.: Global Lagrangian tracking of continental precipitation recycling, footprints, and cascades, J. Climate, 36, 1923–1941, https://doi.org/10.1175/JCLI-D-22-0185.1, 2023.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and Anchukaitis, K. J.: Twenty-first century drought projections in the CMIP6 forcing scenarios, Earths Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461, 2020.
Cui, J., Lian, X., Huntingford, C., Gimeno, L., Wang, T., Ding, J., He, M., Xu, H., Chen, A., Gentine, P., and Piao, S.: Global water availability boosted by vegetation-driven changes in atmospheric moisture transport, Nat. Geosci., 15, 982–988, https://doi.org/10.1038/s41561-022-01061-7, 2022.
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Deng, S., Deng, X., Griscom, B., Li, T., Yuan, W., and Qin, Z.: Can nature help limit warming below 1.5 °C?, Glob. Change Biol., 29, 289–291, https://doi.org/10.1111/gcb.16479, 2023.
Du, Y., Wang, D., Zhu, J., Wang, D., Qi, X., and Cai, J.: Comprehensive assessment of CMIP5 and CMIP6 models in simulating and projecting precipitation over the global land, Int. J. Climatol., 42, 6859–6875, https://doi.org/10.1002/joc.7616, 2022.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fernández-Alvarez, J. C., Pérez-Alarcón, A., Eiras-Barca, J., Rahimi, S., Nieto, R., and Gimeno, L.: Projected changes in atmospheric moisture transport contributions associated with climate warming in the North Atlantic, Nat. Commun., 14, 6476, https://doi.org/10.1038/s41467-023-41915-1, 2023.
Findell, K. L., Keys, P. W., van der Ent, R. J., Lintner, B. R., Berg, A., and Krasting, J. P.: Rising temperatures increase importance of oceanic evaporation as a source for continental precipitation, J. Climate, 32, 7713–7726, https://doi.org/10.1175/JCLI-D-19-0145.1, 2019.
Fisher, R. A., Wieder, W. R., Sanderson, B. M., Koven, C. D., Oleson, K. W., Xu, C., Fisher, J. B., Shi, M., Walker, A. P., and Lawrence, D. M.: Parametric controls on vegetation responses to biogeochemical forcing in the CLM5, J. Adv. Model. Earth Sy., 11, 2879–2895, https://doi.org/10.1029/2019MS001609, 2019.
Franks, P. J., Berry, J. A., Lombardozzi, D. L., and Bonan, G. B.: Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling and global models, Plant Physiol., 174, 583–602, https://doi.org/10.1104/pp.17.00287, 2017.
Franks, P. J., Bonan, G. B., Berry, J. A., Lombardozzi, D. L., Holbrook, N. M., Herold, N., and Oleson, K. W.: Comparing optimal and empirical stomatal conductance models for application in Earth system models, Glob. Change Biol., 24, 5708–5723, https://doi.org/10.1111/gcb.14445, 2018.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi, K.: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Glob. Environ. Change, 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017.
Gimeno, L., Nieto, R., and Sorí, R.: The growing importance of oceanic moisture sources for continental precipitation, Npj Clim. Atmospheric Sci., 3, 27, https://doi.org/10.1038/s41612-020-00133-y, 2020.
Gimeno, L., Eiras-Barca, J., Durán-Quesada, A. M., Dominguez, F., van der Ent, R., Sodemann, H., Sánchez-Murillo, R., Nieto, R., and Kirchner, J. W.: The residence time of water vapour in the atmosphere, Nat. Rev. Earth Environ., 2, 558–569, https://doi.org/10.1038/s43017-021-00181-9, 2021.
Gleeson, T., Wang-Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F., Gerten, D., Fetzer, I., Cornell, S. E., Piemontese, L., Gordon, L., Rockström, J., Oki, T., Sivapalan, M., Wada, Y., Brauman, K. A., Flörke, M., Bierkens, M. F. P., Lehner, B., Keys, P., Kummu, M., Wagener, T., Dadson, S., Troy, T. J., Steffen, W., Falkenmark, M., and Famiglietti, J. S.: Illuminating water cycle modifications and Earth system resilience in the Anthropocene, Water Resour. Res., 56, e2019WR024957, https://doi.org/10.1029/2019WR024957, 2020.
Gordon, L. J., Steffen, W., Jönsson, B. F., Folke, C., Falkenmark, M., and Johannessen, Å.: Human modification of global water vapor flows from the land surface, P. Natl. Acad. Sci. USA, 102, 7612–7617, https://doi.org/10.1073/pnas.0500208102, 2005.
GRDC: Major River Basins of the World/Global Runoff Data Centre, 2nd rev. ext. edn., Federal Institute of Hydrology (BfG), Koblenz, https://grdc.bafg.de/products/basin_layers/major_rivers/ (last access: 23 January 2025), 2020.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021.
Keys, P. W., Wang-Erlandsson, L., and Gordon, L. J.: Revealing invisible water: moisture recycling as an ecosystem service, PloS One, 11, e0151993, https://doi.org/10.1371/journal.pone.0151993, 2016.
Keys, P. W., Wang-Erlandsson, L., and Gordon, L. J.: Megacity precipitationsheds reveal tele-connected water security challenges, PLoS ONE, 13, e0194311, https://doi.org/10.1371/journal.pone.0194311, 2018.
Lai, E. N., Wang-Erlandsson, L., Virkki, V., Porkka, M., and van der Ent, R. J.: Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy, Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, 2023.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., and Barret, K.: IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Li, F., Xiao, J., Chen, J., Ballantyne, A., Jin, K., Li, B., Abraha, M., and John, R.: Global water use efficiency saturation due to increased vapor pressure deficit, Science, 381, 672–677, https://doi.org/10.1126/science.adf5041, 2023a.
Li, Y., Baker, J. C. A., Brando, P. M., Hoffman, F. M., Lawrence, D. M., Morton, D. C., Swann, A. L. S., Uribe, M. del R., and Randerson, J. T.: Future increases in Amazonia water stress from CO2 physiology and deforestation, Nat. Water, 1, 769–777, https://doi.org/10.1038/s44221-023-00128-y, 2023b.
Luo, X., Ge, J., Guo, W., Fan, L., Chen, C., Liu, Y., and Yang, L.: The biophysical impacts of deforestation on precipitation: results from the CMIP6 model intercomparison, J. Climate, 35, 3293–3311, https://doi.org/10.1175/JCLI-D-21-0689.1, 2022.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Nyasulu, M. K., Fetzer, I., Wang-Erlandsson, L., Stenzel, F., Gerten, D., Rockström, J., and Falkenmark, M.: African rainforest moisture contribution to continental agricultural water consumption, Agr. Forest Meteorol., 346, 109867, https://doi.org/10.1016/j.agrformet.2023.109867, 2024.
O'Gorman, P. A. and Muller, C. J.: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations?, Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207, 2010.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068, https://doi.org/10.1126/science.1128845, 2006.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2019.
Porkka, M., Virkki, V., Wang-Erlandsson, L., Gerten, D., Gleeson, T., Mohan, C., Fetzer, I., Jaramillo, F., Staal, A., te Wierik, S., Tobian, A., van der Ent, R., Döll, P., Flörke, M., Gosling, S. N., Hanasaki, N., Satoh, Y., Müller Schmied, H., Wanders, N., Famiglietti, J. S., Rockström, J., and Kummu, M.: Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change, Nat. Water, 2, 262–273, https://doi.org/10.1038/s44221-024-00208-7, 2024.
Posada-Marín, J. A., Arias, P. A., Jaramillo, F., and Salazar, J. F.: Global impacts of El Niño on terrestrial moisture recycling, Geophys. Res. Lett., 50, e2023GL103147, https://doi.org/10.1029/2023GL103147, 2023.
Power, S., Delage, F., Chung, C., Kociuba, G., and Keay, K.: Robust twenty-first-century projections of El Niño and related precipitation variability, Nature, 502, 541–545, https://doi.org/10.1038/nature12580, 2013.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Glob. Environ. Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Sampaio, G., Shimizu, M. H., Guimarães-Júnior, C. A., Alexandre, F., Guatura, M., Cardoso, M., Domingues, T. F., Rammig, A., von Randow, C., Rezende, L. F. C., and Lapola, D. M.: CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon, Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, 2021.
Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., and Hare, W.: Science and policy characteristics of the Paris Agreement temperature goal, Nat. Clim. Change, 6, 827, https://doi.org/10.1038/nclimate3096, 2016.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Skinner, C. B., Poulsen, C. J., Chadwick, R., Diffenbaugh, N. S., and Fiorella, R. P.: The role of plant CO2 physiological forcing in shaping future daily-scale precipitation, J. Climate, 30, 2319–2340, https://doi.org/10.1175/JCLI-D-16-0603.1, 2017.
Smith, C., Baker, J. C. A., and Spracklen, D. V.: Tropical deforestation causes large reductions in observed precipitation, Nature, 615, 270–275, https://doi.org/10.1038/s41586-022-05690-1, 2023.
Spracklen, D. V. and Garcia-Carreras, L.: The impact of Amazonian deforestation on Amazon basin rainfall, Geophys. Res. Lett., 42, 9546–9552, https://doi.org/10.1002/2015GL066063, 2015.
Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L., and Marsham, J.: The effects of tropical vegetation on rainfall, Annu. Rev. Environ. Resour., 43, 193–218, https://doi.org/10.1146/annurev-environ-102017-030136, 2018.
Staal, A., Tuinenburg, O. A., Bosmans, J. H. C., Holmgren, M., van Nes, E. H., Scheffer, M., Zemp, D. C., and Dekker, S. C.: Forest-rainfall cascades buffer against drought across the Amazon, Nat. Clim. Change, 8, 539–543, https://doi.org/10.1038/s41558-018-0177-y, 2018.
Staal, A., Flores, B. M., Aguiar, A. P. D., Bosmans, J. H. C., Fetzer, I., and Tuinenburg, O. A.: Feedback between drought and deforestation in the Amazon, Environ. Res. Lett., 15, 044024, https://doi.org/10.1088/1748-9326/ab738e, 2020a.
Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J. H. C., Dekker, S. C., van Nes, E. H., Rockström, J., and Tuinenburg, O. A.: Hysteresis of tropical forests in the 21st century, Nat. Commun., 11, 4978, https://doi.org/10.1038/s41467-020-18728-7, 2020b.
Staal, A., Koren, G., Tejada, G., and Gatti, L. V.: Moisture origins of the Amazon carbon source region, Environ. Res. Lett., 18, 044027, https://doi.org/10.1088/1748-9326/acc676, 2023.
Staal, A., Theeuwen, J. J. E., Wang-Erlandsson, L., Wunderling, N., and Dekker, S. C.: Targeted rainfall enhancement as an objective of forestation, Glob. Change Biol., 30, e17096, https://doi.org/10.1111/gcb.17096, 2024a.
Staal, A., Meijer, P., Nyasulu, M. K., Tuinenburg, O., and Dekker, S.: Global terrestrial moisture recycling in Shared Socioeconomic Pathways, Zenodo [data set], https://doi.org/10.5281/zenodo.10650579, 2024b.
Staal, A., Meijer, P., Nyasulu, M. K., Tuinenburg, O., and Dekker, S.: UTrack-NorESM2_global_land, Zenodo [code], https://doi.org/10.5281/zenodo.14725870, 2025.
Sterling, S. M., Ducharne, A., and Polcher, J.: The impact of global land-cover change on the terrestrial water cycle, Nat. Clim. Change, 3, 385–390, https://doi.org/10.1038/nclimate1690, 2013.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, B. Am. Meteorol. Soc., 84, 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003.
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020.
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020.
Van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
Van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, 2014.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vizy, E. K., Manoj, H., and Cook, K. H.: Is the climate of the Congo Basin becoming less able to support a tropical forest ecosystem?, J. Climate, 36, 8171–8193, https://doi.org/10.1175/JCLI-D-23-0275.1, 2023.
Wang, J., Pan, F., An, P., Han, G., Jiang, K., Song, Y., Huang, N., Zhang, Z., Ma, S., Chen, X., and Pan, Z.: Atmospheric water vapor transport between ocean and land under climate warming, J. Climate, 36, 5861–5880, https://doi.org/10.1175/JCLI-D-22-0106.1, 2023.
Wang, Z., Han, L., Ding, R., and Li, J.: Evaluation of the performance of CMIP5 and CMIP6 models in simulating the South Pacific Quadrupole–ENSO relationship, Atmospheric Ocean. Sci. Lett., 14, 100057, https://doi.org/10.1016/j.aosl.2021.100057, 2021.
Wu, Y., Miao, C., Slater, L., Fan, X., Chai, Y., and Sorooshian, S.: Hydrological projections under CMIP5 and CMIP6: sources and magnitudes of uncertainty, B. Am. Meteorol. Soc., 105, E59–E74, https://doi.org/10.1175/BAMS-D-23-0104.1, 2024.
Yang, Y., Roderick, M. L., Guo, H., Miralles, D. G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T. R., Tu, Z., Keenan, T. F., Fisher, J. B., Gan, R., Zhang, X., Piao, S., Zhang, B., and Yang, D.: Evapotranspiration on a greening Earth, Nat. Rev. Earth Environ., 4, 626–641, https://doi.org/10.1038/s43017-023-00464-3, 2023.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016.
Short summary
Many areas across the globe rely on upwind land areas for their precipitation supply through terrestrial precipitation recycling. Here we simulate global precipitation recycling in four climate and land-use scenarios until 2100. We find that global terrestrial moisture recycling decreases by 1.5 % with every degree of global warming but with strong regional differences.
Many areas across the globe rely on upwind land areas for their precipitation supply through...
Altmetrics
Final-revised paper
Preprint