Articles | Volume 16, issue 1
https://doi.org/10.5194/esd-16-189-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-16-189-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Pareto effect in tipping social networks: from minority to majority
Jordan P. Everall
CORRESPONDING AUTHOR
Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
Fabian Tschofenig
Department of Environmental Systems Sciences, University of Graz, Graz, Austria
Stanford Graduate School of Business, Stanford University, Stanford, CA, USA
Jonathan F. Donges
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
Ilona M. Otto
Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
Related authors
No articles found.
Max Bechthold, Wolfram Barfuss, André Butz, Jannes Breier, Sara M. Constantino, Jobst Heitzig, Luana Schwarz, Sanam N. Vardag, and Jonathan F. Donges
EGUsphere, https://doi.org/10.5194/egusphere-2024-2924, https://doi.org/10.5194/egusphere-2024-2924, 2024
Short summary
Short summary
Social norms are a major influence on human behaviour. In natural resource use models, norms are often included in a simplistic way leading to "black or white" sustainability outcomes. We find that a dynamic representation of norms, including social groups, determines more nuanced states of the environment in a stylized model of resource use, while also defining the success of attempts to manage the system, suggesting the importance of well representing both in coupled models.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
E. Keith Smith, Marc Wiedermann, Jonathan F. Donges, Jobst Heitzig, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1622, https://doi.org/10.5194/egusphere-2023-1622, 2023
Short summary
Short summary
Social tipping dynamics have received recent attention as a potential mechanism for effective climate actions – yet how such tipping dynamics could unfold remains largely unquantified. We explore how social tipping processes can developed via enabling necessary conditions (exemplified by climate change concern) and increased perceptions of localized impacts (sea-level rise). The likelihood for social tipping varies regionally, mostly along areas with highest exposure to persistent risks.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Steven J. Lade, Jonathan F. Donges, Ingo Fetzer, John M. Anderies, Christian Beer, Sarah E. Cornell, Thomas Gasser, Jon Norberg, Katherine Richardson, Johan Rockström, and Will Steffen
Earth Syst. Dynam., 9, 507–523, https://doi.org/10.5194/esd-9-507-2018, https://doi.org/10.5194/esd-9-507-2018, 2018
Short summary
Short summary
Around half of the carbon that humans emit into the atmosphere each year is taken up on land (by trees) and in the ocean (by absorption). We construct a simple model of carbon uptake that, unlike the complex models that are usually used, can be analysed mathematically. Our results include that changes in atmospheric carbon may affect future carbon uptake more than changes in climate. Our simple model could also study mechanisms that are currently too uncertain for complex models.
Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig
Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, https://doi.org/10.5194/esd-8-977-2017, 2017
Short summary
Short summary
Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Vera Heck, Jonathan F. Donges, and Wolfgang Lucht
Earth Syst. Dynam., 7, 783–796, https://doi.org/10.5194/esd-7-783-2016, https://doi.org/10.5194/esd-7-783-2016, 2016
Short summary
Short summary
We assess the co-evolutionary dynamics of the Earth's carbon cycle and societal interventions through terrestrial carbon dioxide removal (tCDR) with a conceptual model in a planetary boundary context. The focus on one planetary boundary alone may lead to navigating the Earth system out of the safe operating space due to transgression of other boundaries. The success of tCDR depends on the degree of anticipation of climate change, the potential tCDR rate and the underlying emission pathway.
Jonatan F. Siegmund, Marc Wiedermann, Jonathan F. Donges, and Reik V. Donner
Biogeosciences, 13, 5541–5555, https://doi.org/10.5194/bg-13-5541-2016, https://doi.org/10.5194/bg-13-5541-2016, 2016
Short summary
Short summary
In this study we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by using event coincidence analysis. Our study confirms previous findings of experimental studies, highlighting the impact of early spring temperatures on the flowering of the investigated plants. Additionally, the analysis reveals statistically significant indications of an influence of temperature extremes in the fall preceding the flowering.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski
Nonlin. Processes Geophys., 22, 545–570, https://doi.org/10.5194/npg-22-545-2015, https://doi.org/10.5194/npg-22-545-2015, 2015
Short summary
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.
A. Y. Sun, J. Chen, and J. Donges
Nonlin. Processes Geophys., 22, 433–446, https://doi.org/10.5194/npg-22-433-2015, https://doi.org/10.5194/npg-22-433-2015, 2015
Short summary
Short summary
Terrestrial water storage (TWS) plays a key role in global water and energy cycles. This work applies complex climate networks to analyzing spatial patterns in TWS. A comparative analysis is conducted using a remotely sensed (GRACE) and a model-generated TWS data set. Our results reveal hotspots of TWS anomalies around the global land surfaces. Prospects are offered on using network connectivity as constraints to further improve current global land surface models.
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
Related subject area
Topics: Sustainability science | Interactions: Human/Earth system interactions | Methods: Other methods
Cross-system interactions for positive tipping cascades
A global social activation model of enabling conditions for positive social tipping – the role of sea-level rise anticipation and climate change concern
Sibel Eker, Timothy M. Lenton, Tom Powell, Jürgen Scheffran, Steven R. Smith, Deepthi Swamy, and Caroline Zimm
Earth Syst. Dynam., 15, 789–800, https://doi.org/10.5194/esd-15-789-2024, https://doi.org/10.5194/esd-15-789-2024, 2024
Short summary
Short summary
Cascading effects through cross-system interactions are one of the biggest promises of positive tipping points to create rapid climate and sustainability action. Here, we review these in terms of their interactions with sociotechnical systems such as energy, transport, agriculture, society, and policy.
E. Keith Smith, Marc Wiedermann, Jonathan F. Donges, Jobst Heitzig, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1622, https://doi.org/10.5194/egusphere-2023-1622, 2023
Short summary
Short summary
Social tipping dynamics have received recent attention as a potential mechanism for effective climate actions – yet how such tipping dynamics could unfold remains largely unquantified. We explore how social tipping processes can developed via enabling necessary conditions (exemplified by climate change concern) and increased perceptions of localized impacts (sea-level rise). The likelihood for social tipping varies regionally, mostly along areas with highest exposure to persistent risks.
Cited articles
Airoldi, E. M. and Christakis, N. A.: Induction of social contagion for diverse outcomes in structured experiments in isolated villages, Science, 384, eadi5147, https://doi.org/10.1126/science.adi5147, 2024.
Albert, R. and Barabási, A.-L.: Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47–97, https://doi.org/10.1103/RevModPhys.74.47, 2002.
Amato, R., Lacasa, L., Díaz-Guilera, A., and Baronchelli, A.: The dynamics of norm change in the cultural evolution of language, P. Natl. Acad. Sci., 115, 8260–8265, https://doi.org/10.1073/pnas.1721059115, 2018.
Andersson, D., Bratsberg, S., Ringsmuth, A. K., and de Wijn, A. S.: Dynamics of collective action to conserve a large common-pool resource, Sci. Rep., 11, 9208, https://doi.org/10.1038/s41598-021-87109-x, 2021.
Andreoni, J., Nikiforakis, N., and Siegenthaler, S.: Predicting social tipping and norm change in controlled experiments, P. Natl. Acad. Sci. USA, 118, e2014893118, https://doi.org/10.1073/pnas.2014893118, 2021.
Bak-Coleman, J. B., Alfano, M., Barfuss, W., Bergstrom, C. T., Centeno, M. A., Couzin, I. D., Donges, J. F., Galesic, M., Gersick, A. S., Jacquet, J., Kao, A. B., Moran, R. E., Romanczuk, P., Rubenstein, D. I., Tombak, K. J., Bavel, J. J. V., and Weber, E. U.: Stewardship of global collective behavior, P. Natl. Acad. Sci. USA, 118, e2025764118, https://doi.org/10.1073/pnas.2025764118, 2021.
Bakshy, E., Hofman, J. M., Mason, W. A., and Watts, D. J.: Everyone's an influencer: quantifying influence on twitter, in: Proceedings of the fourth ACM international conference on Web search and data mining, 9 September 2011, New York, NY, USA, 65–74, https://doi.org/10.1145/1935826.1935845, 2011.
Barash, V., Cameron, C., and Macy, M.: Critical phenomena in complex contagions, Soc. Netw., 34, 451–461, https://doi.org/10.1016/j.socnet.2012.02.003, 2012.
Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., and Steels, L.: Sharp transition towards shared vocabularies in multi-agent systems, J. Stat. Mech. Theory Exp., 2006, P06014, https://doi.org/10.1088/1742-5468/2006/06/P06014, 2006.
Bastos, M. T., Raimundo, R. L. G., and Travitzki, R.: Gatekeeping Twitter: message diffusion in political hashtags, Media Cult. Soc., 35, 260–270, https://doi.org/10.1177/0163443712467594, 2013.
Bellotti, E., Voros, A., Passah, M., Nongrum, Q. D., Nengnong, C. B., Khongwir, C., van Eijk, A., Kessler, A., Sarkar, R., Carlton, J. M., and Albert, S.: Social network and household exposure explain the use of malaria prevention measures in rural communities of Meghalaya, India, medRxiv [preprint], https://doi.org/10.1101/2023.04.23.23288997, 2023.
Bentley, R. A., Maddison, E. J., Ranner, P. H., Bissell, J., Caiado, C. C. S., Bhatanacharoen, P., Clark, T., Botha, M., Akinbami, F., Hollow, M., Michie, R., Huntley, B., Curtis, S. E., and Garnett, P.: Social tipping points and Earth systems dynamics, Front. Environ. Sci., 2, 35, https://doi.org/10.3389/fenvs.2014.00035, 2014.
Berger, J., Efferson, C., and Vogt, S.: Tipping pro-environmental norm diffusion at scale: opportunities and limitations, Behav. Public Policy, 7, 581–606, https://doi.org/10.1017/bpp.2021.36, 2021.
Bergquist, L. F. and Dinerstein, M.: Competition and Entry in Agricultural Markets: Experimental Evidence from Kenya, Am. Econ. Rev., 110, 3705–3747, https://doi.org/10.1257/aer.20171397, 2020.
Berner, R., Gross, T., Kuehn, C., Kurths, J., and Yanchuk, S.: Adaptive dynamical networks, Phys. Rep., 1031, 1–59, https://doi.org/10.1016/j.physrep.2023.08.001, 2023.
Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D. I., Marlow, C., Settle, J. E., and Fowler, J. H.: A 61-million-person experiment in social influence and political mobilization, Nature, 489, 295–298, https://doi.org/10.1038/nature11421, 2012.
Burns, T. R. and Flam, H.: The Shaping of Social Organization: Social Rule System Theory with Applications, Sage Publications, 456 pp., ISBN 978-0-8039-8027-3, 1987.
Castilla-Rho, J. C., Rojas, R., Andersen, M. S., Holley, C., and Mariethoz, G.: Social tipping points in global groundwater management, Nat. Hum. Behav., 1, 640–649, https://doi.org/10.1038/s41562-017-0181-7, 2017.
Centola, D.: The Spread of Behavior in an Online Social Network Experiment, Science, 329, 1194–1197, https://doi.org/10.1126/science.1185231, 2010.
Centola, D.: An Experimental Study of Homophily in the Adoption of Health Behavior, Science, 334, 1269–1272, https://doi.org/10.1126/science.1207055, 2011.
Centola, D. and Macy, M.: Complex Contagions and the Weakness of Long Ties, Am. J. Sociol., 113, 702–734, https://doi.org/10.1086/521848, 2007.
Centola, D., Becker, J., Brackbill, D., and Baronchelli, A.: Experimental evidence for tipping points in social convention, Science, 360, 1116–1119, https://doi.org/10.1126/science.aas8827, 2018.
Centola, D. M.: Homophily, networks, and critical mass: Solving the start-up problem in large group collective action, Ration. Soc., 25, 3–40, 2013.
Centola, D.: Change: How to Make Big Things Happen, Little Brown, 352 pp., ISBN 978-0-316-45733-0, 2021.
Centola, D. and Baronchelli, A.: The spontaneous emergence of conventions: An experimental study of cultural evolution, P. Natl. Acad. Sci., 112, 1989–1994, https://doi.org/10.1073/pnas.1418838112, 2015.
Chiang, Y.-S.: Birds of Moderately Different Feathers: Bandwagon Dynamics and the Threshold Heterogeneity of Network Neighbors, J. Math. Sociol., 31, 47–69, https://doi.org/10.1080/00222500601013536, 2007.
Christakis, N. A. and Fowler, J. H.: The spread of obesity in a large social network over 32 years, New Engl. J. Med., 357, 370–379, https://doi.org/10.1056/NEJMsa066082, 2007.
Christakis, N. A. and Fowler, J. H.: The Collective Dynamics of Smoking in a Large Social Network, New Engl. J. Med., 358, 2249–2258, https://doi.org/10.1056/NEJMsa0706154, 2008.
Constantino, S. M., Sparkman, G., Kraft-Todd, G. T., Bicchieri, C., Centola, D., Shell-Duncan, B., Vogt, S., and Weber, E. U.: Scaling Up Change: A Critical Review and Practical Guide to Harnessing Social Norms for Climate Action, Psychol. Sci. Publ. Int., 23, 50–97, https://doi.org/10.1177/15291006221105279, 2022.
Dakos, V. and Bascompte, J.: Critical slowing down as early warning for the onset of collapse in mutualistic communities, P. Natl. Acad. Sci. USA, 111, 17546–17551, https://doi.org/10.1073/pnas.1406326111, 2014.
David Tàbara, J., Frantzeskaki, N., Hölscher, K., Pedde, S., Kok, K., Lamperti, F., Christensen, J. H., Jäger, J., and Berry, P.: Positive tipping points in a rapidly warming world, Curr. Opin. Sust., 31, 120–129, https://doi.org/10.1016/j.cosust.2018.01.012, 2018.
De Domenico, M.: More is different in real-world multilayer networks, Nat. Phys., 19, 1247–1262, https://doi.org/10.1038/s41567-023-02132-1, 2023.
Dodds, P. S. and Watts, D. J.: Universal Behavior in a Generalized Model of Contagion, Phys. Rev. Lett., 92, 218701, https://doi.org/10.1103/PhysRevLett.92.218701, 2004.
Donges, J. F., Heitzig, J., Barfuss, W., Wiedermann, M., Kassel, J. A., Kittel, T., Kolb, J. J., Kolster, T., Müller-Hansen, F., Otto, I. M., Zimmerer, K. B., and Lucht, W.: Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework, Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, 2020.
Donges, J. F., Lochner, J. H., Kitzmann, N. H., Heitzig, J., Lehmann, S., Wiedermann, M., and Vollmer, J.: Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study, Eur. Phys. J.-Spec. Top., 230, 3311–3334, https://doi.org/10.1140/epjs/s11734-021-00279-7, 2021.
Dunford, R., Su, Q., and Tamang, E.: The Pareto Principle, Plymouth Stud. Sci., 7, 140–148, https://doi.org/10.24382/swfr-wr17, 2014.
Efferson, C., Vogt, S., and Fehr, E.: The promise and the peril of using social influence to reverse harmful traditions, Nat. Hum. Behav., 4, 55–68, https://doi.org/10.1038/s41562-019-0768-2, 2020.
Ehret, S., Constantino, S. M., Weber, E. U., Efferson, C., and Vogt, S.: Group identities can undermine social tipping after intervention, Nat. Hum. Behav., 6, 1669–1679, https://doi.org/10.1038/s41562-022-01440-5, 2022.
Eker, S., Reese, G., and Obersteiner, M.: Modelling the drivers of a widespread shift to sustainable diets, Nat. Sustain., 2, 725–735, https://doi.org/10.1038/s41893-019-0331-1, 2019.
Everall, J.: Analysis Code and Data for Paper: The Pareto effect in tipping social networks: from minority to majority, Zenodo [code, data set], https://doi.org/10.5281/zenodo.14716597, 2025.
Fahimipour, A. K., Zeng, F., Homer, M., Traulsen, A., Levin, S. A., and Gross, T.: Sharp thresholds limit the benefit of defector avoidance in cooperation on networks, P. Natl. Acad. Sci. USA, 119, e2120120119, https://doi.org/10.1073/pnas.2120120119, 2022.
Farmer, J. D., Hepburn, C., Ives, M. C., Hale, T., Wetzer, T., Mealy, P., Rafaty, R., Srivastav, S., and Way, R.: Sensitive intervention points in the post-carbon transition, Science, 364, 132–134, https://doi.org/10.1126/science.aaw7287, 2019.
Feola, G.: Societal transformation in response to global environmental change: A review of emerging concepts, Ambio, 44, 376–390, https://doi.org/10.1007/s13280-014-0582-z, 2015.
Ferraz de Arruda, G., Petri, G., Rodriguez, P. M., and Moreno, Y.: Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs, Nat. Commun., 14, 1–15, https://doi.org/10.1038/s41467-023-37118-3, 2023.
Fink, C., Schmidt, A., Barash, V., Cameron, C., and Macy, M.: Complex contagions and the diffusion of popular Twitter hashtags in Nigeria, Soc. Netw. Anal. Min., 6, 1, https://doi.org/10.1007/s13278-015-0311-z, 2015.
Fink, C., Schmidt, A., Barash, V., Kelly, J., Cameron, C., and Macy, M.: Investigating the Observability of Complex Contagion in Empirical Social Networks, Proc. Int. AAAI Conf. Web Soc. Media, 10, 121–130, https://doi.org/10.1609/icwsm.v10i1.14751, 2016.
Fowler, J. H. and Christakis, N. A.: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study, BMJ, 337, a2338, https://doi.org/10.1136/bmj.a2338, 2008.
Frei, L., Everall, J., and Ringsmuth, A. K.: Guided rewiring of social networks reduces polarization and accelerates collective action, arXiv [preprint], https://doi.org/10.48550/arXiv.2309.12141, 21 September 2023.
Galam, S. and Cheon, T.: Tipping Points in Opinion Dynamics: A Universal Formula in Five Dimensions, Front. Phys., 8, 566580, https://doi.org/10.3389/fphy.2020.566580, 2020.
Geier, F., Barfuss, W., Wiedermann, M., Kurths, J., and Donges, J. F.: The physics of governance networks: critical transitions in contagion dynamics on multilayer adaptive networks with application to the sustainable use of renewable resources, Eur. Phys. J.-Spec. Top., 228, 2357–2369, https://doi.org/10.1140/epjst/e2019-900120-4, 2019.
Gladwell, M.: The Tipping Point: How Little Things Can Make a Big Difference, Back Bay Books, 280 pp., ISBN 0-316-34662-4, 2001.
Granovetter, M.: Threshold Models of Collective Behavior, Am. J. Sociol., 83, 1420–1443, 1978.
Granovetter, M.: Economic Action and Social Structure: The Problem of Embeddedness, Am. J. Sociol., 91, 481–510, 1985.
Granovetter, M. S.: The Strength of Weak Ties, Am. J. Sociol., 78, 1360–1380, 1973.
Grodzins, M.: Metropolitan Segregation, Sci. Am., 197, 33–41, 1957.
Guilbeault, D. and Centola, D.: Topological measures for identifying and predicting the spread of complex contagions, Nat. Commun., 12, 4430, https://doi.org/10.1038/s41467-021-24704-6, 2021.
Guilbeault, D., Becker, J., and Centola, D.: Complex Contagions: A Decade in Review, in: Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Soc Networks, edited by: Lehmann, S. and Ahn, Y.-Y., Springer International Publishing, Cham, 3–25, https://doi.org/10.1007/978-3-319-77332-2_1, 2018.
Han, L., Lin, Z., Tang, M., Zhou, J., Zou, Y., and Guan, S.: Impact of contact preference on social contagions on complex networks, Phys. Rev. E, 101, 042308, https://doi.org/10.1103/PhysRevE.101.042308, 2020.
Hodas, N. O. and Lerman, K.: The Simple Rules of Social Contagion, Sci. Rep., 4, 4343, https://doi.org/10.1038/srep04343, 2014.
Hodbod, J., Milkoreit, M., Baggio, J., Mathias, J.-D., and Schoon, M.: Principles for a Case Study Approach to Social Tipping Points, in: Positive Tipping Points Towards Sustainability: Understanding the Conditions and Strategies for Fast Decarbonization in Regions, edited by: Tàbara, J. D., Flamos, A., Mangalagiu, D., and Michas, S., Springer International Publishing, Cham, 79–99, https://doi.org/10.1007/978-3-031-50762-5_5, 2024.
Holland, M. M., Bitz, C. M., and Tremblay, B.: Future abrupt reductions in the summer Arctic sea ice, Geophys. Res. Lett., 33, L23503, https://doi.org/10.1029/2006GL028024, 2006.
Holme, P.: Modern temporal network theory: a colloquium, Eur. Phys. J. B, 88, 234, https://doi.org/10.1140/epjb/e2015-60657-4, 2015.
Holme, P. and Rocha, J. C.: Networks of climate change: connecting causes and consequences, Appl. Netw. Sci., 8, 1–20, https://doi.org/10.1007/s41109-023-00536-9, 2023.
Iacopini, I., Petri, G., Baronchelli, A., and Barrat, A.: Group interactions modulate critical mass dynamics in social convention, Commun. Phys., 5, 64, https://doi.org/10.1038/s42005-022-00845-y, 2022.
Janas, M., Nikiforakis, N., and Siegenthaler, S.: Eliciting Thresholds for Interdependent Behavior, NBER Work. Pap., National Bureau of Economic Research, Inc., https://doi.org/10.3386/w32847, August 2024.
Jin, K. and Yu, U.: Reference to Global State and Social Contagion Dynamics, Front. Phys., 9, 684223, https://doi.org/10.3389/fphy.2021.684223, 2021.
Kaaronen, R. O. and Strelkovskii, N.: Cultural Evolution of Sustainable Behaviors: Pro-environmental Tipping Points in an Agent-Based Model, One Earth, 2, 85–97, https://doi.org/10.1016/j.oneear.2020.01.003, 2020.
Karimi, F. and Holme, P.: A Temporal Network Version of Watts's Cascade Model, in: Temporal Networks, edited by: Holme, P. and Saramäki, J., Springer, Berlin, Heidelberg, 315–329, https://doi.org/10.1007/978-3-642-36461-7_16, 2013.
Karsai, M., Kivelä, M., Pan, R. K., Kaski, K., Kertész, J., Barabási, A.-L., and Saramäki, J.: Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, 83, 025102, https://doi.org/10.1103/PhysRevE.83.025102, 2011.
Karsai, M., Iñiguez, G., Kaski, K., and Kertész, J.: Complex contagion process in spreading of online innovation, J. R. Soc. Interf., 11, 20140694, https://doi.org/10.1098/rsif.2014.0694, 2014.
Karsai, M., Iñiguez, G., Kikas, R., Kaski, K., and Kertész, J.: Local cascades induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading, Sci. Rep., 6, 27178, https://doi.org/10.1038/srep27178, 2016.
Kivelä, M., Pan, R. K., Kaski, K., Kertész, J., Saramäki, J., and Karsai, M.: Multiscale analysis of spreading in a large communication network, J. Stat. Mech., 2012, P03005, https://doi.org/10.1088/1742-5468/2012/03/P03005, 2012.
Korkmaz, G., Kuhlman, C. J., Ravi, S. S., and Vega-Redondo, F.: Spreading of social contagions without key players, World Wide Web, 21, 1187–1221, https://doi.org/10.1007/s11280-017-0500-y, 2018.
Krönke, J., Wunderling, N., Winkelmann, R., Staal, A., Stumpf, B., Tuinenburg, O. A., and Donges, J. F.: Dynamics of tipping cascades on complex networks, Phys. Rev. E, 101, 042311, https://doi.org/10.1103/PhysRevE.101.042311, 2020.
Lacopini, L., Petri, G., Baronchelli, A., and Barrat, A.: Group interactions modulate critical mass dynamics in social convention, Commun. Phys., 5, 1–10, https://doi.org/10.1038/s42005-022-00845-y, 2022.
Lade, S. J., Bodin, Ö., Donges, J. F., Kautsky, E. E., Galafassi, D., Olsson, P., and Schlüter, M.: Modelling social-ecological transformations: an adaptive network proposal, arXiv [nlin, preprint], https://doi.org/10.48550/arXiv.1704.06135, 18 April 2017.
Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., and Sapio, A.: Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model, Ecol. Econ., 150, 315–339, https://doi.org/10.1016/j.ecolecon.2018.03.023, 2018.
Lenton, T. M.: Tipping positive change, Philos T Roy Soc B, 375, 20190123, https://doi.org/10.1098/rstb.2019.0123, 2020.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Leo, Y., Fleury, E., Alvarez-Hamelin, J. I., Sarraute, C., and Karsai, M.: Socioeconomic correlations and stratification in social-communication networks, J. Roy. Soc. Interface, 13, 20160598, https://doi.org/10.1098/rsif.2016.0598, 2016.
Leviston, Z. and Uren, H. V.: Overestimating one's “green” behavior: Better-than-average bias may function to reduce perceived personal threat from climate change, J. Soc. Issues, 76, 70–85, https://doi.org/10.1111/josi.12365, 2020.
Martin, R., Schlüter, M., and Blenckner, T.: The importance of transient social dynamics for restoring ecosystems beyond ecological tipping points, P. Natl. Acad. Sci. USA, 117, 2717–2722, https://doi.org/10.1073/pnas.1817154117, 2020.
Milkoreit, M.: Social tipping points everywhere? – Patterns and risks of overuse, Wires Clim. Change, 14, e813, https://doi.org/10.1002/wcc.813, 2023.
Milkoreit, M., Hodbod, J., Baggio, J., Benessaiah, K., Calderón-Contreras, R., Donges, J. F., Mathias, J.-D., Rocha, J. C., Schoon, M., and Werners, S. E.: Defining tipping points for social-ecological systems scholarship – an interdisciplinary literature review, Environ. Res. Lett., 13, 033005, https://doi.org/10.1088/1748-9326/aaaa75, 2018.
Min, B. and Miguel, M. S.: Threshold cascade dynamics on coevolving networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2305.13965, 23 May 2023.
Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., and Heitzig, J.: Towards representing human behavior and decision making in Earth system models – an overview of techniques and approaches, Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, 2017.
Nielsen, K. S., Nicholas, K. A., Creutzig, F., Dietz, T., and Stern, P. C.: The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions, Nat. Energ., 6, 1011–1016, https://doi.org/10.1038/s41560-021-00900-y, 2021.
Nishioka, S. and Hasegawa, T.: Cascading Behavior of an Extended Watts Model on Networks, J. Phys. Soc. Jpn., 91, 124801, https://doi.org/10.7566/JPSJ.91.124801, 2022.
Nyborg, K., Anderies, J. M., Dannenberg, A., Lindahl, T., Schill, C., Schlüter, M., Adger, W. N., Arrow, K. J., Barrett, S., Carpenter, S., Chapin, F. S., Crépin, A.-S., Daily, G., Ehrlich, P., Folke, C., Jager, W., Kautsky, N., Levin, S. A., Madsen, O. J., Polasky, S., Scheffer, M., Walker, B., Weber, E. U., Wilen, J., Xepapadeas, A., and de Zeeuw, A.: Social norms as solutions, Science, 354, 42–43, https://doi.org/10.1126/science.aaf8317, 2016.
Ohtsuki, H., Hauert, C., Lieberman, E., and Nowak, M. A.: A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 502–505, https://doi.org/10.1038/nature04605, 2006.
Okada, I., Okano, N., and Ishii, A.: Spatial opinion dynamics incorporating both positive and negative influence in small-world networks, Front. Phys., 10, 953184, https://doi.org/10.3389/fphy.2022.953184, 2022.
Oliveira, M., Neuhauser, L., and Karimi, F.: Stronger together? The homophily trap in networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2412.20158, 28 December 2024.
Otto, I. M., Wiedermann, M., Cremades, R., Donges, J. F., Auer, C., and Lucht, W.: Human agency in the Anthropocene, Ecol. Econ., 167, 106463, https://doi.org/10.1016/j.ecolecon.2019.106463, 2020a.
Otto, I. M., Donges, J. F., Cremades, R., Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Allerberger, F., McCaffrey, M., Doe, S. S. P., Lenferna, A., Morán, N., Vuuren, D. P. van, and Schellnhuber, H. J.: Social tipping dynamics for stabilizing Earth's climate by 2050, P. Natl. Acad. Sci. USA, 117, 2354–2365, https://doi.org/10.1073/pnas.1900577117, 2020b.
Paluck, E. L. and Shepherd, H.: The salience of social referents: a field experiment on collective norms and harassment behavior in a school social network, J. Pers. Soc. Psychol., 103, 899–915, https://doi.org/10.1037/a0030015, 2012.
Paluck, E. L., Shepherd, H., and Aronow, P. M.: Changing climates of conflict: A social network experiment in 56 schools, P. Natl. Acad. Sci. USA, 113, 566–571, https://doi.org/10.1073/pnas.1514483113, 2016.
Pareto, V.: Manual of Political Economy, edited by: Page, A. N. and Schwier, A. S., A. M. Kelley, New York, 528 pp., ISBN 0-333-13545-8, 1971.
Peattie, K.: Green Consumption: Behavior and Norms, Annu. Rev. Env. Resour., 35, 195–228, https://doi.org/10.1146/annurev-environ-032609-094328, 2010.
Pieters, R., Bijmolt, T., van Raaij, F., and de Kruijk, M.: Consumers' Attributions of Proenvironmental Behavior, Motivation, and Ability to Self and Others, J. Public Policy Mark., 17, 215–225, 1998.
Proekt, A., Banavar, J. R., Maritan, A., and Pfaff, D. W.: Scale invariance in the dynamics of spontaneous behavior, P. Natl. Acad. Sci. USA, 109, 10564–10569, https://doi.org/10.1073/pnas.1206894109, 2012.
Reisinger, D., Tschofenig, F., Adam, R., Kogler, M. L., Füllsack, M., Veider, F., and Jäger, G.: Patterns of stability in complex contagions, J. Comput. Soc. Sci., 7, 1895–1911, https://doi.org/10.1007/s42001-024-00294-3, 2024.
Ritchie, P. D. L., Alkhayuon, H., Cox, P. M., and Wieczorek, S.: Rate-induced tipping in natural and human systems, Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, 2023.
Robb, M.-A. D., John: Agency in Archaeology, Routledge, London, 288 pp., https://doi.org/10.4324/9781315866000, 2014.
Romero, D. M., Meeder, B., and Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter, in: WWW '11, New York, NY, USA, 695–704, https://doi.org/10.1145/1963405.1963503, 2011.
Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J., and Gross, T.: Modeling complex systems with adaptive networks, Comput. Math. Appl., 65, 1645–1664, https://doi.org/10.1016/j.camwa.2012.12.005, 2013.
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M., and Vandermeer, J.: Anticipating Critical Transitions, Science, 338, 344–348, https://doi.org/10.1126/science.1225244, 2012.
Schelling, T. C.: Dynamic models of segregation, J. Math. Sociol., 1, 143–186, https://doi.org/10.1080/0022250X.1971.9989794, 1971.
Schleussner, C.-F., Donges, J. F., Engemann, D. A., and Levermann, A.: Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure, Sci. Rep., 6, 30790, https://doi.org/10.1038/srep30790, 2016.
Schunck, F., Wiedermann, M., Heitzig, J., and Donges, J. F.: A Dynamic Network Model of Societal Complexity and Resilience Inspired by Tainter's Theory of Collapse, Entropy, 26, 98, https://doi.org/10.3390/e26020098, 2024.
Schwarz, N. and Ernst, A.: Agent-based modeling of the diffusion of environmental innovations – An empirical approach, Technol. Forecast. Soc., 76, 497–511, https://doi.org/10.1016/j.techfore.2008.03.024, 2009.
Schwarz, N., Dressler, G., Frank, K., Jager, W., Janssen, M., Müller, B., Schlüter, M., Wijermans, N., and Groeneveld, J.: Formalising theories of human decision-making for agent-based modelling of social-ecological systems: practical lessons learned and ways forward, SESMO, 2, 16340–16340, https://doi.org/10.18174/sesmo.2020a16340, 2020.
Shalizi, C. R. and Thomas, A. C.: Homophily and Contagion Are Generically Confounded in Observational Social Network Studies, Sociol. Method Res., 40, 211–239, https://doi.org/10.1177/0049124111404820, 2011.
Smaldino, P.: Modeling Social Behavior: Mathematical and Agent-Based Models of Social Dynamics and Cultural Evolution, Princeton University Press, 360 pp., ISBN 978-0-691-22414-5, 2023.
Smith, K., Kitzmann, Ni., Milkoreit, M., Winkelmann, R., Crepin, A.-S., Eder, C., Harring, N., Heitzig, J., Katsanidou, A., Lenton, T., Mauelshagen, F., Kelton, M., Otto, I. M., Rezai, A., Scheffran, J., Stadelmann-Steffen, I., van der Ploeg, R., Wunderling, N., and Donges, J. F.: Criticality and critical agency in societal tipping processes towards sustainability, in preparation, 2025.
Statista: Number of vegetarians in Germany from 2016 to 2023, https://www.statista.com/statistics/651008/number-of-vegetarians-in-germany/ (last accessed: 8 January 2025), 2024.
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., and Schellnhuber, H. J.: Trajectories of the Earth System in the Anthropocene, P. Natl. Acad. Sci. USA, 115, 8252–8259, https://doi.org/10.1073/pnas.1810141115, 2018.
Strogatz, S. H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn., CRC Press, Boca Raton, 532 pp., https://doi.org/10.1201/9780429492563, 2019.
Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., and Laurienti, P. J.: The Ubiquity of Small-World Networks, Brain Connect., 1, 367–375, https://doi.org/10.1089/brain.2011.0038, 2011.
Trutnevyte, E., Hirt, L. F., Bauer, N., Cherp, A., Hawkes, A., Edelenbosch, O. Y., Pedde, S., and van Vuuren, D. P.: Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step, One Earth, 1, 423–433, https://doi.org/10.1016/j.oneear.2019.12.002, 2019.
Tschofenig, F., Reisinger, D., Jäger, G., Kogler, M. L., Adam, R., and Füllsack, M.: Stochastic modeling of cascade dynamics: A unified approach for simple and complex contagions across homogeneous and heterogeneous threshold distributions on networks, Phys. Rev. E, 109, 044307, https://doi.org/10.1103/PhysRevE.109.044307, 2024.
Watts, D. J.: A simple model of global cascades on random networks, P. Natl. Acad. Sci. USA, 99, 5766–5771, https://doi.org/10.1073/pnas.082090499, 2002.
Watts, D. J. and Dodds, P. S.: Influentials, Networks, and Public Opinion Formation, J. Consum. Res., 34, 441–458, https://doi.org/10.1086/518527, 2007.
Watts, D. J. and Strogatz, S. H.: Collective dynamics of “small-world” networks, Nature, 393, 440–442, https://doi.org/10.1038/30918, 1998.
Westley, F., Olsson, P., Folke, C., Homer-Dixon, T., Vredenburg, H., Loorbach, D., Thompson, J., Nilsson, M., Lambin, E., Sendzimir, J., Banerjee, B., Galaz, V., and van der Leeuw, S.: Tipping toward sustainability: emerging pathways of transformation, Ambio, 40, 762–780, https://doi.org/10.1007/s13280-011-0186-9, 2011.
Wiedermann, M., Smith, E. K., Heitzig, J., and Donges, J. F.: A network-based microfoundation of Granovetter's threshold model for social tipping, Sci. Rep., 10, 11202, https://doi.org/10.1038/s41598-020-67102-6, 2020.
Winkelmann, R., Donges, J. F., Smith, E. K., Milkoreit, M., Eder, C., Heitzig, J., Katsanidou, A., Wiedermann, M., Wunderling, N., and Lenton, T. M.: Social tipping processes towards climate action: A conceptual framework, Ecol. Econ., 192, 107242, https://doi.org/10.1016/j.ecolecon.2021.107242, 2022.
Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim, C., and Szymanski, B. K.: Social consensus through the influence of committed minorities, Phys. Rev. E, 84, 011130, https://doi.org/10.1103/PhysRevE.84.011130, 2011.
Zhang, Y., Lucas, M., and Battiston, F.: Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes, Nat. Commun., 14, 1605, https://doi.org/10.1038/s41467-023-37190-9, 2023.
Zhu, S.-S., Zhu, X.-Z., Wang, J.-Q., Zhang, Z.-P., and Wang, W.: Social contagions on multiplex networks with heterogeneous population, Phys. Stat. Mech. Its Appl., 516, 105–113, https://doi.org/10.1016/j.physa.2018.10.010, 2019.
Short summary
A social tipping process is a large change in a social group that can be started by few people. Does the 80/20 rule apply here? We see if this is the case for human social groups. We find that, if the social conditions allow, change occurs when around 25 % of people engage. While tipping can happen between 10 % and 43 %, most cases tip by 40 %. However, tipping is not guaranteed: when people are resistant, trusted friend groups and context-appropriate messaging help the process along.
A social tipping process is a large change in a social group that can be started by few people....
Special issue
Altmetrics
Final-revised paper
Preprint