Articles | Volume 16, issue 4
https://doi.org/10.5194/esd-16-1287-2025
https://doi.org/10.5194/esd-16-1287-2025
Research article
 | 
05 Aug 2025
Research article |  | 05 Aug 2025

Physical characterization of the boundary separating safe and unsafe AMOC overshoot behavior

Aurora Faure Ragani and Henk A. Dijkstra

Related authors

Physics of AMOC multistable regime shifts due to freshwater biases in an EMIC
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1221–1235, https://doi.org/10.5194/esd-16-1221-2025,https://doi.org/10.5194/esd-16-1221-2025, 2025
Short summary
Explaining the high skill of reservoir computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025,https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Causal Mechanisms of Subpolar Gyre Variability in CMIP6 Models
Swinda K. J. Falkena, Henk A. Dijkstra, and Anna S. von der Heydt
EGUsphere, https://doi.org/10.48550/arXiv.2408.16541,https://doi.org/10.48550/arXiv.2408.16541, 2025
Short summary
An idealized model for the spatial structure of the eddy-driven Ferrel cell in mid-latitudes
Woosok Moon, Seung Pyo Lee, Elian Vanderborght, Georgy Manucharyan, and Henk Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-1004,https://doi.org/10.5194/egusphere-2025-1004, 2025
Short summary
Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025,https://doi.org/10.5194/os-21-261-2025, 2025
Short summary

Cited articles

Armstrong-McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5°C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. a, b, c
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015rg000493, 2016. a
Bustamante, M., Roy, J., Ospina, D., Achakulwisut, P., Aggarwal, A., Bastos, A., Broadgate, W., Canadell, J. G., Carr, E. R., Chen, D., and et al.: Ten new insights in climate science 2023, Global Sustainability, 7, e19, https://doi.org/10.1017/sus.2023.25, 2023. a
De Niet, A., Wubs, F., van Scheltinga, A. T., and Dijkstra, H. A.: A tailored solver for bifurcation analysis of ocean-climate models, J. Comput. Phys., 227, 654–679, https://doi.org/10.1016/j.jcp.2007.08.006, 2007. a
Den Toom, M., Dijkstra, H. A., Cimatoribus, A. A., and Drijfhout, S. S.: Effect of atmospheric feedbacks on the stability of the Atlantic Meridional Overturning Circulation, J. Climate, 25, 4081–4096, https://doi.org/10.1175/JCLI-D-11-00467.1, 2012. a
Download
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is sensitive to changing surface forcing conditions. Under future greenhouse gas emission reductions, it was shown in a conceptual model that it may be possible to avoid a collapse of the AMOC. Using a detailed global ocean model, we clarify the physics of the collapse and recovery behaviour of the AMOC. The potential to avoid an AMOC collapse is tightly linked to a delicate balance of salt fluxes in the northern North Atlantic.
Share
Altmetrics
Final-revised paper
Preprint