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Abstract. The Atlantic Meridional Overturning Circulation (AMOC) is an important tipping element within
the climate system as it may collapse due to a changing surface buoyancy forcing. Under scenarios of future
greenhouse gas emission reductions, it has been suggested that the AMOC may undergo a safe overshoot. How-
ever, this was based on a rather conceptual model limiting the physical characterization of the boundary between
safe and unsafe AMOC overshoot behavior. Here, using a fully implicit global ocean model, we investigate the
AMOC overshoot behavior under different piecewise linear transient freshwater forcing scenarios. We clarify
the physics of the collapse and recovery behavior of the AMOC and show that the potential for a safe overshoot
is tightly linked to a delicate balance of salt fluxes in the North Atlantic. More specifically, the sign of the time
derivative of the integrated salt content in the northern North Atlantic is identified as an adequate indicator of
the type of AMOC overshoot behavior. The insights gained are relevant for informing climate policy strategies
regarding emission reductions, highlighting the necessity for thoughtful scenarios to prevent an AMOC collapse.

1 Introduction

A key component of the global ocean circulation is the At-
lantic Meridional Overturning Circulation (AMOC), which
plays an important role in shaping the climate of the North-
ern Hemisphere. The AMOC consists of the northward trans-
port of warm surface waters and the southward return flow of
colder deep waters (Srokosz and Bryden, 2015; Buckley and
Marshall, 2016). The AMOC is affected by density differ-
ences arising from heat and freshwater fluxes and has been
identified as a tipping element in the climate system (Lenton
et al., 2008). Models across the full range of complexity sug-
gest that the AMOC could experience a rapid change of state
in response to a gradual change in surface buoyancy forcing
(Dijkstra, 2024), highlighting its susceptibility to significant
shifts under evolving climate conditions.

The major process that can cause a rapid decline in the
present-day AMOC is the salt-advection feedback. If the
AMOC weakens, less salt is transported northwards, de-

creasing the density in the north and further weakening the
AMOC. In addition to the salt transport, an AMOC weaken-
ing also causes a decrease in northward heat transport. Yet,
the restoring timescales of salinity and temperature anoma-
lies (Stommel, 1961) by the atmosphere are different: the at-
mosphere exerts quite a strong control on the sea surface tem-
perature anomalies, but salinity in the ocean does not affect
the freshwater flux. Hence, the positive salt-advection feed-
back can dominate over the negative heat-advection feedback
(Marotzke, 2000).

The point beyond which a tipping element changes state
is called a tipping point and can be characterized by the
global warming level at which it occurs (Armstrong-McKay
et al., 2022). Current climate change affects the forcing of
the AMOC by making surface water warmer and less saline
due to the addition of fresh water from melting ice – mainly
from Greenland – and through increasing precipitation over
the North Atlantic. Both of these forcing changes would
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decrease the meridional buoyancy gradient, weakening the
AMOC (Gierz et al., 2015). The assessments of the tipping
point thresholds have in part led to the societal aspiration to
restrict global warming to low levels such as 2.0 or even
1.5 °C above the pre-industrial period (UNFCCC, 2015).
However, current emission levels and measured warming
rates suggest that keeping the global warming within these
restrictions will be difficult to achieve (Rogelj et al., 2023;
Forster et al., 2024).

Our study is motivated by recent results where it is shown,
using a conceptual box model, that a global warming thresh-
old may be temporarily exceeded without prompting a drastic
change in the AMOC state (Ritchie et al., 2021). We consider
this AMOC overshoot problem using a fully implicit global
ocean model (described in Sect. 2) for which tipping points
can be explicitly determined. This enables a detailed analysis
of the underlying physical mechanisms that govern AMOC
overshoot behavior. In Sect. 3, we first determine the possible
freshwater forcing trajectories that allow a safe overshoot of
the varying tipping point rates of freshwater forcing as well
as freshwater forcing peaks. Next, the analysis of the physics
of the recovery and collapse is presented, where salt balances
are monitored over different regions of the Atlantic basin. In
Sect. 4, a reduced model of the AMOC behavior near the
tipping point is studied to determine the precise boundary in
parameter space separating safe from unsafe overshoot be-
havior. Finally, in Sect. 5, we summarize and discuss the re-
sults.

2 Model and methods

The description of the global ocean model used in this study
is presented in Weijer et al. (2003) and Dijkstra (2007), to
which the reader is referred for full details. The model do-
main represents the global ocean, using continental geometry
as well as bottom topography, with the longitude λ ranging
from 0 to 360° and the latitude θ from 85.5°S to 85.5°N on a
96× 38 grid. The 12 vertical grid levels are non-equidistant,
with the most upper layer having a thickness of 50 m and the
lowest of 1000 m. The model has no sea-ice component, and
the upper ocean is coupled to a simple energy-balance atmo-
spheric model, in which only the heat transport is taken into
account. Both the neglected atmospheric moisture transport
and sea-ice and ocean interactions may affect the results be-
low, but these effects are outside the scope of this study.

The description on how parameterizations for mixing, dif-
fusion and convection is implemented is described in De Niet
et al. (2007), and patterns for the AMOC and other quanti-
ties are shown in Weijer et al. (2003) and Den Toom et al.
(2012). We use exactly the same parameter setting and con-
figuration as in Dijkstra (2007). In the AMOC model hier-
archy (Dijkstra, 2024), this model is located between ideal-
ized multi-basin ocean-only models and EMICs (Earth Sys-
tem Models of Intermediate Complexity). The model is fully

implicit in that it uses a Crank–Nicholson time discretiza-
tion such that at each time step, a large nonlinear algebraic
system is solved with a Newton–Raphson method. The ad-
vantage of this numerical approach is that also steady states
and their linear stability can be determined and hence explicit
bifurcation diagrams can be efficiently computed (Wubs and
Dijkstra, 2023).

The steady-state solutions of the model vs. parameters
are computed as described in Dijkstra and Weijer (2005).
Under Levitus restoring conditions for the surface salin-
ity field, first a steady reference solution is determined for
standard values of the model parameters. From this solu-
tion, the freshwater flux that maintains the Levitus surface
salinity field under steady-state conditions, below referred
to the Levitus flux FLS , is diagnosed. Moreover, this refer-
ence solution will be the starting solution for all the tran-
sient simulations in Sect. 3. Note that the surface integral
of FLS is zero through salt conservation, which holds up to
the accuracy of the Newton–Raphson solver. Next, in ad-
dition to FLS , a freshwater perturbation is prescribed over
a region in the North Atlantic with domain P = {(λ,θ ) ∈
[300°E,336°E]×[54°N,66°N]}. The strength of the pertur-
bation is γAFPS (λ,θ ), where FPS (λ,θ )= 1 in the region P
and zero outside. The value of γA, expressed in Sv (Sverdrup,
1Sv= 106 m3 s−1), controls the amplitude of the freshwater
perturbation.

Thus, the total freshwater forcing prescribed is

FS = F
L
S + γAF

P
S −Q, (1)

where Q is a compensation term determined such that∫
Soa

FS cosθdθdλ= 0, (2)

with Soa being the total ocean–atmosphere surface and the
cosine term arising from integration over a spherical surface.

The meridional overturning stream function 9, expressed
in Sv, is defined as the zonally integrated (from λW to λE)
and vertically accumulated meridional volume transport in
depth and latitude coordinates:

9(θ,z)= r0

0∫
z

λE∫
λW

v(λ,θ,z′)cosθdλdz′, (3)

where r0 = 6.378× 106 m is the radius of the Earth. The
bifurcation diagram (below) will show the maximum value
of 9 below 500 m depth (9A) vs. the control parameter
γA, starting from the reference solution described above for
γA = 0 Sv.

3 Results

The bifurcation diagram of the model is shown as the black
curve in Fig. 1b. The reference solution has an AMOC
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strength of about 11 Sv (smaller than in observations due to
the low resolution of the model; Dijkstra, 2007), and with
increasing γA, the AMOC weakens. This branch of stable
steady states ends at a saddle-node bifurcation, located at
γ̄A = 0.1855 Sv, which will be referred to below as the tip-
ping point. A branch of unstable steady states exists for de-
creasing γA and leads to a second saddle-node bifurcation at
γA = 0.054. With increasing γA, a stable branch of steady
states exists for which the AMOC strength is near zero.
Thus, for a freshwater flux between 0.054 and 0.1855 Sv, the
AMOC is in a bi-stable regime, with a stable upper branch
(representing the present-day AMOC) and a coexisting sta-
ble lower branch (representing the “off” (collapsed) AMOC
state). Beyond the tipping point, only the lower branch ex-
ists. Note that the freshwater transport by the overturning at
the southern boundary has a near-zero near γA = 0.054 (see
Fig. 4 in Dijkstra and van Westen, 2024). This bifurcation
diagram will be the main reference to study the overshoot
behavior of the AMOC where a time-dependent freshwater
forcing perturbation γA = γA(t) (specified in later sections)
will be applied.

3.1 Overshoot trajectories

Figure 1b also shows the AMOC response to two cases of
transient forcing that overshoot the tipping point γ̄A. The
freshwater forcing grows linearly in time as shown in Fig. 1a
where the threshold is denoted by a horizontal line: in one
case (blue curve) the forcing goes beyond the tipping point
after 900 model years. In the other case (red curve), the tip-
ping point is passed after 7400 model years. In Fig. 1b, the
AMOC trajectories of both forcing scenarios initially follow
the stable steady-state branch. Since the forcing keeps in-
creasing beyond the tipping point, the AMOC undergoes a
change of state. The slower forcing (red) causes the AMOC
to stay closer to the steady-state branch, whereas the faster
forcing leads to a larger overshoot, making the AMOC reach
the off state for higher values of the parameter γA.

The AMOC is considered a slow-onset tipping system,
which means that crossing a tipping point threshold does not
always result in an immediate transition as seen in Fig. 1b.
This leaves the possibility that when the freshwater forcing
is reversed, the AMOC may undergo a safe overshoot; i.e., it
does not collapse (Ritchie et al., 2021). To investigate safe
vs. unsafe overshoots of the AMOC, we consider freshwater
forcing scenarios γA(t) as piecewise linear functions:

γA(t)=


m1t 0≤ t < t1,

−m2t +h t1 ≤ t < t2,

−m2t2+h t ≥ t2,

(4)

wherem1 andm2 > 0 and h= (m1+m2)t1 is such that γA is
continuous. Moreover, we chose t2 such that the forcing after
t2 reaches a constant value, set to be half of the value of the

tipping point γ̄A, i.e.,

t2 =−
1
m2

(
γ̄A

2
−h

)
. (5)

For t < t1, the forcing represents a linear growth of the fresh-
water anomaly in the North Atlantic. To have an overshoot
beyond the tipping point, the parameters m1 and t1 will be
chosen such that the maximum value of γA (reached at t = t1)
is above the tipping point γ̄A; hence

γA(t1)=m1t1 =−m2t1+h > γ̄A. (6)

The subsequent linear decay tries to capture in the simplest
way possible the decrease in the freshwater perturbation,
which could be faster or slower depending on the effort of so-
ciety to lower the global emission rates of greenhouse gases.

We investigated three different properties of the freshwater
perturbation applied in the region P that can influence the
safe or unsafe overshoot of the AMOC: the rate of decline
(case A), the rate of increase (case B) and the height of the
peak (case C). To understand the physics of the overshoot
behavior, only case A, shown in Fig. 2, is needed. The results
for the other cases will only be shortly mentioned at the end
of Sect. 3.3.

Case A represents two scenarios differing only in the rate
at which the forcing decreases. The rate m1 corresponds to
6.0× 10−4 Svyr−1, which is slightly smaller than the rate of
meltwater release from Greenland (about 2.0×10−3 Svyr−1

over the period 2002–2021). The two freshwater forcing
trajectories of case A (Fig. 2a) reach the same maximum
value of 0.2384 Sv but have different decrease rates: −1.0×
10−3 Svyr−1 for the blue scenario vs. −5.7× 10−4 Svyr−1

for the (dashed) green scenario. Since both trajectories ex-
ceed the threshold value γ̄A, one would expect the AMOC
to tip to the off state. However, as can be seen in Fig. 2b,
the blue scenario results in a recovery and hence a safe over-
shoot, while the green one does not. In the safe overshoot
scenario, the AMOC spends a shorter time beyond the tip-
ping point (131 years), enabling it to recover. Conversely, in
the unsafe overshoot, the AMOC remains beyond the tipping
point for a longer time (167 years), and the slower decreasing
forcing causes a collapse. In summary, a decrease that is too
slow in the forcing prevents a recovery.

3.2 Salt balances

In order to understand the physics underlying the results pre-
sented in Sect. 3.1, we consider the integral balance of salin-
ity over the Atlantic basin, with meridional boundaries Sθ
located at 35°S in the south and 60°N in the north. The over-
all salinity balance is given by Dijkstra (2007):

8b
=8s
−8a(θs)+8a(θn)−8d(θs)+8d(θn)

+
d
dt

∫
Atl

SdV. (7)
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Figure 1. (a) Two linear freshwater forcing trajectories with different slopes are shown as function of time. (b) The AMOC strength curves
associated with the forcings in (a) are plotted vs. γA in order to be compared to the bifurcation diagram (black curves, with solid (dashed)
representing stable (unstable) steady states). The black dots indicate the two saddle-node bifurcations. The horizontal line in (a) corresponds
to the tipping point γ̄A = 0.1855 Sv as shown by the rightmost dot in panel (b).

Figure 2. Case A, with (a) the freshwater forcing γA(t) and (b) the AMOC strength trajectories. In panel (b) also the bifurcation diagram
of the model is again plotted (black curves, with solid (dashed) representing stable (unstable) steady states). The horizontal line in (a)
corresponds to the tipping point γ̄A = 0.1855 Sv as shown by the rightmost dot in panel (b).

Here 8s, given by

8s
=−

∫
Soa

S0FSr
2
0 cosθdλdθ, (8)

represents the (equivalent) salt flux through the ocean–
atmosphere surface of the basin (Soa), positive (negative)
when evaporation is larger (smaller) than precipitation; S0 =

35 psu indicates the reference salinity. The quantities 8a and
8d are the advective and diffusive salt fluxes through the

boundary Sθ and are given by

8a(θ )=
∫
Sθ

vSr0 cosθdλdz ,

8d(θ )=−
∫
Sθ

KH
∂S

∂θ
cosθdλdz, (9)

where KH is the horizontal diffusivity. The last term on the
right-hand side of Eq. (7) measures the changes in time of
the salt content stored in the Atlantic basin. This term will be
zero for steady states, while it will play an important role in
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transient solutions. Finally, the residual8b is used to monitor
how well the salt balance is closed as in that case it should
be zero. It was shown in Dijkstra and van Westen (2024) that
the salt balance is closed in the steady case, i.e., along the
bifurcation diagram in Fig. 1b.

In the transient situation, we focus first on case A (Fig. 2a
and b), where a higher rate of forcing decline results in a re-
covering AMOC, while a slower decline rate weakens the
AMOC until it collapses. Since both scenarios have forc-
ing trajectories with identical peaks at the same time (355
model years), they behave in the same way during the first
355 years. Due to the different rates at which the forcing de-
creases, we will focus on this phase to characterize the safe
and unsafe overshoots. In Fig. 3a, three main contributions of
the salt balance are considered: the surface flux 8s, the ten-
dency of the integrated salt content, and the net salt flux 8lat

through the lateral boundaries Sθs and Sθn , where θs = 35°S
and θn = 60°N. Here,

8lat
=8(θs)−8(θn), (10)

where 8(θ )=8a(θ )−8d(θ ); 8lat is positive when salt is
transported into the basin. Figure 3b shows the decomposi-
tion of the lateral fluxes into advective and diffusive fluxes at
the northern and southern boundary of the Atlantic Ocean.

While γA increases, the surface salt flux 8s decreases lin-
early (purple curve in Fig. 3a) due to the input of freshwa-
ter in the Atlantic. However, this flux is still positive, which
means that there is a net salt buildup in the Atlantic basin
that needs to be compensated through salt transport out of
the basin. This transport occurs through the lateral bound-
aries, where (note that8lat is negative) salt is transported out
of the basin. Its absolute value is decreasing with increas-
ing γA, and hence less salt is transported out through the
lateral boundaries. However, since the integrated salt con-
tent is decreasing ( d

dt

∫
AtlSdV < 0), the lateral salt outflow

is larger than that needed to compensate the surface salt in-
put. This implies that the lateral salt transport does not adjust
quickly enough to the changing forcing, remaining stronger
than needed for a steady balance. An important contribution
to the lateral fluxes is due to 8a(θs) (red curve in Fig. 3b),
which indicates the salt was transported northwards at the
southern boundary. As 8a(θs) is negative, the salt is being
transported out of the basin. Note that here the flux at the
southern boundary dominantly determines the behavior of
8lat.

At the time when γA starts to decrease, 8s increases in
both forcing scenarios, reflecting that less freshwater enters
the ocean through its surface. At the same time, the dashed
curves and the solid ones in Fig. 3a begin to diverge. When
γA decreases more rapidly (solid curves), the increase in 8s

is faster (solid purple curve). At the same time, 8lat (solid
blue curve) reaches a minimum and then starts to increase
again, indicating that the amount of salt transported out of the
basin is reduced. These two factors make the Atlantic basin
saltier as can be seen by the positive d

dt

∫
AtlSdV (solid green

curve): less freshwater is put in and less salt is transported
out. In the case of collapse (dashed curves), the combina-
tion of freshwater input and salt transport outwards does not
make the term d

dt

∫
AtlSdV positive: the salt flux through the

lateral boundaries remains too strong to balance the slow in-
crease in 8s and hence the salt storage in the Atlantic keeps
decreasing.

To explain the different behavior of the two scenarios in
more detail, two boxes are defined: one in the North Atlantic
and one in the South Atlantic. The northern box spans lati-
tudes from 40 to 60°N and the southern one extends from 15
to 35°S. Both are bounded zonally by the land bordering the
Atlantic. We compute the box-averaged densities ρi , salini-
ties Si and temperatures Ti (i = s,n) by integrating over the
total volume of each box. The location of the southern box
has been motivated by earlier work (Rahmstorf, 1996), show-
ing a linear relation between the AMOC strength and the
meridional density difference. The meridional density dif-
ference 1ρ := ρn− ρs is shown in Fig. 4a together with the
AMOC strength. The density difference behaves in the same
way in the two scenarios up to the point where the fresh-
water forcing reaches its peak. Afterwards, the different de-
crease rates lead to changes in 1ρ. In the collapse case, 1ρ
keeps decreasing, while it has a minimum when the AMOC
recovers after the overshoot. As shown in Fig. 4b,1ρ is well
correlated with the AMOC strength, consistent with other
low-resolution ocean model studies (Rahmstorf, 1996) and
a consequence of the thermal wind balance. In the case of
collapse, the density is plotted vs. the AMOC strength for
the whole time of the simulation, while in the recovery case,
the relation is linear only during the increase in the forcing;
in the period of the forcing decrease the AMOC has a more
complex, time-dependent response (not shown).

We further decompose the density difference contribution
by salinity (1S) and temperature (1T ) meridional differ-
ences in Fig. 4d and c. Note that 1T has a smaller impact
on 1ρ compared to 1S because the thermal expansion coef-

ficient αT = 10−4 C°−1
is smaller than the haline contraction

coefficient αS = 7.6×10−4 psu−1 used in the linear equation
of state. An increasing amount of freshwater is being intro-
duced into the northern region of the Atlantic Ocean, which
decreases the salinity difference (1S) between the northern
and southern boxes until it reaches 0 psu at around 300 model
years. After that point until t = t1 (when the forcing stops
increasing) 1S keeps decreasing, becoming more negative.
The salinity in the north changes more than in the south (not
shown), not only in range (in the north, it spans a range be-
tween 0.65–0.85 psu depending on the scenario while only
a range of around 0.1 psu in the south) but especially in
shape. The main contribution to 1S results from changes
in the northern box. This is not surprising given the north-
ern location of the prescribed freshwater input anomaly γA.
The freshwater anomaly is weakening the AMOC, which re-
sults in a reduced meridional heat transport northward. This

https://doi.org/10.5194/esd-16-1287-2025 Earth Syst. Dynam., 16, 1287–1301, 2025



1292 A. Faure Ragani and H. A. Dijkstra: Physics of AMOC overshoot behavior

Figure 3. (a) Terms in the integrated salt balance and (b) lateral salt fluxes over the Atlantic basin boundaries along the AMOC trajectories
in Fig. 2a and b. In both panels (a) and (b), the solid curves are for the recovery (safe overshoot) scenario and the dashed ones for the collapse
(unsafe overshoot) scenario. The vertical lines mark the points when the forcing changes in time: at model year 355, the forcing reaches its
peak in both scenarios; at the second vertical line (model year 500), the forcing in the safe overshoot scenario stops decreasing; and at the
dashed vertical line (model year 600), the forcing in the unsafe overshoot scenario stops decreasing. In the legend of panel (b), θs = 35°S
and θn = 60°N.

cooling effect in the northern region makes 1T smaller. The
northern temperature spans a range almost 4 times as big as
the one in the south in the safe overshoot scenario and 9 times
as big as in the unsafe overshoot one; hence the main con-
tribution to 1T comes from the northern box. In the safe
overshoot scenario (solid lines), 1T and 1S hit their lowest
value before rising again, eventually stabilizing at a positive
value. Conversely, in the unsafe overshoot scenario, both1S
and1T continue to decline. In the collapsed state, the north-
ern regions become less saline and cooler than the southern
regions.

3.3 Physics of safe/unsafe overshoot

As most density changes occur in the northern box, we ap-
ply the salt balance (Eq. 7) to the northern box that extends
over the Atlantic basin from 40 to 60°N. The values of the
fluxes in the northern region (Fig. 5a) show that, unlike in
the whole Atlantic basin case, there is a net freshwater in-
put (8s < 0) through the surface and a net saline water in-
put through lateral boundaries. When γA starts to decrease,
the response of the northern box reveals the precise mecha-
nism of the AMOC safe/unsafe overshoot. In the safe over-
shoot scenario, a faster decline in freshwater forcing allows
the lateral salt transport to surpass the effect of the freshwa-
ter input. This results in the change in sign of the tendency of
the integrated salt content from negative to positive. Conse-
quently, the northern box experiences an increase in salinity,
reinforcing the AMOC and promoting its recovery. In con-
trast, in the unsafe overshoot scenario, the freshwater forcing
remains dominant over the lateral salt transport, leading to a

persistent net loss in salt storage ( d
dt

∫
northboxSdV < 0). This

results in a further freshening of the northern box and in a
consequent decrease in 1S and 1ρ, which keeps weakening
the AMOC and drives it toward a collapse. A detailed exam-
ination of the lateral fluxes within the northern box, shown
in Fig. 5b, reveals that the advective salt transport through its
southern boundary of this box is the dominant flux. This ad-
vective flux, which transports saline waters northwards, plays
a crucial role in compensating the surface freshwater pertur-
bation and thereby influences the AMOC behavior under dif-
ferent forcing scenarios.

Salt balance computations were similarly performed for
the southern box but the corresponding plots have been omit-
ted, as the salt fluxes in the South Atlantic have a negligible
impact on the AMOC recovery dynamics. In the South At-
lantic, the range of the freshwater anomaly is approximately
an order of magnitude lower – of magnitude about 20 times
less – than that computed in the North Atlantic, making its
influence on the recovery or collapse minimal. Moreover,
the lateral salt fluxes exhibit a smaller range as well, being
roughly 11 times smaller than in the AMOC collapse sce-
nario and 4 times smaller than in the safe overshoot scenario
in comparison to their North Atlantic counterparts. There-
fore, the essence of the mechanism can be found in the inter-
play between lateral salt transport and freshwater input in the
northern box. It is the relatively early overcoming of freshwa-
ter surface flux by lateral salt transport that characterizes the
recovery phase of the AMOC. This is quantitatively reflected
in the shift from a negative to a positive time derivative of
the integrated salt content, a change that signals the key tran-
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Figure 4. Diagnostics of changes in the northern and southern boxes associated with Fig. 2a and b. (a) The meridional density difference
and the AMOC strength are plotted vs. time. (b) The relation between 1ρ and the AMOC strength. Box-averaged density contribution of
(c) meridional salinity (αS1S) and (d) temperature differences (αT1T ). The solid curves are for the safe overshoot scenario and the dashed
ones for the unsafe overshoot scenario. The vertical lines mark the points when the forcing changes.

sition in the dynamics. The Atlantic basin, particularly its
northern regions, begins to retain more salt, thereby restor-
ing the meridional salinity (and density) gradients crucial for
maintaining the AMOC.

The same analysis done for case A was applied to two
other cases (B and C). For case B, two freshwater forcing
trajectories reach the same maximum value of 0.235 Sv but
at different rates. The forcing then decreases linearly at the
same rate in both scenarios. The slower increasing forcing
causes a collapse, while the faster increasing forcing allows
a recovery. As in case A, the AMOC is unable to recover
when it has a more prolonged exposure to forcing levels be-
yond the tipping point. This makes the time spent beyond the
tipping point an important factor that influences whether the
AMOC collapses or recovers, as was also shown in Ritchie
et al. (2021) using a conceptual box model. In case C, both

forcing trajectories have the same rate of increase, but now
they differ in terms of maximum values of γA(t). One peaks
after 350 years, while the other reaches a higher peak above
the threshold after 370 years. They both get to the same fixed
level after 600 years, which means that the rate at which
their decrease is different. The lower peak forcing leads to
a weaker AMOC decrease and a subsequent recovery, while
the higher forcing makes the AMOC tip to the off state. In
both cases, the same mechanism as in case A is responsible
for causing the safe/unsafe overshoot behavior.

4 Mathematical analysis of limiting cases

The aim of this section is to study the transient solutions of
AMOC behavior analytically using a reduced mathematical
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Figure 5. (a) Terms in the integrated salt balance and (b) lateral salt fluxes over the northern box along the AMOC trajectories in Fig. 2a
and b. In both panels (a) and (b), the solid curves are for the recovery case and the dashed ones for the collapse. The vertical lines mark the
points when the forcing changes. In the legend of panel (b), θs = 40°N and θn = 60°N.

model. The dynamics of the AMOC strength, indicated by x,
can be approximated near a saddle-node bifurcation (which
we know exists in the global ocean model used in Sect. 3)
by the following (Li et al., 2019) non-autonomous ordinary
differential equation (ODE):

dx
dτ
=−x2

− f (τ ), (11)

where the forcing is a piecewise linear function:

f (τ )=

{
−α(1− τ ) τ0 < τ < τ1,

β(1− τ )+ k τ > τ1,
(12)

with α,β > 0 and k = (α+β)(τ1− 1) to make the forcing
continuous.

The advantage of considering the above one-dimensional
model is that analytical solutions can be determined. Using
this framework, we will be able to determine a priori the rate
of decline in forcing – given a fixed peak and rate of increase
– that allows the AMOC to achieve a safe overshoot. Finally,
we will compare these analytical findings with the numerical
results obtained from the global ocean model.

4.1 Local form near the saddle-node bifurcation

To be able to compare with the ocean model later in Sect. 4.4,
we need to use the general form of the saddle-node bifurca-
tion

dX
dt
= aX2

+ bX+ c− γ (t), (13)

where γ (t) is defined as in Eq. (4). In order to get the equa-
tion in the form of Eq. (11), a rescaling is needed. We thereby

apply the following change of variables:
x =−attip

(
X+ b

2a

)
,

τ = t
ttip
,

α =−am1t
3
tip , β =−am2t

3
tip,

(14)

with ttip = c
m1
−

b2

4am1
. Rewriting Eq. (13) as

dX
dt
= a

(
X+

b

2a

)2

+

(
c−

b2

4a

)
− γ (t),

we can substitute the new variables and get
for t ∈ [t0, t1]

dx
dτ
=

dx
dt

dt
dτ
= ttip

dx
dt

= ttip
(
−a · ttip

) dX
dt
=−at2tip

dX
dt

=−x2
+α(1− τ ).

For t > t1, similar calculations lead to

dx
dτ
=−x2

−β(1− τ )− k.

In this way, the problem is in the form of Eq. (11).

4.2 Analytical solution

Analytical solutions to Eq. (11) can be found in terms of Airy
functions (Li et al., 2019). We first compute the bifurcation
diagram of the corresponding autonomous system assuming
τ as the bifurcation parameter (instead of time). The steady
states are given by

x±(τ )=±
√
−f (τ ), (15)
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or more explicitly x+1 (τ )=
√
α(1− τ ), x−1 (τ )=

−
√
α(1− τ ), x+2 (τ )=

√
−β(1− τ )− k and x−2 (τ )=

−
√
−β(1− τ )− k. The functions x±i (τ ), i = 1,2 form two

parabolas which represent the bifurcation diagram. When
a full solution of Eq. (11) crosses one of these curves, its
derivative becomes zero, which means that x±i (τ ), i = 1,2
separate regions in the phase plane (t,x) where the derivative
has different signs. Following the same methodology as in
Li et al. (2019), the solution x(τ ) is given in the Appendix.

Figure 6a shows two examples of forcing that differ in the
value of β, and Fig. 6b shows the associated solutions. Con-
tinuous solutions as the one in blue reproduce the recovery of
the AMOC, while the solutions with a vertical asymptote (in
red) are the collapses. The bifurcation diagram for both cases
(treating τ as parameter) is also shown as the thin curves. As
the analytical approximation is tailored for a neighborhood
of a single saddle-node bifurcation, it excludes the off state
of the AMOC. Consequently, the post-collapse behavior can-
not be captured within this analytical framework.

4.3 Conditions for a safe overshoot

Given that the main scenarios analyzed in Sect. 3 are the
ones of case A, we focus here on studying conditions for
a safe overshoot in the case of a fixed value of α. We pick
α = 84 for reasons that will become clear in Sect. 4.4 be-
low. First of all, the solution in the time interval with an in-
creasing forcing (τ ∈ [τ0,τ1]) has a collapse time at τ = τ ∗,
meaning that the solution reaches −∞. The value of τ ∗ de-
pends on the parameter α, and it is given by the asymp-
tote of the pullback attractor, which can be explicitly com-
puted: τ ∗(α)= 1+2.338α−1/3 (Li et al., 2019). This scenario
corresponds to a prolonged increasing forcing that makes
the AMOC collapse before the forcing starts decreasing. To
avoid this kind of unsafe overshoot, we need τ ∗ 6∈ [τ0,τ1],
i.e.,

τ1 < τ
∗(α). (16)

From now on, we make sure that the condition in Eq. (16)
is satisfied and the solution is continuous on the interval
[τ0,τ1]. For α = 84, this means that the forcing must have
its peak before τ = 1.5453.

Solutions for different values of τ1 and β are computed,
and a fraction of those is shown in Fig. 7a and b. For the val-
ues of (τ1,β) for which a collapse happens, the collapse time
τ ∗ is computed (where τ = τ ∗ is the equation of the asymp-
tote). For each value of τ1, Fig. 7c displays the collapse times
τ ∗ as a function of the rate of decline β of the forcing. As an-
ticipated, a smaller value of β corresponds to a smaller τ ∗.
This indicates that as the forcing decreases more rapidly, the
collapse is postponed, and if the decline is sufficiently fast,
the collapse can be entirely avoided.

Finally, for each τ1 we can take the largest value of β, say
β̃, for which the solution exhibits a collapse. For all β < β̃,

the forcing is decreasing in a slower way and hence all the as-
sociated solutions collapse. On the other hand, for all β > β̃,
the solutions recover. Thus, the curve (τ1, β̃(τ1)), plotted in
Fig. 7d for α = 84, divides the parameter space into safe and
unsafe overshoot regions. The value of β̃ decreases as τ1 de-
creases. In fact, given that α is fixed, a smaller τ1 corresponds
to a lower peak of the forcing, which in turn leads to a smaller
decline in the AMOC. This allows for a longer AMOC over-
shoot (hence a slower decrease in the forcing) while still hav-
ing a recovery. The analytic solutions provide a clear picture
of the response of the AMOC to the freshwater forcing tak-
ing into account the rate of the forcing decrease β and time
τ1 when the forcing begins to decrease (in the same way one
could take the peak value of the forcing, as was done in the
analysis of case C in Sect. 3). Hence, within this simple an-
alytical framework, a critical curve has been found defining
stability regions similar to that in the conceptual model used
in Ritchie et al. (2021).

4.4 Connection to the global ocean model: case A

We now compare the results obtained from the simple ODE
in Eq. (11) with the numerical simulations obtained with
the global ocean model for which results are presented in
Sect. 3. A quadratic fit is made near the tipping point in the
bifurcation diagram (Fig. 1b) where 9A is computed as a
function of the bifurcation parameter γA. Hence, the AMOC
strength 9A =X is used as the primary variable in Eq. (13)
and the fit to determine the constants a, b and c yields a =
−0.0060,b = 0.0658 and c = 0.0056. In order to have recov-
ery and collapse simulations while staying as close as possi-
ble to the saddle-node bifurcation, results for four additional
global ocean model simulations (labeled a–d) are shown in
Fig. 8a and b. They all havem1 = 6.1972×10−4 Svyr−1 and
γ (t1)= 0.22 Sv (with t1 = 355 years), while they differ for
the value of m2 = {8.7,3.7,2.3,1.1}× 10−4 Svyr−1.

To be able to compare the simulations to the an-
alytical solutions, we transform the simulation data
9A(t) and the simulation parameters using Eq. (14).
The parameters m1, t1 and m2 translate respectively to
α = 84.061, τ1 = 1.18 (max(f )= f (τ1)= 15.13) and β =
{118.71,49.89,31.58,15.03}.

The transformed AMOC trajectories are plotted vs. time in
Fig. 8c–f (dashed curves) together with the analytical solu-
tion of the ODE in Eq. (11) computed with the same forcing
parameters. The green part (sol A) corresponds to the solu-
tion in the time interval of forcing growth and the red part (sol
B) to the solution in the time interval of forcing decline. Fig-
ure 8c shows that the simulation with the largest β(118.71)
and hence the fastest decrease is the best-approximated sim-
ulation. The smaller β gets, the worse the approximation be-
comes. In Fig. 8d, for instance, the minimum of the analyti-
cal solution is larger (in absolute value) and is reached with a
certain delay compared to the numerical simulation from the
global ocean model. Figure 8e shows an AMOC recovery in
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Figure 6. (a) Piecewise linear forcing that increases for τ < τ1 = 1.8 and decreases for τ > τ1. The rate of decrease is different in the two
cases: β = 10 for the blue curve, β = 8 for the red one and α = 4 for both cases. (b) Analytical solution of Eq. (11) given the forcing in (a).
The blue curve is a safe overshoot and the red one an unsafe one. The parabolas refer to the fixed points for constant τ , following Eq. (15).

the ocean model, whereas the corresponding analytical solu-
tion of the ODE instead exhibits a collapse. In Fig. 8f, both
the numerical simulation and the analytical solution show an
AMOC collapse. However, the simulation spends a longer
time between the on and off state (it reaches the collapsed
state at τ = 2.25), while the analytical solution goes to −∞
much quicker (for τ ∗ = 1.65).

One of the possible reasons why the approximation may
not always work well is that the ODE approximates the be-
havior of the AMOC only locally around the saddle-node bi-
furcation and it is possible that the simulations performed
were not close enough to the tipping point. Another rea-
son could be the choice of 9A as the main variable X. The
state variable in the global ocean model is multi-dimensional,
while the bifurcation diagram used for the quadratic fitting
is just a one-dimensional projection. Although the strength
of the AMOC does exhibit a saddle-node bifurcation, it is
also part of the projection of the state variable onto the
eigenvector associated with this bifurcation. Incorporating
the Lyapunov–Schmidt reduction method or center manifold
reduction method (Guckenheimer and Holmes, 1990) could
help in addressing this issue. These methods reduce the com-
plexity of the multi-dimensional problem by decomposing it
into a simpler, lower-dimensional form while capturing the
essence of the bifurcation behavior. They would allow us to
identify the behavior of the global ocean model near the bi-
furcation point, but its application to this large-dimensional
model is outside the scope of this paper.

5 Summary and discussion

We investigated the behavior of the Atlantic Meridional
Overturning Circulation (AMOC) in response to overshoot

scenarios under freshwater forcing. Our findings are in line
with previous research that has investigated AMOC tipping
behavior and the potential for recovery following temporary
threshold exceedance (Ritchie et al., 2021). Slow-onset tip-
ping elements like the AMOC may exhibit a delayed col-
lapse, allowing for carefully managed overshoot scenarios
that avoid irreversible state transitions. Our results expand
on these studies by identifying the precise physical mecha-
nisms for a safe or unsafe overshoot of the AMOC in a more
detailed global ocean model.

We apply a piecewise linear freshwater forcing that grows
to a maximum above the tipping point and then decreases to-
wards a constant value. Our results confirm that overshoots
can be safe under certain scenarios even if the AMOC ex-
ceeds the tipping point, contributing to the understanding of
transient tipping behavior within the climate system. Simi-
larly to Ritchie et al. (2021), our results show that the AMOC
response is highly sensitive to both the rate at which the
freshwater forcing increases to its peak and then decreases, as
well as the initial strength of the AMOC before the forcing
begins to decline. Specifically, we find that faster declines
in forcing after reaching a peak are more likely to enable
safe overshoot trajectories, allowing the AMOC to eventually
recover. Conversely, prolonged exposure to high freshwater
forcing – which mainly causes the AMOC to be weaker –
significantly increases the risk of a transition to a collapsed
state, which does not recover once the freshwater forcing set-
tles to a constant value.
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Figure 7. (a) Forcing and (b) associated solutions to Eq. (11). The values of the parameters are α = 84, τ1 = 1.22 (in red), τ1 = 1.23 (in
blue) and β ∈ [92,76]. (c) Collapse time τ∗ vs. decline rate β of the forcing f (τ ) for α = 84 and different values of τ1 between 1.14–1.24.
(d) The maximum value of β (β̃) for which the solution collapses vs. the time τ1 at which the forcing reaches its peak. This critical curve
separates the safe and unsafe overshoot regions in the parameter space (τ1, β̃) for α = 84.

The key to understand the different behavior of the AMOC
under different forcings is to be found in the salt fluxes of the
northern North Atlantic region. When the lateral salt fluxes
that transport saline water northward can counterbalance the
freshwater input, making the region effectively saltier, the
AMOC is able to recover; otherwise it is driven toward col-
lapse. This delicate interplay between surface and advective
salt fluxes presents a tangible metric that could serve as a
reliable indicator of the AMOC trajectory towards recovery.
Specifically, the time derivative of the integrated salt con-
tent in the northern region goes through zero and changes
sign when the AMOC is headed toward a recovery. The
North Atlantic starts to receive more saline water, reinstating
a larger meridional salinity difference which directly affects
the meridional density difference that drives the AMOC. Al-
though the global ocean model has a very coarse resolution

and many other major limitations (Weijer et al., 2003; Dijk-
stra, 2007), this mechanism is expected to be robust.

Indeed, this understanding could be useful in guiding
global climate policies to mitigate and avoid the long-term
consequences of an AMOC collapse (Armstrong-McKay
et al., 2022). For instance, one could combine different forc-
ing shapes, rates and peaks to explore a broader range of
AMOC responses. By varying these factors, one could iden-
tify threshold conditions under which the AMOC recovers
or collapses. Testing slower forcing declines in recovery sce-
narios or sharper declines in collapse scenarios may reveal
clear transition zones that could help create a response map
or define a scaling law, with forcing rates and peaks as pa-
rameters, to systematically map the AMOC responses across
various scenarios. Such an approach would extend the strictly
local (to the saddle-node) approach of Ritchie et al. (2019),
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Figure 8. Global ocean model simulations considered for the comparison with the analytical solutions. (a) Forcing scenario and (b) the
associated AMOC trajectories with the corresponding colors. The purple forcing has the slowest rate of decrease, and its AMOC trajectory
shows a collapse; the other simulations show an AMOC recovery. (c–f) Four rescaled AMOC trajectories of the global ocean model (dashed
lines) and the analytical solutions computed with the corresponding forcing parameters.
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who established an inverse-square law between time spent
by the AMOC over the tipping point and amplitude of the
overshoot.

In this context, the analytical approximation in Sect. 4
could serve as an initial step towards refining predictions of
the AMOC responses to different forcing parameters. This
framework opens the way to identify regions of safe/unsafe
overshoot delimited by critical curves within the parameter
space (Li et al., 2019). It could provide a clearer picture of
the AMOC sensitivity to external forcing overshoot utilizing
solely the bifurcation diagram from the global ocean model.
However, it is crucial to acknowledge its limitations in cap-
turing the complex dynamics of the ocean. While the approx-
imation serves as a valuable conceptual tool, at the moment
its simplicity comes at the cost of detailed accuracy. The
model locality and reduced complexity do not account for
any feedback mechanisms, spatial heterogeneities or other
nonlinear processes that are critical in the real-world behav-
ior of the AMOC. Future work could aim to refine this analyt-
ical framework to enhance its accuracy while still maintain-
ing a level of simplicity that allows for broader accessibility
and application in the context of AMOC studies.

To enhance our understanding of the potential for AMOC
recovery in transient overshoot scenarios, future research
could integrate the insights gained from our study into state-
of-the-art climate models. Notably, the CESM model, for
which the AMOC tipping point has been detected through
quasi-equilibrium simulations (van Westen et al., 2024), pro-
vides a promising framework for such investigations. Sim-
ulating controlled freshwater forcings that mimic realistic
overshoot trajectories would involve an increase in freshwa-
ter input faster than those used to identify the AMOC thresh-
old. After having reached a forcing peak beyond the detected
tipping point, the rate of freshwater decrease should be strate-
gically adjusted to explore conditions leading to both recov-
ery and collapse. This approach would allow detailed study
of the salt transport terms in a more detailed model, offering
critical insights into the processes governing AMOC stability
and resilience.

The implications of our findings extend beyond theoreti-
cal interest, offering insights relevant to climate policy. The
urgency to understand and minimize climate tipping risks
has been recognized in international climate policy for the
first time at the 27th Conference of the Parties (COP27).
The Paris Agreement was aiming to limit the global tempera-
ture increase to 1.5 °C above pre-industrial levels (UNFCCC,
2015), but current climate policy scenarios are estimated to
result in 2.6 °C warming above pre-industrial levels (Rogelj
et al., 2023) by the end of this century (with a range of 1.7–
3.0 °C). Even if the global mean temperature was to be sta-
bilized below 1.5 °C in the long term, a temporary overshoot
above 1.5 °C is a clear possibility (Bustamante et al., 2023),
underlining the urgency that potential impacts and associated
risks of such an overshoot need to be assessed.

Finally, the AMOC plays a vital role in regulating North-
ern Hemisphere climate, and a permanent AMOC collapse
would likely have severe impacts on global weather patterns,
potentially leading to altered precipitation and more extreme
climate events (van Westen et al., 2024; Armstrong-McKay
et al., 2022; Meccia et al., 2023). Our study suggests that a
controlled, temporary overshoot in freshwater forcing – anal-
ogous to transient emissions scenarios – could provide poli-
cymakers with a degree of flexibility in carbon emission tar-
gets, provided the decline in forcing is managed to support
AMOC recovery.

Appendix A

To compute the complete analytical solutions, it is recog-
nized that Eq. (11) is a Riccati equation. Hence, it can be
transformed (Li et al., 2019) from a first-order nonlinear
ODE to a second-order linear ODE through the change in
variable x = 1

u
du
dτ . In this way it becomes

du
dτ
=−f (τ )u=−

{
−α(1− τ )u τ0 < τ < τ1,

(β(1− τ )+ k)u τ > τ1.
(A1)

We are interested in the solutions satisfying the initial condi-
tion x(τ0)= x0, and, without loss of generality, we can take
du
dτ = x0 and u(τ0)= 1. The solution to Eq. (A1) can then be
expressed in terms of Airy functions (Ai and Bi).

u(τ )=


[C1Ai(z)+C2Bi(z)]z= 3√α(1−τ )

τ0 < τ < τ1

[K1Ai(w)+K2Bi(w)]w= 3√β(τ−1)−k/β2/3

τ > τ1

(A2)

Rescaling back in terms of x, the solution to Eq. (11) is

x(τ )=



− 3
√
α

[
C1

dAi(z)
dz +C2

dBi(z)
dz

C1Ai(z)+C2Bi(z)

]
z= 3√α(1−τ )

τ0 < τ < τ1,

3
√
β

[
K1

dAi(w)
dw +K2

dBi(w)
dw

K1Ai(w)+K2Bi(w)

]
w= 3√β(τ−1)−k/β2/3

τ > τ1,

(A3)

where the constants are

C1 =

 dBi(z)
dz +

x0
3√α

Bi(z)

Ai(z) dBi(z)
dz −Bi(z)

dAi(z)
dz


z= 3√α(1−τ0)

,

C2 =

 −
x0
3√α

Ai(z)− dAi(z)
dz

Ai(z) dBi(z)
dz −Bi(z) dAi(z)

dz


z= 3√α(1−τ0)

,

and

K1 =

 dBi(z)
dz −

x0
3√β

Bi(z)

Ai(z) dBi(z)
dz −Bi(z)

dAi(z)
dz


w= 3√β(τ1−1)−k/β2/3

,
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K2 =

 x0
3√β

Ai(z)− dAi(z)
dz

Ai(z) dBi(z)
dz −Bi(z) dAi(z)

dz


w= 3√β(τ1−1)−k/β2/3

.
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