Articles | Volume 15, issue 4
https://doi.org/10.5194/esd-15-893-2024
https://doi.org/10.5194/esd-15-893-2024
Research article
 | 
17 Jul 2024
Research article |  | 17 Jul 2024

Variability and predictability of a reduced-order land–atmosphere coupled model

Anupama K. Xavier, Jonathan Demaeyer, and Stéphane Vannitsem

Related authors

Nonlinear causal dependencies as a signature of the complexity of the climate dynamics
Stéphane Vannitsem, X. San Liang, and Carlos A. Pires
EGUsphere, https://doi.org/10.5194/egusphere-2024-3308,https://doi.org/10.5194/egusphere-2024-3308, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Quantitative rainfall analysis of the 2021 mid-July flood event in Belgium
Michel Journée, Edouard Goudenhoofdt, Stéphane Vannitsem, and Laurent Delobbe
Hydrol. Earth Syst. Sci., 27, 3169–3189, https://doi.org/10.5194/hess-27-3169-2023,https://doi.org/10.5194/hess-27-3169-2023, 2023
Short summary
The EUPPBench postprocessing benchmark dataset v1.0
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023,https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
The rate of information transfer as a measure of ocean–atmosphere interactions
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023,https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary

Cited articles

Arbabi, H. and Mezić, I.: Study of dynamics in post-transient flows using Koopman mode decomposition, Phys. Rev. Fluid., 2, 124402, https://doi.org/10.1103/PhysRevFluids.2.124402, 2017. a
Barsugli, J. J. and Battisti, D. S.: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability, J. Atmos. Sci., 55, 477–493, 1998. a
Benzi, R., Hansen, A. R., and Sutera, A.: On stochastic perturbation of simple blocking models, Q. J. Roy. Meteorol. Soc., 110, 393–409, 1984. a
Bishop, C. M. and Nasrabadi, N. M.: Pattern recognition and machine learning, Springer, ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2, 2006. a
Breeden, M. L., Hoover, B. T., Newman, M., and Vimont, D. J.: Optimal North Pacific blocking precursors and their deterministic subseasonal evolution during boreal winter, Mon. Weather Rev., 148, 739–761, 2020. a, b
Download
Short summary
This research focuses on understanding different atmospheric patterns like blocking, zonal, and transition regimes and analyzing their predictability. We used an idealized land–atmosphere coupled model to simulate Earth's atmosphere. Then we identified these blocking, zonal, and transition regimes using Gaussian mixture clustering and studied their predictability using Lyapunov exponents.
Altmetrics
Final-revised paper
Preprint