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Abstract. This study delves into the predictability of atmospheric blocking, zonal, and transition patterns utiliz-
ing a simplified coupled model. This model, implemented in Python, emulates midlatitude atmospheric dynamics
with a two-layer quasi-geostrophic channel atmosphere on a 8 plane, encompassing simplified land effects. Ini-
tially, we comprehensively scrutinize the model’s responses to environmental parameters like solar radiation,
surface friction, and atmosphere—ground heat exchange. Our findings confirm that the model faithfully replicates
real-world Earth-like flow regimes, establishing a robust foundation for further analysis. Subsequently, employ-
ing Gaussian mixture clustering, we successfully delineate distinct blocking, zonal, and transition flow regimes,
unveiling their dependencies on surface friction. To gauge predictability and persistence, we compute the av-
eraged local Lyapunov exponents for each regime. Our investigation uncovers the presence of zonal, blocking,
and transition regimes, particularly under conditions of reduced surface friction. As surface friction increases
further, the system transitions to a state characterized by two blocking regimes and a transition regime. Intrigu-
ingly, periodic behavior emerges under specific surface friction values, returning to patterns observed under low
friction coefficients. A model resolution increase impacts the system in such a way that only two regimes are
then obtained with the clustering: the transition phase disappears and the predictability drops to roughly 2d for
both of the remaining regimes. In accordance with previous research findings, our study underscores the fact
that when all three regimes coexist, zonal patterns exhibit a more extended predictability horizon compared to
blocking patterns. Remarkably, transition patterns exhibit reduced predictability when coexisting with the other
regimes. In addition, within a specified range of surface friction values where two blocking regimes are found, it
is observed that blocked atmospheric situations in the west of the applied topography are marked by instabilities
and reduced predictability in contrast to the blockings appearing on the eastern side of the topography.

hending how climate change affects the low-frequency vari-

Low-frequency variability (LFV) encompasses a wide range
of atmospheric and climate processes, including atmospheric
blockings, heat waves, cold spells, and long-term oscilla-
tions like the Madden—Julian oscillation (MJO), the North
Atlantic Oscillation (NAO), and the El Nifio—Southern Oscil-
lation (ENSO). Despite extensive research, a comprehensive
understanding of the nature of these LFVs remains elusive.
In practical terms, exploiting these LFVs to achieve accurate
extended-range forecasts beyond 2 weeks at midlatitudes re-
mains a formidable challenge. On the climate front, compre-

ability of the atmosphere also remains an area of incomplete
knowledge. Previous works, as reported in Ghil and Robert-
son (2002) and Lucarini and Gritsun (2020), have highlighted
this gap in understanding.

Blocking systems — a notable form of LFV observed in
the atmosphere — can be described as long-lasting, quasi-
stationary flow patterns in the troposphere (Liu, 1994). These
patterns are characterized by a significant meridional flow
component, leading to a disruption or deceleration of the
zonal westerly flow at midlatitudes (Nakamura and Huang,

Published by Copernicus Publications on behalf of the European Geosciences Union.

a|ollJe yoJeasay



894

2018). While the blocking systems persist, strong zonal flows
may simultaneously exist to the north and south of them.
The evolution of blocking systems involves transitions be-
tween more zonal and more meridional flow patterns dur-
ing their onset and decay phases, posing challenges for fore-
cast models (Frederiksen et al., 2004). Moreover, the dy-
namics of blocking systems are complex, involving interac-
tions across different spatial and temporal scales, both inter-
nally within the system and with the surrounding flow envi-
ronment (Shutts, 1983; Lupo and Smith, 1995). Researchers
have highlighted the intricate nature of these dynamics and
the connections between various scales, contributing to the
challenges in understanding and predicting the behavior of
blocking systems. As blocking systems have the potential to
induce weather extreme like heat waves, there is a notable
interest in understanding how the characteristics of these
blocking events might evolve in the future and how such
changes could subsequently impact the occurrence and fea-
tures of surface extreme weather events. The investigation
of these potential changes is of significant importance to as-
sess the risks associated with extreme weather events and to
enhance our understanding of the complex interactions be-
tween blocking patterns and surface weather conditions in a
changing climate context (Kautz et al., 2022).

Even though the concerns above matter, identifying and
evaluating LFVs in GCMs (general circulation models) con-
stitute an computationally expensive process, so in this study
an idealized reduced-order coupled model is used. It is a
climate model “stripped to the bone”, which links theoreti-
cal understanding to the complexity of more realistic mod-
els, made by key ingredients and approximations; this hence
helps us to study a particular phenomenon by tweaking the
parameters affecting them with less computational cost. The
pursuit of simplified models for atmospheric phenomena has
a long history, dating back to Lorenz’s seminal work in the
early 1960s (Lorenz, 1960, 1962, 1963a, b). This approach
recognizes the value of sacrificing some detail in exchange
for a deeper grasp of fundamental physical processes.

Lorenz demonstrated the power of this strategy by lever-
aging Fourier series to distill the barotropic vorticity equa-
tion into three ordinary differential equations (Lorenz, 1960).
These equations, while omitting smaller scales of motion,
yielded valuable insights into atmospheric scenarios such
as flow interactions and current stability. Subsequently, he
developed a simplified geostrophic model using truncated
Fourier—Bessel series (Lorenz, 1962). This eight-equation
model captured baroclinic instability, a critical process in at-
mospheric dynamics, while maintaining key energy relation-
ships. Notably, the model successfully reproduced observed
flow regimes and transitions in rotating fluids, suggesting its
effectiveness in studying large-scale atmospheric behavior.
Lorenz’s 1963 research yielded significant advancements in
our understanding of atmospheric dynamics through two key
publications (Lorenz, 1963a). The first introduced a now-
iconic system of three differential equations, derived from a
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further simplified model for fluid flow. This ground-breaking
work unveiled the concept of sensitive dependence on initial
conditions, a cornerstone of chaos theory.

In the same year, Lorenz explored a separate avenue by in-
vestigating a simplified model for symmetrically heated ro-
tating viscous fluids (Lorenz, 1963b). This work resulted in
a system of 14 ordinary differential equations governed by
two external parameters: the thermal Rossby number and the
Taylor number. Analytical solutions revealed the existence of
purely zonal flow and superimposed steady waves, while nu-
merical integration unveiled a richer tapestry of flow behav-
iors. Oscillatory solutions with periodic shape changes and
irregular non-periodic flow emerged. Interestingly, increas-
ing the Taylor number generally led to greater flow complex-
ity, except at very high values where the model’s truncations
became unrealistic.

Perhaps most intriguing was the coexistence of unstable,
purely zonal, steady-wave, and oscillatory solutions. This
suggests intricate flow dynamics, with transitions between
symmetric and nonsymmetric vacillation occurring indepen-
dently of instability. These findings highlight the ability of
simplified models to unveil complex and nuanced behaviors
in atmospheric dynamics (Shen et al., 2023). Lorenz’s pi-
oneering work in the early 1960s demonstrated the power
of simplified models for understanding atmospheric dynam-
ics. By strategically neglecting certain complexities, he was
able to capture key phenomena like baroclinic instability
and chaos. However, for large-scale atmospheric simulations,
computational efficiency becomes paramount. This is where
qg (quasi-geostrophic) models come in. Qg models priori-
tize large-scale features by making specific approximations,
allowing for rapid simulations and analyses of broad atmo-
spheric circulation patterns. While they may not capture the
intricate details explored by Lorenz’s models, qg models re-
main a workhorse for studying large-scale atmospheric phe-
nomena. Hence the trend continued with Charney and De-
Vore (1979) in which a quasi-geostrophic model, projected
onto Fourier modes for a more efficient and concise repre-
sentation, was developed. It also incorporates an idealized
parameterization closure to account for subgrid-scale pro-
cesses. By imposing in addition a meridional temperature
gradient over a topography, the model becomes a forced dis-
sipative system, which exhibits multiple stable equilibria,
representing distinct atmospheric flow patterns. Charney and
Devore hypothesized that the transitions between these solu-
tions were primarily influenced by small-scale perturbations
or the presence of baroclinic instability within the system.

Charney and Straus (1980) partially confirmed this hy-
pothesis and found that these transitions were indeed the re-
sult of baroclinic instability. Their study sheds light on the
complex interactions between atmospheric flow, orography,
and propagating planetary waves in baroclinic systems. They
discovered that the interactions between atmospheric flow
and orography induces form-drag instability, generating ed-
dies and perturbations and leading to multiple stable equilib-
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ria with distinct flow patterns under consistent forcing con-
ditions.

Charney’s seminal study sparked significant interest in the
low-order spectral model and the theory of multiple flow
equilibria. Zhengxin and Baozhen (1982) and Zhu (1985)
employed a two-layer low-order spectral model, discovering
stable equilibrium states resembling actual blocking, with
zonally asymmetric thermal and topographic forcings and
flow nonlinearity playing critical roles in blocking dynam-
ics. The summarized version of the evolution of numerical
weather prediction and predictability tools is included in Yo-
den (1983a), Yoden (1983b), and Yoden (2007).

Reinhold and Pierrehumbert (1982) and Reinhold and
Pierrehumbert (1985) extended Charney’s model, incorpo-
rating additional synoptic-scale waves, revealing two distinct
weather regime states influenced by wave—wave interactions
causing transitions between equilibrium states.

Cehelsky and Tung (1987) demonstrated that the behav-
ior of a reduced-order model exhibits notable disparities at
higher resolutions, primarily attributed to the inadequate rep-
resentation of energy upscaling and vorticity downscaling
pathways. They coined this phenomenon “spurious chaos”,
denoting the emergence of irregular dynamics that are not
genuinely representative of the underlying physical pro-
cesses. Although this is a valid point, high-resolution models
are usually hard to analyze in detail. There is therefore a need
to first investigate the reduced coupled model in order to get
qualitative conclusions on a problem at hand. We started this
journey by using a reduced-order land—atmospheric model to
investigate the impact of coupling between the land and the
atmosphere on LFV.

Legras and Ghil (1985) employed a higher-order
barotropic spectral spherical model to investigate block-
ing and zonal flow regimes dynamics, suggesting that their
model displayed properties akin to an index cycle, and later
stochastic forcing was introduced to Charney’s deterministic
model, leading to transitions between high- and low-index
states (Benzi et al., 1984; Egger, 1981; Sura, 2002). The
impact of stochastic forcing on the stability of atmospheric
regimes was also recently considered in a highly truncated
barotropic model by Dorrington and Palmer (2023), where
they provide a mechanism to explain the increased persis-
tence of blocking due to the noise in such simple models.

Legras and Ghil (1985) also discussed the realistic exis-
tence of blocked and zonal flow regimes which are obtained
as unstable stationary solutions due to the barotropic influ-
ence of the LFVs in the atmosphere. More persistent zonal
flows are also identified on several occasions, which seems
to be a deviation from the earlier studies. Later the stability
studies by Weeks et al. (1997) recreating zonal and blocked
regimes in an experimental annulus setup further substanti-
ated the findings of Legras and Ghil (1985).

Schubert and Lucarini (2016)’s numerical investigation
employing a qg model revealed a counterintuitive finding
that during blocking events, the global growth rates of the
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fastest-growing covariant Lyapunov vectors (CLVs) are sig-
nificantly higher, indicating stronger instability compared to
typical zonal conditions. The difficulty in predicting the spe-
cific timing of blocking onset and decay further contributes
to the observed instability behavior, aligning with the Kwas-
niok (2019) findings associating anomalously high values of
the largest finite-time Lyapunov exponents with blocked at-
mospheric flows.

Lucarini and Gritsun (2020) demonstrated that blocking
phenomena exhibit higher instability compared to typical at-
mospheric conditions, irrespective of whether they occur in
the Atlantic, in the Pacific, or globally. This analysis uti-
lized the simplified atmospheric model proposed by Mar-
shall and Molteni (1993) and assessed stability based on
unstable periodic orbits (UPOs). Importantly, this research
dispelled the misconception that the increased stability of
zonal flows solely resulted from the barotropic nature of the
model in the study of Legras and Ghil (1985) and Weeks
et al. (1997). Consistent results were obtained by Faranda
et al. (2016, 2017), utilizing extreme value theory for dy-
namical systems, which identified blocking regimes with un-
stable fixed points in a heavily reduced phase space. Their
findings indicated that blockings exhibit higher instability in
the circulation, linked to an increased effective dimensional-
ity of the system. This agreement with Lucarini and Gritsun
(2020) study further supports the notion that blocking events
display stronger turbulence and instability, challenging con-
ventional expectations.

Here we aim to extensively investigate the predictability
of blocking, zonal, and transition regimes utilizing backward
Lyapunov exponents (BLVs) in the context of a recently de-
veloped reduced-order land—atmosphere model, providing a
more comprehensive understanding of the system’s behavior
and regime predictability.

The classic Charney’s model lacks feedback from atmo-
spheric flow to the artificially specified “thermal forcing”,
leading to potential unrealistic effects on large-scale atmo-
spheric motions. To address this limitation, a new land—
atmospheric coupled model is proposed in Li et al. (2018),
which incorporates an energy balance scheme to allow at-
mospheric motions to influence the land temperature distri-
bution and vice versa. By considering horizontally inhomo-
geneous radiative input fields as the driving force for land—
atmosphere dynamics, this coupled model offers a more real-
istic representation of the interactions between the land and
the atmosphere. The model bears resemblance to the low-
order coupled ocean—atmosphere model proposed by Vannit-
sem et al. (2015), but with a heat bath featuring the land and
an idealized topography.

Prior to conducting the investigation on the predictabil-
ity of blocking, zonal, and transition regimes using back-
ward Lyapunov exponents (BLVs), we performed a charac-
terization of the sensitivity of the quasi-geostrophic land-
atmosphere coupled model embedded in the ggs framework
(Demaeyer et al., 2020) with respect to various environmen-

Earth Syst. Dynam., 15, 893-912, 2024




896

tal parameters that are essential for the functioning of the
atmosphere.

The structure of the paper is as follows. Section 2 in-
troduces the model, outlining its structure, main properties,
and the parameters employed in the study. Additionally, this
section includes a discussion on the stability properties of
the system and temporal evolution of the modes (barotropic
stream function, baroclinic streamfunction, and ground tem-
perature). In Sect. 3, the methodology used for the investi-
gation is explained. Section 4 presents the stability and the
Lyapunov properties of the model corresponding to various
environmental factors, and in Sect. 5, predictability proper-
ties of different weather regimes are discussed. Effects of the
model resolution are presented in Sect. 6 and the conclusions
drawn from the research are provided in Sect. 7, along with
future perspectives for further studies.

2 Land-atmosphere coupled model

2.1 Model characteristics

ggs is a Python framework in which several reduced-order
climate models are implemented for midlatitudes (Demaeyer
et al., 2020). It models the dynamics of a two-layer quasi-
geostrophic (qg) channel atmosphere on a 8 plane, coupled
to a simple surface component that could be land or ocean.
In the current study, we are using the quasi-geostrophic land—
atmosphere coupled model version (Li et al., 2018).

The atmospheric part of the model is represented as a two-
layered, quasi-geostrophic flow defined on a 8 plane within
the zonal walls y =0 and 7 L (Reinhold and Pierrehumbert,
1982). The thermodynamic equations of the baroclinic at-
mosphere include the energy exchanges between land, at-
mosphere, and space similar to the radiative and heat flux
scheme provided in Barsugli and Battisti (1998). The cou-
pling of the atmospheric components with the ground is con-
stituted by the surface friction and the radiative and heat ex-
changes between the atmosphere and the ground. As usual
in such types of models, a channel atmosphere is considered
with no-flux boundary conditions on the northern and south-
ern borders and periodic boundary conditions on the eastern
and western border.

The equations governing the time evolution of the
barotropic and baroclinic streamfunction of the atmospheric
are as follows:

0 2 2 2
o (VR) + I, V) + 60, V26
T W
2 x

k,
= —g’vzm—ea), (1)
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where w is the vertical velocity of the system. v, is the
barotropic streamfunction and 8, is the baroclinic stream-
function of the atmosphere. The constants k; and &/, multiply
the surface friction term and the internal friction between lay-
ers, respectively. The temperature equations of the baroclinic
atmosphere and ground are

0
Va (—a+J(wa,T>—aw1’;

a1 ) =—-MT, - Tg)

+ €,0B Tg4 —2€,08 Ta4
+ Ra, 3

0T, 4 4
Ye o, —MTy — To) —oBTy +€0BT, + Ry, 4
where T, and T, are the ground and atmospheric temperature,
respectively. o is the static stability with p as the pressure. R
is the gas constant for dry air. y, is the heat capacity of the at-
mosphere for a 1000 hPa deep column, whereas y4 is the heat
capacity of the active layer of the land for a mean thickness
of 10m (Monin, 1986). X is the heat transfer coefficient be-
tween the land and atmosphere. op is the Stefan—Boltzmann
constant and €, is the longwave emissivity of the atmosphere.
R, is the shortwave solar radiation directly absorbed by the
atmosphere, whereas Ry is the shortwave solar radiation ab-
sorbed by the land The hydrostatic relation in pressure coor-
dinates %‘D =1 where the geopotential height ' = fyy!
and the 1deal gas relation p = p,RT,, allows one to write
the spatially dependent atmospheric temperature anomaly
0T, = %, with 6, as the baroclinic streamfunction. This
can be used to eliminate the vertical velocity w. This changes
the independent dynamical field to the streamfunction field
Ya and the spatially dependent temperatures 67, and 7.
The dimensional meridional differential shortwave solar ra-
diation absorbed by the land and the atmosphere is given
by §Rg = \/_Cg cos " and §R, = v/2C, cos , respectively.
Hence we decide to pr0V1de Ca=0.4C. The Vanable Cg is
a dimensional parameter, which is an indicator of the merid-
ional difference in solar heating absorbed by the land be-
tween the walls, and it is the crucial parameter in our land-
atmosphere coupled model. As in Vannitsem et al. (2015)
and De Cruz et al. (2016), quartic terms of the temperature
equations are linearized. Upon nondimensionalization, the
qgs framework represents the above equations as ordinary
differential equations by projecting them onto a set of basis
functions, a procedure which is also known as Galerkin ex-
pansion. We investigate the (2,2) resolution configuration of
the model for the current study, which means that basis func-
tions up to wavenumber 2 in each coordinate of the model are
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used. Consequently, the following list of 10 basis functions
was used for the study.

Fi(x,y) =~2cos(y)
F>(x,y) =2cos(nx) sin(y)
F3(x,y) =2sin(nx) sin(y)
Fy(x,y) =~/2cos(2y)
Fs(x,y) =2cos(nx)sin(2y) (5)
Fe(x,y) =2sin(nx)sin(2y)
F7(x,y) =2cos(2nx)sin(y)
Fg(x,y) =2sin(2nx)sin(y)
Fo(x,y) =2cos(2nx)sin(2y)
Fio(x,y) =2sin(2nx)sin(2y)

Each basis function represents corresponding spatial pat-
terns. Therefore this configuration yields a set of 30 vari-
ables, including 10 barotropic variables, 10 baroclinic vari-
ables, and 10 ground temperature variables. Note that
as explained at https://qgs.readthedocs.io/en/ (last access:
19 June 2023), the basis functions of the model can be easily
altered. In the context of this model, the instability proper-
ties, i.e., the Lyapunov vectors, affect all the spatial modes
at once and therefore characterize the spatiotemporal chaotic
evolution of small perturbations. The approach adopted here
is similar to the one used, for instance, in Vannitsem and
Nicolis (1997).

2.2 Model parameters

Even though the model that we are using is a highly truncated
spectral model, its comparability to the original atmosphere
and ground coupling is of great importance. Simulations pro-
duced by the model will be more meaningful if it character-
izes Earth-like properties. This can be obtained by tweaking
and tuning the model parameters. In the present scenario, the
parameters used are derived from Reinhold and Pierrehum-
bert (1982), where they specifically estimated realistic pa-
rameter ranges that result in midlatitude terrestrial flow char-
acteristics and regimes. The typical dimensional parameter
values used for this study are displayed in Table 1.

2.3 Model trajectories and mean fields

Figure 1 displays the time evolution of the first barotropic
(¥a,1) and baroclinic (6,,1) streamfunction modes of the at-
mosphere and the ground temperature (7g 1) for about 10
years starting after 10000 d of transient integration. Fluctu-
ations are more erratic in the atmospheric part, which de-
notes its key role in the dynamics of the system. The variable
representing the land component of the system is compara-
tively slower and less erratic. This difference suggests that
the land component has a longer typical timescale than the
atmosphere in this system.

Figure 2a emphasizes the observation above, where the
autocorrelation of the first barotropic atmospheric mode and
the first ground temperature mode for Cg = 300 Wm~2 and
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kg = 0.085 are displayed. These, evaluated on a time series
of 10000d, helps us estimate the memory loss of the vari-
ables.

Indeed, the typical timescale of the processes at hand can
be evaluated by the e-folding time, which is the time beyond
which the correlation has decreased by 1/e. As expected the
e-folding time of the atmospheric part is approximately 1.9 d,
which is comparatively lower than that of the land part (=
7.6 d), indicating that the system is a multiscale model with a
typical timescale ratio of 10 for the specific parameter values
considered.

Figure 2b depicts the power spectra of modes v, 1 and
T;,1 calculated by the Fourier transformation of the autocor-
relation function again using time series of 10 000 d. The at-
mospheric mode has a flat spectrum for lower frequencies
and decays rapidly for higher frequencies. The spectrum for
the ground mode initially follows the path of the atmosphere
(lower frequencies up to 0.001) but starts to decay earlier,
which indicates more structured variabilities at lower fre-
quencies than the atmosphere. The existence of a substantial
continuous part in the spectrum is an indication of the com-
plexity of the deterministic dynamics in time and suggests
the presence of chaotic dynamics (Arbabi and Mezi¢, 2017;
Mezié, 2020).

3 Methodology

The objective of this research — besides introducing the ba-
sic equations as well as energy balance scheme and its sen-
sitivity — is to explore the predictability of blocking and
zonal weather regimes. By analyzing the peculiarities and the
patterns of the land—atmospheric coupled model, the study
concludes that, when utilizing the parameters described in
Sect. 2.2, the system shows a qualitatively similar behavior
as the large-scale actual atmosphere at midlatitudes (exam-
ples are illustrated in Appendix B). Moreover, varying the
surface friction term, kg, within the range of 0.06 to 0.12
yields numerous instances of realistic flow regimes, includ-
ing blocking, zonal, and transition phases between these two
states. To isolate these flow regimes, a machine learning al-
gorithm called Gaussian mixture clustering (GMC) is em-
ployed, which is described in Appendix A. After classify-
ing the data, the average geopotential height at 500 hPa of
each cluster is calculated to identify different flow regimes.
Through experimentation encompassing two to six clusters,
discernible flow regimes emerged for two and three clusters,
showcasing significant distinctions. However, as the cluster
count reached four, we noted convergence between two clus-
ters, leading to identical structures and flow patterns. This
trend persisted with additional cluster increments. Hence, we
inferred that the attractor attained optimal clustering with ev-
ident and nearly uniform data point distribution when em-
ploying three clusters. Each flow regime is equally important
due to its presence in the actual atmosphere. The cluster con-
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Table 1. Typical values of the model used for the study.

Parameter  Value Parameter  Value

a 6371 km oB 5.67x 1078 Wm2K*
L 5000 km Ya 1.0 x 107 Jm—2K !

H 8.5km Y 1.6 x 107 Jm~2K~!

bo 50°N A 10Wm2K™!

n 1.3 fo 0.0001032 51

€ 0.76 R 287.058 Jkg~ ' K1

kq 1.2384 x 1075571 K, 2.068 x 10765~

o 2.158 x 107 m2s~2pa—2

Values of A,n, and k; are varied beyond the displayed value to study the model sensitivity.

0.101 0.33 — To1
0.08 1 0.32
n ﬂm 7]
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© ©
> >
© ©
3 3030
= 0.04 =
0.29
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Figure 1. Temporal evolution of the barotropic (1/,,1) and baroclinic (6,,1) atmospheric streamfunction and the ground temperature (7 1)
for Cg = 300 Wm~2 and k; = 0.085.

taining the lowest fraction of points in percentage is desig- dictability properties of zonal, blocking, and transition flow

nated as the transition regime. The predictability horizon of regimes using the Lyapunov exponents are investigated.

each regime is evaluated by computing the inverse of the av-

erage largest local Lyapunov exponents of the clusters, which

are calculated at each point of the attractor before clustering.

Although the attractor exhibits multiple positive Lyapunov 4.1 Stability properties of the model

exponents, our investigation focused solely on the first expo-

nent, as it governs the dynamics of the error and is therefore  Stability properties of the land—atmosphere coupled model at

considered the most influential. their equilibrium states are well depicted in Li et al. (2018).
They also defined high-index equilibria and low-index equi-
libria based on the value of the streamfunction in the upper-
and lower-atmospheric layer when the model solutions are

4 Regime stability and Lyapunov properties of the equilibrium states. Even though the stability of the model’s

low-order land—-atmospheric coupled model equilibrium states is interesting and insightful, the actual at-

mosphere displays time-dependent solutions. Moreover, real-

The instability properties of different flow regimes and their istic atmospheric models are chaotic and acutely sensitive to

dependence with respect to important parameters are investi- the initial conditions. Hence in this section, we investigated
gated as follows: the first part explores the sensitivity of the the stability properties of the land—atmosphere model when
model to essential parameters which play a key role in struc- its behavior is similar to Earth-like situations with erratic dy-
turing the output of the system. In the second part, the pre- namics.
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Figure 2. (a) Autocorrelation of the barotropic (,,1) atmospheric streamfunction and the ground temperature (7g,1) for Cg = 300 Wm—2

and kg = 0.085. (b) Power spectrum of the same variables.

Chaotic dynamical systems which exhibit sensitivity to the
initial conditions can be qualitatively analyzed by computing
Lyapunov exponents and vectors.

4.2 Theory

Sensitivity to initial conditions is usually estimated using
Lyapunov exponents. Let us consider an initial state, x(#,) =
Xx,: a small perturbation §x, is added to it, which eventually
produces a completely different trajectory. The dynamics of
the error growth of the system can be linearized provided the
perturbation is infinitesimally small as

ds 0

dox _Of 5y ©)
de 90X | ()

and its solution is

dx(t) = M(z, x(1,))5x(25), @)

where M is known as the resolvent or propagator matrix. The
Euclidean norm of the error can be computed as

E, = [8x()]> = 8x() 8x (1)

E; = 8x(1,) T M(t, x(1,) M(1, x(16))8x (1), (®)
hence indicating that the error growth is provided by the
eigenvalues of MM, where M7 denotes the transpose of
the resolvent matrix M. By the multiplicative ergodic theo-
rem of Oseledec (Eckmann and Ruelle, 1985; Kuptsov and
Parlitz, 2012), a double limit is considered with perturbation
amplitude going to 0 and time going to infinity. The loga-
rithm of the eigenvalues of matrix (M7 M)?(~%) within these
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limits, which are known as Lyapunov exponents, quantifies
the divergence of the initially close trajectories. The com-
plete set of Lyapunov exponents that are usually represented
in decreasing order constitutes the Lyapunov spectrum. Dif-
ferent types of Lyapunov vectors exist based on the method
of calculation like forward Lyapunov vectors, backward Lya-
punov vectors, and covariant Lyapunov vectors, whose prop-
erties are described in detail in Kuptsov and Parlitz (2012)
and Legras and Vautard (1996).

In the current study, we are using backward Lyapunov vec-
tors (BLVs), which are obtained by considering the eigenval-
ues of the matrix (M7 M)2(—%) by taking initial state 7, —
—oo. Several numerical techniques exist for the calculation
of the Lyapunov exponents. The most common method is
using Gram—Schmidt orthonormalization (Shimada and Na-
gashima, 1979; Parker and Chua, 2012): a set of orthonormal
random vectors are propagated in the tangent space of the tra-
jectory, according to Eq. (6), frequently re-orthonormalizing
this basis to avoid the collapse of all the vectors towards the
most unstable direction which is associated with the largest
Lyapunov exponent. After a transient, these vectors provide
the BLVs and concurrently the sought Lyapunov exponents.
As mentioned in Sect. 2.1, Lyapunov exponents computed
here consider both spatial and temporal chaos. The complete
set of these vectors give the full picture of the instability of
the trajectory in phase space.

4.3 Lyapunov spectra and averaged variance of the
model

Figure 3 displays the Lyapunov spectrum of the land-
atmosphere coupled model when Cg = 300 Wm~2 and kg =
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0.085. All other parameters are provided in Table 1. The sys-
tem has 3 positive, 1 zero, and 26 negative Lyapunov ex-
ponents. Similar to the ocean—atmospheric coupled model
(Vannitsem et al., 2015; Vannitsem and Lucarini, 2016; Van-
nitsem, 2017), the spectrum contains a set of Lyapunov ex-
ponents forming a plateau close to 0, but the amplitude of
the Lyapunov exponents around this plateau is quite substan-
tial compared to the coupled ocean—atmosphere model. This
plateau is expected to be associated with the presence of the
land, whose typical timescales of variability are slower than
the atmosphere.

The coupling between the land and atmosphere plays a key
role in the behavior of the model. Hence quantifying the ex-
tent of this coupling and its instabilities is essential for inter-
preting the properties of the model. Therefore, the averaged
variance of the Lyapunov vectors is displayed in Fig. 4 to
elucidate this information along each variable.

The first 10 variables represent the barotropic streamfunc-
tion of the atmosphere, the next 10 represent the baroclinic
streamfunction of the atmosphere, and the last 10 represent
the ground temperature. The variance of the BLVs is primar-
ily in the atmospheric part, indicating that this part primarily
contributes to the system’s dynamics. It should also be noted
that the atmospheric part includes the most unstable BLVs
(corresponding to the first two Lyapunov exponents) as well
as the most stable BLVs (21 to 30 correspond to large nega-
tive Lyapunov exponents — LEs).

Conversely, variance is predominantly projected on the
temperature variables of the ground part for BLVs 3 to 20.
These BLVs are associated with the plateau formed by the
near-zero LEs visible in Fig. 3. The observation of com-
parable variance in both the atmospheric and ground parts
describes (horizontally) the coupling in the model, which is
thus represented for BLVs 3—7. For BLVs 21 to 30, variance
projection is almost nonexistent in the ground part, indicat-
ing that the ground part makes almost no contribution to the
stabilization of the system.

Figure 5 displays Lyapunov spectra calculated for various
energy input levels (C,) ranging from 300 to 400 Wm~2.

When C; is lower, the model exhibits chaotic behavior, in-
dicated by 2 positive exponents, 1 zero exponent, and 26 neg-
ative exponents. Surprisingly, the amount of incoming short-
wave radiation does not significantly affect the spectrum be-
tween Cy values of 300 and 360 Wm™2,

However, as C; increases, the system shifts to periodic
behavior, characterized by 1 zero exponent and 29 negative
Lyapunov exponents, before switching back to chaos.

This is illustrated in Figure 6 where the first and second
Lyapunov exponents are positive for the system for the lower
values of Cg, and then the system enters a periodic window
for the Cy values and reverts back to chaotic behavior again
later.

The surface friction kg also affects the stability of the sys-
tem to a great extent. In order to investigate the sensitivity of
the model to k;, Lyapunov spectra were drawn with the pa-
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rameter values exhibited in Table 1 with different k; values
as displayed in Fig. 7.

The nondimensional k; values depicted in the figure were
obtained from Reinhold and Pierrehumbert (1982), where
they asserted that flow regimes generated using these values
exhibit realistic midlatitude terrestrial properties. Among the
system configurations with k; values of 0.06, 0.075, 0.09,
and 0.12, there are 3 positive, 1 zero, and 26 negative Lya-
punov exponents. Up to the point of plateau formation, all
these spectra display similar behavior. Note that the spec-
trum corresponding to k; = 0.12 exhibits notably strong neg-
ative Lyapunov exponents, while the spectrum for k; = 0.06
demonstrates comparatively weaker negative values, as ex-
pected from the increased associated dissipation.

From Fig. 4, we identify BLVs 20-30 as actually depicting
the variance of the temperature of the atmosphere. Given the
significant variation in BLVs 20-30 within the current con-
text, it can be inferred that the atmospheric temperature gra-
dient, and hence baroclinic instability, is becoming weaker
and the system is stabilizing due to the changes in the sur-
face friction.

As thoroughly explained in Sect. 4.2, the largest Lyapunov
exponent serves as an indicator of the system’s highest de-
gree of instability, while the second positive Lyapunov expo-
nent represents the second-most unstable characteristic, and
so forth. In Fig. 8, the results demonstrate that at lower values
of kg4, the system exhibits a highly chaotic nature. However,
as we increase k; towards higher values, the system stabi-
lizes, revealing a periodic window. This can also be seen with
the Lyapunov spectrum for k; = 0.105 in Fig. 7.

Subsequently, with further increment in kg4, the system re-
turns to a more chaotic behavior, illustrating the complex role
of dissipative features.

The primary interaction between the land and atmosphere
in the model is facilitated through heat exchange denoted by
M. Therefore, it is crucial to understand and analyze how al-
terations in the heat exchange mechanism influence the be-
havior of the model. This is illustrated in Fig. 9.

When 2 is set to zero, the system displays a periodic be-
havior characterized by 1 zero and 29 negative Lyapunov ex-
ponents. However, for all other nonzero A values, the system
exhibits chaos with 3 positive exponents, 1 zero exponent,
and 26 negative Lyapunov exponents. Smaller values of A
(e.g., A =10, 25, and 50) yield a smooth spectrum with a
plateau which is similar to the typical Lyapunov spectrum en-
countered before. Note that with higher A values, an anoma-
lous bend is observed in the spectrum, specifically from the
20th exponent onward, indicating unrealistic stability. It is
also interesting to note that the spectrum associated with the
intersection of the land part (between the 20th and 21st expo-
nent) becomes steeper with the increase in A. The increased
heat exchange leads to a reduced temperature difference be-
tween the atmosphere and the ground, thereby giving rise to
this particular situation. This can be further explained by the
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Figure 3. Lyapunov spectra of the land-atmospheric coupled model for Cg = 300 Wm~2 and kg = 0.085. The values of the Lyapunov

exponents are given in d-1.

|
=
6]

N

BLV Index

-—9.0

--10.5

--12.0

Ya 6 Ty

Figure 4. Values of the time-averaged and normalized variance of
the BLVs as a function of the variables of the model (logiq scale).
The first 20 modes correspond to the variables of the atmosphere
and the next 10 correspond to the temperature of the ground. Pa-
rameter values: Cg = 300 Wm~2 and kg = 0.085. The Euclidean
norm is used for all BLVs, and their squared norm is normalized
to 1.

averaged variance of Lyapunov exponents for different val-
ues of heat exchange X in Fig. 10.

A clear separation between the land and atmosphere ex-
ists at A =0, when there is no exchange of heat between
them, resulting in the respective spectrum. For A = 10, 25,
and 50, the distribution remains similar, with variances con-
centrated predominantly in the atmospheric component for
the first 3 BLVs and the last 10 BLVs. BLVs 3-20 represent
a plateau-like pattern, indicating a coupling between the at-
mosphere and the ground. Despite variance distribution, it is
notable that there is a uniform spread rather than a strong
concentration or absence of variance. For A =75 and 100,
the variance distribution becomes compartmentalized. Vari-
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ance is now concentrated within the first 20 BLVs for the
barotropic streamfunction and ground temperature, while the
last 10 BLVs primarily represent atmospheric temperature
or the baroclinic streamfunction. In contrast to earlier cases,
there is a clear absence of variance within the middle portion,
specifically confined to BLVs 20-30. This compartmental-
ized energy distribution leads to a characteristic jump in the
corresponding spectrum.

5 Predictability properties of zonal, blocking, and
transition flow regimes

Upon concluding our investigation of the land—atmosphere
coupled model’s utility in studying low-frequency variabil-
ity in the atmosphere, we have identified zonal, blocking,
and transition regimes concerning different k4 values, as ex-
plained in Sect. 3. For the range of k; values between 0.06
and 0.12, the lower values (0.06 to 0.075) encompass all three
regimes: zonal, blocking, and transition. As we progress
from 0.08 onward, we observe two blocking regimes and
a transitional regime between them until k; = 0.10. Sub-
sequently, the system exhibits periodic behavior. At kg =
0.115, two blocking regimes are observed, and further, at
kq = 0.12, three flow regimes are identified. These findings
demonstrate the model’s capability to capture various flow
regimes and their transitions based on the selected range of
kg values.

The predictability horizon of the zonal regimes is found
to be longer compared to the blocking regimes in the range
of ks values where all three regimes coexist (kg = 0.06 to
0.075). This implies that the blocking regimes exhibit higher
instability, in agreement with previous findings (Schubert
and Lucarini, 2016; Faranda et al., 2016, 2017; Lucarini
et al.,, 2016). The transition regimes, on the other hand,
show notably lower predictability in comparison to the other
regimes. Within the interval of k; values encompassing only
two blocking regimes and a transition regime (kg = 0.08
to 0.10), both blocking regimes display significantly differ-
ent predictability horizons. At the outset (kg = 0.08), they
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Figure 5. Lyapunov spectra of the land—atmospheric coupled model for different values of Cg. Each color represents corresponding Cg
values used for calculating the spectrum. The values of the Lyapunov exponents are given in d—1.
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Figure 6. First and second Lyapunov exponents of the land—atmospheric coupled model for different values of Cg for a fixed value of
kg = 0.08. The blue line represents the first and the orange line represents second Lyapunov exponents, respectively. The values of the

Lyapunov exponents are given in d .

demonstrate a predictability difference of approximately 1 d.
Subsequently, this difference increases and reaches about
10d at k; = 0.095. However, it then decreases again to a dif-
ference of 1d when k; = 0.10. Moreover, it is observed that
the stability of the transition regime surpasses that of one of
the blocking regimes. This indicates the occurrence of a qual-
itative change in the predictability of the blocking regimes
within this particular range of k; values.

In these instances, it is noteworthy that situations charac-
terized by lower predictability or significant instability tend
to occur when atmospheric blocking takes place on the west-
ern side of topographical features. Conversely, when block-
ing occurs on the eastern side of such topography, it exhibits
greater stability and a longer predictability horizon. This ob-
servation draws parallels with real-world scenarios, such as

Earth Syst. Dynam., 15, 893-912, 2024

the persistence of North Pacific blocking patterns (Breeden
et al., 2020; Kim and Kim, 2019). The morphology of the
identified blocking events bears resemblance to North Pacific
blocks, where a high-pressure system is situated either to the
west or east of the underlying topography. These locations
correspond to the windward and leeward sides of the moun-
tain ranges in the model.

The system enters a periodic window after k; = 0.10.
Then it again becomes chaotic with two blocking regimes
and a transition regime and later on with three distinct
regimes. Figure 11 depicts all the findings obtained from this
study.
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Figure 7. Lyapunov spectra of the land—atmosphere coupled model for different values of k;. Each color represents corresponding k,; values
used for calculating the spectrum. The values of the Lyapunov exponents are given in d-1.
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Lyapunov exponents are given in d-1.

6 Impact of model resolution

As per Cehelsky and Tung (1987), the resolution of the
model can affect the output in various ways. For instance,
the nonlinear interaction between the modes (as the number
of modes increases, the resolution of the system increases)
is quite altered if different number of modes are considered,
resulting in entirely different dynamics for the same set of
parameters. Hence, analysis of high-resolution runs and their
Lyapunov properties is inevitable. In this section, the system
is run with a higher-resolution configuration (5,5) with 55
modes being used for both the atmospheric and land part, giv-
ing a system with a total of 165 variables. Parameter values
are the same as those of the earlier analysis listed in Table 1.
Figure 12 depicts the Lyapunov spectrum and Fig. 13 rep-
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resents the time-averaged variance of the BLVs of the high-
resolution run.

The Lyapunov spectrum exhibits structural similarity
when compared to the low-resolution spectra, except that
more positive exponents are present. Specifically, it com-
prises 12 positive, 1 zero, and 152 negative exponents. No-
tably, there is a distinctive plateau observable within the
range of 20 to 75, which is a characteristic feature attributed
to the interaction between the land and the atmosphere in the
model. This plateau phenomenon arises due to the disparity
in timescales resulting from the intricate interplay between
land and atmosphere dynamics.

In Fig. 13, higher variances in the atmosphere are observed
for the first 40 BLVs and also for the BLVs greater than 70,
indicating that the most chaotic and stable dynamics result

Earth Syst. Dynam., 15, 893-912, 2024
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Figure 10. Values of the time-averaged and normalized variance of the BLVs as a function of the variables of the model (logig scale)
for different A values in Wm~2K~!. The first 20 modes correspond to the variables of the atmosphere and the next 10 correspond to the
temperature of the ground. Parameter values: Cg = 300 Wm~2 and kg = 0.085. The Euclidean norm is used for all BLVs, and their squared

norm is normalized to 1.

from the atmospheric component. Furthermore, it is note-
worthy that a greater concentration of variance is observed
to be shifted towards the variables that specifically repre-
sent the ground temperature, particularly within the range of
BLVs 20 to 75. This shift is a key factor contributing to the
formation of a plateau within the spectrum in question. It be-
comes evident that there is a distinct compartmentalization
between each set of variables, including the barotropic, baro-

Earth Syst. Dynam., 15, 893-912, 2024

clinic, and ground temperature variables, which is more pro-
nounced when compared to the variance illustration at lower
resolutions.

The outcome of the clustering analysis has identified two
clearly defined patterns: one marked by zonal flow and the
other by instances of blocking. The intermediate pattern that
once existed between these two regimes is now absent. No-
tably, both the zonal and blocking events exhibit an identical
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Figure 13. Values of the time-averaged and normalized variance of
the BLVs as a function of the variables of the model (logjg scale)
in (5,5) model configuration. The first 110 modes correspond to
the variables of the atmosphere and the next 55 correspond to the
temperature of the ground. Parameter values: Cg = 300 Wm—2 and
kg = 0.085. The Euclidean norm is used for all BLVs, and their
squared norm is normalized to 1.

predictability horizon, specifically spanning a period of 2d.
This feature contrasts with what is found at the lower resolu-
tion and also in the current literature on this topic. This aspect
is worth investigating further in the future by exploring other
sets of parameters and other resolutions.

7 Discussion

This study focuses on characterizing the variability and in-
stability properties of different flow regimes and their de-
pendence on important parameters in an idealized coupled
model, namely the quasi-geostrophic land—atmosphere cou-
pled model. The investigation also aims to explore the pre-
dictability of zonal, blocking, and transition flow regimes us-
ing Lyapunov exponents.

The analysis revealed that the model is less sensitive to
variations in meridional differences in solar heating absorbed
by the land, represented by C,. Based on observations, a
fixed value of 300 Wm 2 for C, was chosen for further anal-
ysis. The study found that the model’s stability is signif-
icantly affected by surface friction k4. Different values of
kq were explored, and it was observed that at lower k; val-
ues, the system exhibits chaotic behavior, while at higher ky
values, periodic windows alternate with chaotic behaviors.
Within this range, the system solutions meander between var-
ious flow regimes, including zonal, blocking, and transition.

The heat exchange mechanism, represented by 1, was also
analyzed, and it was found that when A is set to zero, the sys-
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tem displays periodic behavior, while for nonzero A values,
the system exhibits considerable chaos. Overall, the model
demonstrated the capability to capture various flow regimes
and their transitions based on the selected range of k,; values,
providing insights into the potential behavior of the atmo-
sphere.

The predictability properties of three distinct flow regimes
were investigated: zonal, blocking, and transition, which
were the fundamental components of low-frequency variabil-
ity (LFV) in the model. The predictability horizon of the
zonal regimes was found to be longer compared to the block-
ing regimes, which is consistent with earlier results (Schu-
bert and Lucarini, 2016; Faranda et al., 2016, 2017; Lucarini
et al., 2016), when all three regimes coexist. The transition
regimes showed notably lower predictability compared to
the other regimes. Within a specific range of k; values, the
blocking regimes displayed different predictability horizons,
indicating the occurrence of a qualitative change in the pre-
dictability of the blocking regimes.

Weather patterns that involve atmospheric blocking to the
west of a given topographical feature tend to have reduced
predictability and show instability when contrasted with
blocking occurrences situated to the east of such topograph-
ical elements. This finding aligns with actual meteorological
occurrences, such as the persistence of North Pacific block-
ing patterns (Breeden et al., 2020; Kim and Kim, 2019). The
shape and characteristics of the identified blocking events
closely resemble North Pacific blocks, where a high-pressure
system exists either on the western or eastern side of the un-
derlying topography. In the physical world, these positions
correspond to the windward and leeward sides of mountain
ranges composed of rocky terrain. Despite ggs models be-
ing regarded as less comprehensive, their utilization in this
study allows for a more relevant impact, akin to real-world
situations as described above.

Upon increasing the model resolution, Lyapunov proper-
ties exhibited a remarkable resemblance to those observed
at lower resolutions. However, the distribution of points on
the attractor gave rise to two distinct clusters, delineating the
blocking and zonal regimes, thereby extinguishing the poten-
tial for the transition regime. Notably, both the blocking and
zonal regimes displayed a predictability horizon limited to
2d.

Against the backdrop of rising global temperatures and the
escalation of climate extremes, comprehending the intricate
dynamics governing atmospheric blocking occurrences and
their predictability is becoming paramount, given that block-
ing events are consistently linked to extreme weather phe-
nomena. The impact of climate change can also be explored
in the current study by modifying the emissivity of the atmo-
sphere. This will be explored in the future.

The knowledge acquired through this study holds poten-
tial significance for climate and weather prediction models,
contributing to the advancement of our understanding of the
crucial atmospheric dynamics shaping the Earth’s climate
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system. In future investigations, we will assess the influ-
ence of the same parameters within more complex models,
enabling us to conduct comparisons that will aid in identi-
fying alterations in land—atmosphere interactions as atmo-
spheric complexity intensifies. This undertaking will further
our comprehension of how the interaction between the land
and atmosphere evolves with increasing intricacies in at-
mospheric systems and how it affects the predictability of
weather regimes.

Appendix A: Gaussian mixture clustering (GMC)

Gaussian mixture clustering (GMC) is a prevalent unsuper-
vised machine learning technique utilized for partitioning
data points into clusters by modeling their underlying dis-
tribution. While the distribution of data points on the attrac-
tor may not align with a Gaussian distribution, the algorithm
proceeds by approximating the distribution as Gaussian and
subsequently identifies clusters based on this approximation.
Each cluster is characterized by a Gaussian component, and
the primary objective is to accurately estimate the parame-
ters of these components to optimally describe the data. It
comprises several steps.

— Initialization. GMC starts by randomly selecting K ini-
tial centers (means) pu; for each cluster. Additionally,
it initializes the covariance matrices X; and the mixing
coefficients m;, which represent the probabilities of data
points belonging to each cluster, where i = 1,2,..., K.
The mixing coefficients must sum up to 1, and each
must be between 0 and 1.

— Expectation—maximization (EM) algorithm. GMC em-
ploys the EM algorithm (Dempster et al., 1977) to iter-
atively estimate the parameters of the Gaussian compo-
nents. The algorithm comprises two steps, the expecta-
tion step (E-step) and the maximization step (M-step).

— Expectation step (E-step). During this step, the al-
gorithm computes the responsibility (y;, ;) of each
data point x; for each cluster i. The responsibility
represents the probability that data point x ; belongs
to cluster i, given the current parameters. This is
calculated using Bayes’ theorem:

o mi - Nxgs iy Z0)
Zf:ﬂfk N(xj; i, Zi)

Vi.j (A1)

where y; ; is the responsibility of cluster i for
data point x, and 7; is the mixing coefficient for
cluster i. u; and X; are the mean and covariance
matrix for cluster i, respectively. N'(x IR EY
the Gaussian probability density function for data
point x; with mean ; and covariance %;.

https://doi.org/10.5194/esd-15-893-2024

907

— Maximization step (M-step). In this step, the algo-
rithm updates the parameters of the Gaussian distri-
butions (mean, covariance, and mixing coefficients)
based on the responsibilities calculated in the E-
step.

N
i y~’ P
New mean , u; = M (A2)

N
Zj:] Vi,j
New covariance matrix , %;
N
S iiVig (=) - (= )"
= ¥ (A3)
Zj:] Yi,j

iy . ¢
New mixing coefficient , 7; = v j; Yi.j (A4)

N is the number of data points. u;, ¥;, and m; are
the updated mean, covariance matrix, and mixing
coefficient for cluster i, respectively. y; ; is the re-
sponsibility of cluster i for data point x ; (computed
in the E-step). x; is the jth data point.

— Convergence. The E-step and M-step are repeated itera-
tively until the algorithm converges. Convergence hap-
pens when the change in the likelihood of the data be-
tween iterations becomes very small or when a prede-
fined number of iterations is reached.

— Cluster assignment. Once the algorithm converges, each
data point is assigned to the cluster with the highest
probability (highest responsibility).

— Number of clusters (K). The number of clusters, K, is
typically determined either by the user based on prior
knowledge or by using techniques like the Bayesian in-
formation criterion (BIC) or cross-validation to find the
optimal number of clusters.

In our study, we used the cross-validation method and de-
cided K should be 3 for obtaining realistic results. Further
explanation regarding the clustering algorithm can be ob-
tained from recent literature on that subject (Hastie et al.,
2009; Bishop and Nasrabadi, 2006; Dempster et al., 1977,
Smyth et al., 1999).

Appendix B: Examples of blocking and zonal
patterns evolved from the study

As previously indicated, employing the parameter configu-
ration outlined in Table 1, we have successfully generated
Earth-like flow patterns. These flow regimes are visually rep-
resented in Figs. B2 and B1, corresponding to different val-
ues of the parameter k,. Specifically, for lower values of &y,
we observe the coexistence of zonal, blocking, and transi-
tional flow regimes, as depicted in Fig. B1. Conversely, when
kg assumes higher values, we observe the emergence of two

Earth Syst. Dynam., 15, 893-912, 2024
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blocking flow regimes along with a transition regime, as il-
lustrated in Fig. B2.
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Figure B1. The phase space dynamics of the model projected on the (v, 3, ¥,,2) plane (a) for k; = 0.065 . Gaussian mixture cluster
covariances are represented with orange, green, and red ellipsis. The orange cluster is associated with a zonal regime which can be identified
by the geopotential height at 500 hPa in panel (b). Red and green clusters are respectively transition and blocking regimes in panel (c) and
(d), also at 500 hPa geopotential height. The orographic profile of the domain is depicted in panels (b), (c), and (d).
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the re-
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Code availability. The code used to obtain
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et al, 2020) that was recently released on GitHub
(https://github.com/Climdyn/qgs, last access: 19 June 2023)
and Zenodo (https://doi.org/10.5281/zenodo.7741206, Demaeyer

et al., 2023).

Data availability. The data can be generated using the code pro-
vided in the “Code availability” section and with the parameter val-
ues provided in Table 1.
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