Articles | Volume 15, issue 3
https://doi.org/10.5194/esd-15-607-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-15-607-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Classification of synoptic circulation patterns with a two-stage clustering algorithm using the modified structural similarity index metric (SSIM)
Kristina Winderlich
CORRESPONDING AUTHOR
Climate and Environment Consultancy Department, Deutscher Wetterdienst (German Meteorological Service), 63067 Offenbach am Main, Germany
Clementine Dalelane
Climate and Environment Consultancy Department, Deutscher Wetterdienst (German Meteorological Service), 63067 Offenbach am Main, Germany
Andreas Walter
Climate and Environment Consultancy Department, Deutscher Wetterdienst (German Meteorological Service), 63067 Offenbach am Main, Germany
Related authors
Clementine Dalelane, Kristina Winderlich, and Andreas Walter
Earth Syst. Dynam., 14, 17–37, https://doi.org/10.5194/esd-14-17-2023, https://doi.org/10.5194/esd-14-17-2023, 2023
Short summary
Short summary
The realistic representation of global teleconnections is an indispensable requirement for the reliable simulation of low-frequency climate variability and climate change. We present an application of the complex network framework to quantify and evaluate large-scale interactions within and between ocean and atmosphere in 22 historical CMIP6 climate projections with respect to two century-long reanalyses.
Kristina Winderlich, Clementine Dalelane, and Andreas Walter
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-29, https://doi.org/10.5194/esd-2022-29, 2022
Preprint withdrawn
Short summary
Short summary
This paper presents a new classification method for synoptic circulation patterns and its application on ERA-Interim reanalysis data. The output fields of the CMIP6 models are assigned to the reanalysis-derived classes and a new quality index, built on the statistics between each model and the reference, is introduced to quantify the “quality” of the respective model. CMIP6 models are ranked according to the new quality score.
Clementine Dalelane, Kristina Winderlich, and Andreas Walter
Earth Syst. Dynam., 14, 17–37, https://doi.org/10.5194/esd-14-17-2023, https://doi.org/10.5194/esd-14-17-2023, 2023
Short summary
Short summary
The realistic representation of global teleconnections is an indispensable requirement for the reliable simulation of low-frequency climate variability and climate change. We present an application of the complex network framework to quantify and evaluate large-scale interactions within and between ocean and atmosphere in 22 historical CMIP6 climate projections with respect to two century-long reanalyses.
Kristina Winderlich, Clementine Dalelane, and Andreas Walter
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-29, https://doi.org/10.5194/esd-2022-29, 2022
Preprint withdrawn
Short summary
Short summary
This paper presents a new classification method for synoptic circulation patterns and its application on ERA-Interim reanalysis data. The output fields of the CMIP6 models are assigned to the reanalysis-derived classes and a new quality index, built on the statistics between each model and the reference, is introduced to quantify the “quality” of the respective model. CMIP6 models are ranked according to the new quality score.
Cited articles
Adams, R. E., Lee, C. C., Smith, E. T., and Sheridan, S. C.: The relationship between atmospheric circulation patterns and extreme temperature events in North America, Int. J. Climatol., 41, 92–103, https://doi.org/10.1002/joc.6610, 2020.
Baker, A. H., Pinardy, A., and Hammerlingy, D. M.: DSSIM: a structural similarity index for floating-point data, IEEE Transactions on Visualization and Computer Graphics (Early Access), 1–13, https://doi.org/10.1109/TVCG.2023.3332843, 2022.
Baur, F.: Einführung in die Grosswetterkunde (En: Introduction into Large Scale Weather), Dieterich Verlag, Wiesbaden, Germany, https://doi.org/10.1002/qj.49707633014, 1948.
Beck, C., Jacobeit, J., and Jones, P. D.: Frequency and within-type variations of large-scale circulation types and their effects on low-frequency climate variability in central europe since 1780, Int. J. Climatol., 27, 473–491, https://doi.org/10.1002/joc.1410, 2007.
Cannon, A. J.: Semi-supervised multivariate regression trees: putting the `circulation' back into a `circulation-to-environment' synoptic classifier, Int. J. Climatol., 32, 2251–2254, https://doi.org/10.1002/joc.2417, 2012.
Cannon, A. J.: Reductions in daily continental-scale atmospheric circulation biases between generations of global climate models: CMIP5 to CMIP6, Environ. Res. Lett., 15, 064006, https://doi.org/10.1088/1748-9326/ab7e4f, 2020.
Cannon, A. J., Whitfield, P. H., and Lord, E. R.: Synoptic Map-Pattern Classification Using Recursive Partitioning and Principal Component Analysis, Mon. Weather Rev., 130, 1187–1206, 2001.
Cassano, E. N., Lynch, A. H., Cassano, J. J., and Koslow, M. R.: Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA, Clim. Res., 30, 83–97, https://doi.org/10.3354/cr030083, 2006.
D'Urso, P. and Massari, R.: Fuzzy clustering of mixed data, Inform. Sciences, 505, 513–534, https://doi.org/10.1016/j.ins.2019.07.100, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011 (data available at: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim, last access: 8 May 2024).
Díaz-Esteban, Y., Raga, G. B., and Díaz Rodríguez, O. O.: A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico, Climate, 8, 1–18, https://doi.org/10.3390/cli8010005, 2020.
Dittmann, E., Barth, S., Lang, J., and Müller-Westermeier, G.: Objektive Wetterlagenklassifikation (En: Objective weather type classification), Deutscher Wetterdienst, Offenbach am Main, Germany, ISBN 3-88148-316-0, 1995.
Dorrington, J. and Strommen, K. J.: Jet Speed Variability Obscures Euro-Atlantic Regime Structure, Geophys. Res. Lett., 47, e2020GL087907, https://doi.org/10.1029/2020gl087907, 2020.
ESGF: CMIP6, [data set], https://aims2.llnl.gov/search/cmip6/, last access: 15 May 2024.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fabiano, F., Christensen, H. M., Strommen, K., Athanasiadis, P., Baker, A., Schiemann, R., and Corti, S.: Euro-Atlantic weather Regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance, Clim. Dynam., 54, 5031–5048, https://doi.org/10.1007/s00382-020-05271-w, 2020.
Falkena, S. K. J., Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Detection of interannual ensemble forecast signals over the North Atlantic and Europe using atmospheric circulation regimes, Q. J. Roy. Meteor. Soc., 148, 434–453, https://doi.org/10.1002/qj.4213, 2021.
Fettweis, X., Mabille, G., Erpicum, M., Nicolay, S., and den Broeke, M. V.: The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation, Clim. Dynam., 36, 139–159, https://doi.org/10.1007/s00382-010-0772-8, 2010.
Fulton, D. J. and Hegerl, G. C.: Testing Methods of Pattern Extraction for Climate Data Using Synthetic Modes, J. Climate, 34, 7645–7660, https://doi.org/10.1175/jcli-d-20-0871.1, 2021.
Gerstengarbe, F.-W. and Werner, P. C.: Katalog der Großwetterlagen Europas nach Paul Hess und Helmut Brezowski 1881–1992, Deutscher Wetterdienst, Offenbach am Main, Germany, 113, 1–249, ISSN 2194-5969, 1993.
Gervais, M., Atallah, E., Gyakum, J. R., and Tremblay, L. B.: Arctic Air Masses in a Warming World, J. Climate, 29, 2359–2373, https://doi.org/10.1175/jcli-d-15-0499.1, 2016.
Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res., 113, D06104, https://doi.org/10.1029/2007jd008972, 2008.
Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., and Wernli, H.: Balancing Europe's wind power output through spatial deployment informed by weather regimes, Nat. Clim. Change, 7, 557–562, https://doi.org/10.1038/nclimate3338, 2017.
Hannachi, A., Straus, D. M., Franzke, C. L. E., Corti, S., and Woollings, T.: Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere, Rev. Geophys., 55, 199–234, https://doi.org/10.1002/2015rg000509, 2017.
Herrera-Lormendez, P., Mastrantonas, N., Douville, H., Hoy, A., and Matschullat, J.: Synoptic circulation changes over Central Europe from 1900 to 2100: Reanalyses and Coupled Model Intercomparison Project phase 6, Int. J. Climatol., 42, 4062–4077, https://doi.org/10.1002/joc.7481, 2021.
Hess, P. and Brezowsky, H.: Katalog der Großwetterlagen Europas, Deutscher Wetterdienst Zentralamt Bad Kissingen, 1952.
Hewitson, B. C. and Crane, R. G.: Self-organizing maps: applications to synoptic climatology, Clim. Res., 22, 13–26, https://doi.org/10.3354/cr022013, 2002.
Hochman, A., Messori, G., Quinting, J. F., Pinto, J. G., and Grams, C. M.: Do Atlantic-European Weather Regimes Physically Exist?, Geophys. Res. Lett., 48, e2021GL095574, https://doi.org/10.1029/2021gl095574, 2021.
Huth, R.: An Intercomparison of Computer-assisted Circulation Classification Methods. International Journal of Climatology, Int. J. Climatol., 16, 893–922, 1996.
Huth, R.: A circulation classi®cation scheme applicable in GCM studies, Theor. Appl. Climatol., 67, 1–18, https://doi.org/10.1007/s007040070012, 2000.
Huth, R. and Beranová, R.: How to Recognize a True Mode of Atmospheric Circulation Variability, Earth Space Sci., 8, e2020EA001275, https://doi.org/10.1029/2020ea001275, 2021.
Huth, R., Beck, C., Philipp, A., Demuzere, M., Zbigniew, U., Cahynová, M., Kyselý, J., and Tveito, O. E.: Classifications of Atmospheric Circulation Patterns, Recent Advances and Applications, Trends and Directions in Climate Research, Ann. NY Acad. Sci., 1146, 105–152, 2008.
James, P. M.: An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe, Theor. Appl. Climatol., 88, 17–42, https://doi.org/10.1007/s00704-006-0239-3, 2006.
James, P. and Ostermöller, J.: GWL-REA: An improved method for classifying Hess-Brezowksy Grosswetterlagen based on pattern correlations in combination with Lamb Weather Type statistics, EMS Annual Meeting 2022, Bonn, Germany, 5–9 Sep 2022, EMS2022-415, https://doi.org/10.5194/ems2022-415, 2022.
Jiang, N., Cheung, K., Luo, K., Beggs, P. J., and Zhou, W.: On two different objective procedures for classifying synoptic weather types over east Australia, Int. J. Climatol., 32, 1475–1494, https://doi.org/10.1002/joc.2373, 2011.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996 (data available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 8 May 2024).
Kaufman, L. and Rousseeuw, P. J.: Partitioning Around Medoids (Program PAM), in: Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., 68–125, https://doi.org/10.1002/9780470316801.ch2, 1990.
Kohonen, T.: Self-Organizing Maps Springer Series in Information Sciences (SSINF), 30, Springer Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-56927-2, 2001.
Lamb, H. H.: British Isles weather types and a register of the daily sequence of circulation patterns 1861–1971, Geophysical memoirs, London, H.M. Stationery Office 1972, Vol. 16, 85 pp., 1972.
Lauscher, F.: Klimatologische Synoptik Österreichs mittels der ostalpinen Wetterlagenklassifikation (En: (Synoptic Climatology of Austria based on the Eastern-Alpine Weather Type Classification), Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Wienna, Austria, 64, 302, 1985.
Lee, C. C. and Sheridan, S. C.: A six-step approach to developing future synoptic classifications based on GCM output, Int. J. Climatol., 32, 1792–1802, https://doi.org/10.1002/joc.2394, 2012.
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: Intercomparison Makes for a Better Climate Model, Eos Science News by AGU, 78, 445–446, https://doi.org/10.1029/97EO00276 1997.
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: The Coupled Model Intercomparison Project (CMIP), B. Am. Meteor. Soc., 81, 313–318, 2000.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research, B. Am. Meteor. Soc., 88, 1383–1394, https://doi.org/10.1175/bams-88-9-1383, 2007.
Milligan, G. W.: An algorithm for generating artificial test clusters, Psychometrika, 50, 123–127, 1985.
Mo, R., Ye, C., and Whitfield, P. H.: Application Potential of Four Nontraditional Similarity Metrics in Hydrometeorology, J. Hydrometeorol., 15, 1862–1880, https://doi.org/10.1175/jhm-d-13-0140.1, 2014.
Muñoz, Á. G., Yang, X., Vecchi, G. A., Robertson, A. W., and Cooke, W. F.: A Weather-Type-Based Cross-Time-Scale Diagnostic Framework for Coupled Circulation Models, J. Climate, 30, 8951–8972, https://doi.org/10.1175/jcli-d-17-0115.1, 2017.
Nguyen-Le, D. and Yamada, T. J.: Using Weather Pattern Recognition to Classify and Predict Summertime Heavy Rainfall Occurrence over the Upper Nan River Basin, Northwestern Thailand, Weather Forecast., 34, 345–360, https://doi.org/10.1175/waf-d-18-0122.1, 2019.
Nigro, M. A., Cassano, J. J., and Seefeldt, M. W.: A Weather-Pattern-Based Approach to Evaluate the Antarctic Mesoscale Prediction System (AMPS) Forecasts: Comparison to Automatic Weather Station Observations, Weather Forecast., 26, 184–198, https://doi.org/10.1175/2010waf2222444.1, 2011.
Perez, J., Menendez, M., Mendez, F. J., and Losada, I. J.: Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region, Clim. Dynam., 43, 2663–2680, https://doi.org/10.1007/s00382-014-2078-8, 2014.
Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F., Krennert, T., Lykoudis, S., Michalides, S. C., Pianko-Kluczynska, K., Post, P., Álvarez, D. R., Schiemann, R., Spekat, A., and Tymvios, F. S.: Cost733cat – A database of weather and circulation type classifications, Phys. Chem. Earth, 35, 360–373, https://doi.org/10.1016/j.pce.2009.12.010, 2010.
Radiæ, V. and Clarke, G. K. C.: Evaluation of IPCC Models' Performance in Simulating Late-Twentieth-Century Climatologies and Weather Patterns over North America, J. Climate, 24, 5257–5274, https://doi.org/10.1175/jcli-d-11-00011.1, 2011.
Riediger, U. and Gratzki, A.: Future weather types and their influence on mean and extreme climate indices for precipitation and temperature in Central Europe, Meteorol. Z., 23, 231–252, https://doi.org/10.1127/0941-2948/2014/0519, 2014.
Sanderson, B. M., Knutti, R., and Caldwell, P.: A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble, J. Climate, 28, 5171–5194, https://doi.org/10.1175/jcli-d-14-00362.1, 2015.
Schubert, E. and Rousseeuw, P. J.: Fast and eager k-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms, Inform. Systems, 101, 101804, https://doi.org/10.1016/j.is.2021.101804, 2021.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/bams-d-11-00094.1, 2012.
Tveito, O. E., Huth, R., Philipp, A., Post, P., Pasqui, M., Esteban, P., Beck, C., Demuzere, M., and Prudhomme, C.: COST Action 733 Harmonization and Application of Weather Type Classifications for European Regions, https://www.researchgate.net/publication/303863197_COST_Action_733_Harmonization_and_Application_of_Weather_Type_Classifications_for_European_Regions (last access: 13 May 2024), 2016.
Wang, Z. and Bovik, A. C.: Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures, IEEE Signal Proc. Mag., 26, 98–117, https://doi.org/10.1109/msp.2008.930649, 2009.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13, 600–612, https://doi.org/10.1109/tip.2003.819861, 2004.
Yarnal, B., Comrie, A. C., Frakes, B., and Brown, D. P.: Developments and prospects in synoptic climatology, Int. J. Climatol., 21, 1923–1950, https://doi.org/10.1002/joc.675, 2001.
Short summary
We develop a new classification method for synoptic circulation patterns. Its unique novelty is the use of the modified structural similarity index metric (SSIM). We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for evaluating historical climate simulations. We introduce a distance metric to measure the match in frequency and duration of synoptic classes between a climate simulation and the reference.
We develop a new classification method for synoptic circulation patterns. Its unique novelty is...
Altmetrics
Final-revised paper
Preprint