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Abstract. We develop a new classification method for synoptic circulation patterns with the aim to extend the
evaluation routine for climate simulations. This classification is applicable to any region of the globe of any
size given the reference data. Its unique novelty is the use of the modified structural similarity index metric
(SSIM) instead of traditional distance metrics for cluster building. This classification method combines two
classical clustering algorithms used iteratively, hierarchical agglomerative clustering (HAC) and k-medoids, with
only one pre-set parameter – the threshold on the similarity between two synoptic patterns expressed as the
structural similarity index measure (SSIM). This threshold is set by the user to imitate the human perception
of the similarity between two images (similar structure, luminance, and contrast), whereby the number of final
classes is defined automatically.

We apply the SSIM-based classification method to the geopotential height at the pressure level of 500 hPa from
the ERA-Interim reanalysis data for 1979–2018 and demonstrate that the built classes are (1) consistent with the
changes in the input parameter, (2) well-separated, (3) spatially stable, (4) temporally stable, and (5) physically
meaningful.

We demonstrate an exemplary application of the synoptic circulation classes obtained with the new clas-
sification method for evaluating Coupled Model Intercomparison Project Phase 6 (CMIP6) historical climate
simulations and an alternative reanalysis (for comparison purposes): output fields of CMIP6 simulations (and
of the alternative reanalysis) are assigned to the classes and the Jensen–Shannon distance is computed for the
match in frequency, transition, and duration probabilities of these classes. We propose using this distance metric
to supplement a set of commonly used metrics for model evaluation.

1 Introduction

Research institutions around the world conduct climate stud-
ies and share their knowledge with society and policy mak-
ers through the Intergovernmental Panel on Climate Change
(IPCC, https://www.ipcc.ch, last access: 7 May 2024). The
climate simulations used in the IPCC reports are avail-
able to other scientists, besides those who run the mod-
els, through the Coupled Model Intercomparison Project
(CMIP, https://www.wcrp-climate.org/wgcm-cmip, last ac-
cess: 7 May 2024). The first two phases (CMIP1 and CMIP2)

of this initiative addressed the ability of numerical climate
models to simulate the present climate and to respond to
an increase in carbon dioxide concentration in the atmo-
sphere (Meehl et al., 1997, 2000). The extended follow-
up phase CMIP3 (Meehl et al., 2007) provided output of
coupled ocean–atmosphere model simulations of 20th–22nd
century climate for the 4th Assessment Report (AR4) of
the IPCC (https://www.ipcc.ch/report/ar4/syr/, last access:
7 May 2024). As the number of climate simulations in the
subsequent projects CMIP5 (Taylor et al., 2012) and CMIP6
(Eyring et al., 2016) continued to increase, new require-
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ments for the “quality” and “reliability” of such simulations
emerged. Having multiple models at their disposition, final
users have a choice to use all models or only models which
pass a quality check, i.e. an evaluation routine. Although test-
ing and comparing models may create an illusion of finding
the best one in all its features, we emphasize here that there is
no universally valid and absolutely objective evaluation pro-
cedure for all purposes. It is important to include a broad
suite of metrics in the evaluation spectrum, but various ap-
plications may require different subsets of these metrics.

Hannachi et al. (2017) emphasized the importance of the
correct representation of weather regimes, their spatial pat-
terns, and persistence properties in global circulation models
as they could properly simulate the climate variability and
long-term climatic changes under an external forcing such
as, for example, the global warming. However, traditional
techniques for climate model evaluation, which are rooted in
evaluation techniques for numerical weather prediction mod-
els, mainly focus on individual variables and derived indices
as summarized by Gleckler et al. (2008). These techniques
use scalar variables, called “metrics”, and often illustrate
symptoms of problems without explaining their causes that
may originate from incorrect simulation of synoptic weather.
As some studies have already demonstrated that the perfor-
mance of a model varies as a function of weather type (Díaz-
Esteban et al., 2020; Nigro et al., 2011; Perez et al., 2014;
Radiæ and Clarke, 2011) we suggest accounting for model
synoptic behaviour in evaluation routines. But how can we
capture the correctness of the large-scale atmospheric dy-
namics in models?

The atmospheric circulation is a continuum that gradually
changes and its dynamics can be described by a finite number
of representative “states” or “typical patterns”, i.e. classes.
Hochman et al. (2021) showed that such representation of
the atmosphere by quasi-stationary circulation patterns, often
also termed weather regimes, is a physically meaningful way
to describe the atmosphere (and not only a useful statistical
categorization as it may be argued). Muñoz et al. (2017) also
suggested using the weather-typing approach to diagnose a
range of variables in a physically consistent way, helping to
understand causes of model biases. For evaluation purposes,
any climate model simulation can be represented as a se-
quence of typical synoptic situations that are previously clas-
sified. Common variables used for representing the synoptic
circulation are sea level pressure, geopotential heights, and
wind vector fields. Statistical measures, such as frequency
and duration of each class, computed from the assigned se-
quence can be evaluated against reference data derived, for
example, from a reanalysis.

Many questions arise when building a classification of
weather situations.

– On which spatial and temporal scales should weather
situations be classified?

– Do the frequency and persistence of each weather situ-
ation play a role in the classification?

– How many classes are sufficient to describe the atmo-
spheric circulation?

Answers to these questions are not trivial and strongly de-
pend on the purpose of the classification.

Weather patterns can be defined at a regular temporal step,
typically 1 d (Lamb, 1972; Hess and Brezowsky, 1952; Fabi-
ano et al., 2020; Cannon, 2012), and classified independent
of their duration (James, 2006; Cannon, 2012; Beck et al.,
2007; Fettweis et al., 2010). Alternatively, only recurrent,
quasi-stationary, and temporally persistent states of the at-
mospheric circulation would be classified (Dorrington and
Strommen, 2020; Hochman et al., 2021), eliminating short-
term patterns in the final set of classes.

There is no “universally correct” recipe for how to build
synoptic classes and how many of them. Each application re-
quires a number of classes constructed in a way best suited
for its purposes. A set of classes can be determined subjec-
tively by an expert, such as the well-known Hess–Brezowski
Grosswetterlagen (Gerstengarbe and Werner, 1993; James,
2006; Hess and Brezowsky, 1952) or the Lamb weather types
(Lamb, 1972), or using an automated classification method.
Multiple different synoptic classifications have been devel-
oped over years as summarized by Yarnal et al. (2001) and
Huth et al. (2008). An overview and systematization of ex-
isting classification methods for synoptic patterns were com-
piled in a joint effort of multiple European institutions in the
COST Action 733 and summarized in the final project re-
port (Tveito et al., 2016). A large number of classes is of-
ten used in classification methods rooted in synoptic mete-
orology. Such methods – for example, the ZAMG classifi-
cation with 43 classes (Baur, 1948; Lauscher, 1985) and the
Grosswetterlagen-based classification by James (2006) with
58 weather types (29 for winter and 29 for summer) – give
priority to a high structural differentiation among synoptic
patterns, at the same time trying to maximize the homogene-
ity inside classes. This attempt may produce some classes
which have a small number of members or could even be
empty. On the other hand, methods that use a small number
of classes focus on large-scale circulation regimes and can be
used for investigating possible precursors to their changes,
for example shifts of the jet stream (Dorrington and Strom-
men, 2020). These methods may handle the pattern diversity
in a suboptimal way: prioritize a low number of classes over
the high intra-class homogeneity and leave multiple synoptic
patterns unclassified.

Our purpose is to extend a traditional evaluation routine
for climate models, which typically rests on a set of met-
rics for scalar variables (Gleckler et al., 2008), by a set of
diagnostics considering the correctness of weather pattern
representation. We are not the first ones to evaluate model
dynamics in such a way. Riediger and Gratzki (2014) eval-
uated climate indices (mean values or hot, cold, wet, and

Earth Syst. Dynam., 15, 607–633, 2024 https://doi.org/10.5194/esd-15-607-2024



K. Winderlich et al.: Classification of synoptic circulation patterns 609

dry days) computed for five global circulation models and
a reanalysis conditioned on different weather types in a re-
cent and a future climate using a threshold-based classifi-
cation method for the central European region (Dittmann
et al., 1995). Cannon (2020) used two atmospheric clas-
sifications constructed from two reanalyses for evaluating
historical simulations of 15 pairs of global climate mod-
els from CMIP5 and CMIP6 datasets; the number of cir-
culation classes used in this study was 16 as suggested in
the COST733cat database over smaller European domains
(Philipp et al., 2010). Herrera-Lormendez et al. (2021) used
the Jenkinson–Collison classification adapted to Europe for
evaluating some CMIP6 models against three reanalyses and
analysed future changes in circulation for these models.

A “good” set of weather types should be able to describe
all physically admissible states and events in the climate sys-
tem; i.e. rainfall events and heat periods can be explained
by an occurrence of individual weather types or a particular
sequence of certain weather types. Muñoz et al. (2017) and
Nguyen-Le and Yamada (2019) investigated rainfall intensi-
ties as a function of weather types. Adams et al. (2020) found
that extreme temperature events, as well as cold anomalies,
are related to circulation patterns. As we keep in mind the
possible linkage between weather types and extreme weather,
we would like to have an automated classification that

– produces structurally differentiated classes (similarly as
done in synoptic meteorology),

– is applicable to any domain on the globe,

– provides high homogeneity inside classes, and

– encompasses almost all synoptic situations, leaving no
or very few situations unclassified.

In our opinion, the last condition is especially important
because rare synoptic situations may be linked to severe
weather and should be carefully handled in the evaluation
procedure for climate models. Therefore, the wide vari-
ety of classification methods that focus on very few quasi-
stationary weather regimes do not suite our purpose as they
eliminate rare synoptic patterns from the analysis. Semiauto-
mated classifications do not suite our purpose of model eval-
uation either because these methods require expert knowl-
edge to define weather types in the considered region; this
would limit our future options of evaluation to only regions
with available expert knowledge.

A relatively new group of synoptic classification meth-
ods uses self-organizing maps (Kohonen, 2001). These SOM
methods employ a neural network algorithm that discovers
patterns in data in an unsupervised way. Such algorithms
have an advantage compared to methods based on the prin-
cipal component analysis (PCA) and subsequent clustering
of data as SOMs do not require orthogonality and stationar-
ity of identified classes. Studies that use the SOM technique

to classify synoptic patterns and relate these patterns to lo-
cal weather (Cassano et al., 2006; Gervais et al., 2016; He-
witson and Crane, 2002; Jiang et al., 2011) typically use a
pre-defined number of classes and employ the Euclidean dis-
tance measure for similarity between data elements and cen-
troids for representing cluster centres. Also, the majority of
classification methods included in the COST733cat database
(Philipp et al., 2010) and in the literature (Cannon et al.,
2001; Hochman et al., 2021; Grams et al., 2017; Muñoz et
al., 2017; Fabiano et al., 2020) use the k-means clustering al-
gorithm (Milligan, 1985) in conjunction with the Euclidean
distance as a metric to measure the degree of similarity be-
tween clustered data elements. In this paper we elaborate on
the drawbacks of using mean fields as cluster centres in the
classification of atmospheric data fields and suggest an alter-
native representation of cluster centres.

Distance metrics typically used in classification algo-
rithms are often Euclidean norms (L2 norms), mean squared
error (MSE), or Pearson’s distance. MSE remains the stan-
dard criterion for comparing modelled and observed sig-
nals in climate science and in optimization routines despite
its weak performance and serious shortcomings in compar-
ing structured signals (pressure or geopotential fields can
also be seen as “images”) as thoroughly discussed by Wang
and Bovik (2009). Following the suggestions of Wang and
Bovik (2009), we refrain from using MSE as a distance mea-
sure in classifying weather types and propose using the alter-
native structural similarity index metric (SSIM) introduced
by Wang et al. (2004) for comparing geopotential fields.

Following the abovementioned arguments, we introduce
the new two-stage classification method for synoptic circula-
tion patterns as an alternative to existing methods of cluster-
ing. The novel approach allows accounting for rare synoptic
situations, which may be linked to severe weather, and builds
synoptic classes automatically without prior expert knowl-
edge. This alternative method, in our opinion, bears its own
scientific value because as the very least it corroborates pre-
vious results, but it even improves upon those previous re-
sults in both statistical (number of classes is defined automat-
ically) and climatological aspects (all synoptic situations are
classified, applicable to arbitrary regions of the globe with-
out further expert knowledge). The novelty of this method
consists of the following features.

– It classifies all input data without pre-filtering and pre-
initialization of classes.

– It builds classes with strong structural differentiation
and high inter-class homogeneity.

– It uses a structural similarity metric instead of a distance
metric for classifying data.

– It represents classes by their medoids instead of cen-
troids.
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– It uses an iterative combination of the hierarchical ag-
glomerative algorithm with a partitioning k-medoids al-
gorithm to determine the number of clusters automati-
cally.

This classification algorithm does not need an initial distri-
bution of elements and gradually continues building and re-
viewing clusters until there are no more clusters to be built
and reviewed according to a given threshold of similarity.

We demonstrate that the new classification produces a set
of well-separated classes, not necessarily of similar size, that
are consistent (small changes in the pre-set parameter do not
alter classes strongly), stable with respect to the temporal se-
lection of data (for example, randomly chosen and shuffled),
stable across various spatial resolutions and data volumes,
and physically interpretable (i.e. final classes represent real
synoptic situations).

In this paper we describe the new classification method
and demonstrate its application to evaluation of global circu-
lation models. The final result of the evaluation is expressed
as the Jensen–Shannon distance that can be computed with
models statistics.

The paper is structured in the following way: (1) introduc-
tion, (2) data and domain description, (3) description of the
classification method, (4) presentation of resulting classes,
(5) presentation of weather extremes affiliated with the syn-
optic classes, (6) use of the derived classes in computing the
distance metric for evaluating CMIP6 climate simulations,
and (7) our conclusions and an outlook for future applica-
tions.

2 Data

We use four datasets in this study.
The first dataset, a dataset of synthetic data, is used to

demonstrate the performance of the classification method ex-
plaining why modifications to the classical k-means algo-
rithm are necessary. We generated these synthetic data us-
ing Gaussian-shaped anomalies trying to mimic the smooth
shape of geopotential patterns (the real data we wish to use
later) and to illustrate how such anomalies are treated by
the classification algorithm. The synthetic data are generated
randomly and have no genuine structure of the geopotential
patterns. However, any clustering algorithm should produce
clusters governed by the position of the largest anomaly in
the domain and its sign. The original circular shapes of the
synthetic generated data help to illustrate how such shapes
are grouped into classes by classifications in a simpler man-
ner as if we would have used the real data for this demonstra-
tion (using real data makes these distortions less obvious).

The synthetic data of 1000 elements were generated for
the domain of 22× 22 grid points. Each field includes one
large and 10 smaller Gaussian-shaped superimposed anoma-
lies with randomly chosen sizes that are randomly placed
within the domain and with randomly chosen signs (nega-

tive or positive anomaly); additionally, a randomly generated
linear shift of the mean is added to each field. Examples of
generated anomaly fields are shown in Fig. 1.

The second dataset, made up of data from the ERA-Interim
reanalysis (Dee et al., 2011) for the period of 1979–2018, is
used as a realistic historical representation of the atmospheric
circulation in Europe. The original spatial resolution of these
data is approximately 80 km (T255 spectral) on 60 levels.
Simulated synoptic regimes are represented by the geopoten-
tial height (zg) at the pressure level of 500 hPa sampled daily
at 12:00 UTC for two practical reasons: (1) it often matches
the midday peak in extreme weather conditions and (2) it is
a typically available time for model output (for subsequent
model evaluation). There is no necessity to use more frequent
fields, for example 1-, 3-, or 6-hourly, as this would increase
the data volume but would not add more information to the
synoptic patterns: these patterns do not replace each other in
a few hours but extend over large spatial scales and may per-
sist for several days or longer. Data fields zg are sampled on
a grid of 2°× 3° as suggested by participants of the COST
Action 733 (Tveito et al., 2016). The coarse-scale sampling
is sufficient due to the fact that the synoptic-scale 500 hPa
geopotential height does not require high resolution to repro-
duce the key physical mechanisms (Muñoz et al., 2017). The
chosen domain (Fig. 2) has 22×22 grid points with the lower
left corner at 20° W, 29° N.

Some typical synoptic patterns may occur in different sea-
sons but should be grouped into one class. As the mean and
the variance of the geopotential change seasonally (larger in
summer, smaller in winter) the original data should be pre-
processed in order to reduce the sensitivity of the classifi-
cation to the summer variance and the mean in the data. To
allow this, we pre-process the original geopotential height
fields (zg) by removing the seasonal amplitude from the orig-
inal daily data and normalize the resulting fields by the daily
standard deviation as in Eq. (1):

zga =
(
zg−µzg

)
/σzg . (1)

The mean µzg and the standard deviation σzg are calcu-
lated for each grid point and for each day of the year from
the 40 years of reanalysis data; both fields are smoothed in
time with a 151 d running average for each grid cell of the
domain. The long smoothing period was chosen with the
purpose of producing smooth seasonal curves of the mean
500 hPa-geopotential and its standard deviation. Using such
smooth mean and standard deviation curves for the normal-
ization of the geopotential fields (prior to clustering), we pre-
serve much of the field’s anomaly. The resulting geopotential
anomaly fields zga are used in the classification.

Additionally to zg, we retrieve ERA-Interim daily near-
surface atmosphere temperature (tas) and daily total precip-
itation (pr) to demonstrate potential weather extremes affili-
ated with each synoptic class (See Sect. 5). For these daily
variables we compute 90th percentile map at the original
spatial resolution within the chosen domain over the period
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Figure 1. Examples of synthetic data fields. Fields are shown pairwise (a1–b1, a2–b2) to demonstrate how visually perceived similarity is
quantified in terms of SSIM and MSE given under the lower plot for each pair. Contour lines show the amplitude of negative anomalies
(black) and positive anomalies (red) with an interval of 0.25. Pairs are ordered by their SSIM values from a dissimilar pair (on the left) to a
strongly similar pair (on the right). Note: smaller MSE does not guarantee larger SSIM values as for the pair a1–b1.

Figure 2. Domain for the classification of synoptic circulation pat-
terns: crosses show sample points every 2° in latitude and every 3°
in longitude, with 22× 22 grid points in total. The solid black line
shows the outer edge of the domain.

1979–2018. For each daily variable we create a map of ex-
ceedance: locations where the variable exceeds its 90th per-
centile get the value of 1; otherwise, the value is 0. These
binary maps are summed up for days of the same synoptic
class and normalized by the number of days in this class.
The final map represents the exceedance probability for the
synoptic class.

The third dataset is the alternative reanalysis NCEP1
(Kalnay et al., 1996). Any other reanalysis dataset may be
taken. Assuming that the alternative reanalysis captures the

synoptic circulation of the reference data from ERA-Interim
(both reanalysis products use and share at least some por-
tion of global weather observations) better than any uncon-
strained global circulation model, the evaluation of an alter-
native reanalysis gives an estimate of the lower bound for the
attainable value of the distance metric.

The fourth dataset is made up of climate model output
from the Coupled Model Intercomparison Project Phase 6
(CMIP6, https://wcrp-cmip.org/cmip-data-access/, last ac-
cess: 7 May 2024) (Eyring et al., 2016). Based on data
availability we chose 32 global circulation models for the
historical period 1979–2014, preferably simulation version
r1i1p1f1 when available or r1i1p1f2/r1i1p1f3 otherwise. We
use the output data for geopotential height at 500 hPa for the
32 chosen models to demonstrate a possible evaluation rou-
tine that uses the synoptic classes derived from the reference
reanalysis.

3 Method

A frequently used approach for identifying circulation
regimes is to apply the k-means clustering algorithm (Mil-
ligan, 1985) to the synoptic circulation data: an overview can
be found in the COST733cat database (Philipp et al., 2010)
and in the recent literature (Cannon et al., 2001; Hochman
et al., 2021; Grams et al., 2017; Muñoz et al., 2017; Fabi-
ano et al., 2020). K is the number of classes to be built (this
number must be set prior to the classification) and “means”
denotes the average of data elements within each class (also
called centroid). The k-means method partitions the input
data into k clusters so that each data element belongs to the
cluster with the nearest centroid, minimizing within-cluster
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variances; the k-means method is simple and always con-
verges to a solution. Although k-means and its multiple vari-
ants, as well as the more general group of SOM-based meth-
ods with neighbour radius ≥ 1, are commonly applied in the
field of atmospheric science, they exhibit serious limitations
with regard to our aims.

– Use centroids (means of all elements in a cluster) to rep-
resent classes: using mean fields as cluster centres in the
classification of atmospheric data fields may be subop-
timal and lead to building classes with dissimilar ele-
ments (as shown later in this paper).

– Require a pre-specified number of classes.

– Use structure-insensitive distance metrics (e.g. Eu-
clidean distance) for the optimization of the element
assignment among classes. The k-means clustering as-
signs every data element to the cluster centre that is
closest to it. This makes the method sensitive to noise
in the data and may lead to an assignment of a data ele-
ment to a structurally dissimilar cluster centre (Falkena
et al., 2021); a pair of data fields is structurally dissimi-
lar when it shows patterns perceived by an observer (or
characterized by any structural similarity measure) as
dissimilar.

The mean squared error (MSE) and the Pearson correlation
coefficient (PCC) are probably the dominant quantitative per-
formance metrics in the field of model evaluation and op-
timization. The k-means clustering algorithm typically uses
the MSE to measure the distance between clustered data ele-
ments. However, Wang and Bovik (2009) demonstrated that
the MSE has serious disadvantages when applied to data with
temporal and spatial dependencies and to data where the er-
ror is sensitive to the original signal. Mo et al. (2014) in turn
demonstrated that the PCC as a metric is insensitive to differ-
ences in the mean and variance. However, atmospheric data
(pressure, geopotential, temperature fields) often reveal de-
pendencies in time and space, as well as shifts in the mean
and differing variances. Both studies mentioned above (Mo
et al., 2014; Wang and Bovik, 2009) recommend using an
alternative measure for signal similarity, the structural simi-
larity index (SSIM), to quantify the goodness of match of two
patterns. The SSIM (Wang et al., 2004) simulates the human
visual system that “recognizes” structural patterns and error
signal dependencies and shows a superior performance as a
similarity measure over the MSE and PCC.

3.1 Structural similarity metric (SSIM) and its
modification

We use the structural similarity index (SSIM) (Wang et al.,
2004) to measure the similarity between synoptic patterns
(SP) represented by the geopotential height anomalies zga .
These fields are highly structured images, meaning that the

sample points of these images have strong spatial depen-
dencies, and these dependencies carry important information
about the structures of the highs and lows in the field. The
SSIM incorporates three perception-based components of
image difference – structure (covariance), luminance (mean),
and contrast (variance):

SSIM(x,y)=

(
2µxµy + c1

)(
2σxy + c2

)(
µ2
x +µ

2
y + c1

)(
σ 2
x + σ

2
y + c2

) , (2)

where x and y are non-negative signals, µx and µy are av-
erage values for x and y, σx and σy represent variance for x
and y, σxy is the covariance of x and y, and c1 and c2 are
stabilizing constants for weak denominator.

For each pair of images the SSIM value is computed,
which ranges −1≤ SSIM(x,y)≤ 1. The SSIM(x,y)= 1 if
and only if x = y (x and y are two identical images). In
practice, most SSIM values are positive and SSIM(x,y)< 1,
identifying some difference between two images. Negative
values of SSIM only occur when the covariance term σxy is
negative. The SSIM value is usually computed for multiple
sliding windows inside the image. But for simplicity here,
only one SSIM value is computed for the whole domain. As
the selected domain is relatively large and extends to high
latitudes, areal weighting was applied to all fields prior to
computing SSIM.

From the formulation of SSIM (2) it is important to note
that it is applicable as a similarity metric only to same-sign
data. However data in climate-related applications are often
mixed-sign and/or normalized (with the mean around zero).
Therefore, SSIM in its original form (2) cannot be used as
the product of means µx and µy with different signs in com-
bination with the negative covariance term σxy as it would
yield a positive SSIM value. To overcome this limitation Mo
et al. (2014) proposed a “shift” of x and y by the mini-
mum value of the two fields: x′ = x−ψxy and y′ = y−ψxy
are non-negative, where ψxy =min(xn,yn|n= 1,2, . . .,N ).
However, this modification weakens the sensitivity of SSIM
to the difference between the means as a result of the en-
larged denominator.

We suggest an alternative modification, which only moder-
ately modifies the magnitude of the denominator, preserving
the difference between the original means µx and µy :

SSIM(x,y)=

(
2µx ′µy ′+ c1

)(
2σxy + c2

)(
(µx ′)2

+
(
µy ′

)2
+ c1

)(
σ 2
x + σ

2
y + c2

) , (3)

where

µx
′
=
|µx | +

∣∣µy∣∣
2

, (4)

µy
′
= µx

′
+
∣∣µx −µy∣∣ . (5)

The latter formula (Eq. 3) is applicable to floating-point data
with mixed sign.
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The choice of stabilizing constants is “somewhat arbi-
trary” as SSIM is “fairly insensitive” to these values – the
authors say (Wang et al., 2004). Baker et al. (2022) suggest
that c1 and c2 should be the same to make both terms equally
influential and propose that c1 and c2 be “small enough to
not disproportionately influence” the final SSIM value. We
set c1 = c2 = 1e− 8 as suggested by Baker et al. (2022).

3.2 Examples of MSE and SSIM as measures of
similarity

We get the first glance at the ability of SSIM to capture the
structural similarity from its application to the synthetic data
(Fig. 1). Figure 1 shows fields of the synthetic pairs of maps
(ai , bi) for i = 1,2, their respective values of structural sim-
ilarity SSIM(ai,bi), and the mean square error MSE(ai,bi)
under each pair. Assuming MSE and SSIM are capable mea-
sures for similarity between two signals we expect MSE to
decline with growing SSIM as the distance between more
similar signals should be smaller than the distance between
less similar signals. We ordered exemplary pairs in Fig. 1
by their increasing SSIM value (from the left to right side
of the plot), but we see that respective MSE values of these
pairs do not decline monotonously with increasing similar-
ity. It is remarkable that MSE(a1,b1)<MSE(a2,b2); i.e. the
distance between the pair of signals (a1, b1) is smaller than
the distance between the pair (a2, b2), although signals a1
and b1 are obviously less similar to each other (they have
anomalies of different sizes and placements) than signals a2
and b2. This example implies that using MSE in a cluster-
ing algorithm would rather group the pair (a1, b1) into the
same class as the pair (a2, b2). Such preference results from
the insensitivity of MSE to the spatial correlation and could
lead to building classes with structurally dissimilar members.
Using SSIM instead of MSE helps to capture the degree of
similarity between clustered signals in a better way for the
exemplary synthetic data.

Now we show that SSIM applied to real geopotential
height anomalies zga is preferable over MSE: in Fig. 3
both pairs of geopotential anomalies have MSE(a,b)=
MSE(a,c)= 0.1; however, the pair a−b has a high value of
SSIM(a,b)= 0.7, whereas for the other pair SSIM(a,c)=
−0.3 indicates dissimilarity. In other words, the MSE does
not detect “obviously” dissimilar geopotential anomaly pat-
terns.

These two examples, with the synthetic data (Fig. 1) and
the real geopotential data (Fig. 3), illustrate the weakness of
the MSE as a similarity metric for comparison (and subse-
quent clustering) of structured data fields compared to the
SSIM. Therefore, we propose using SSIM as a similarity
measure in a new clustering algorithm.

3.3 Modifications of k-means applied to synthetic data

To support our previous arguments (about deficiencies of
MSE distance measure) we set up and run three experimen-
tal classifications on the synthetic data: (1) the classical k-
means clustering algorithm with the distance measure MSE
(k-means-MSE), (2) the k-means with the alternative simi-
larity measure SSIM (k-means-SSIM), and (3) the k-medoids
with the similarity measure SSIM (k-medoids-SSIM). To ob-
tain comparable results, we initialize all three experimen-
tal classifications with the same nine class centres (Fig. 4a),
which we a priori derived by an independent run of the hier-
archical agglomeration clustering (HAC) algorithm (with the
SSIM measure for cluster merging) on the synthetic dataset.
The HAC algorithm belongs to a family of hierarchical al-
gorithms and uses a completely different strategy for cluster
building as opposed to the partitioning algorithms k-means
and k-medoids. This ensures that the classes obtained with
HAC for the subsequent initialization of the k-means and k-
medoids algorithms do not provide any hidden advantage for
either of these algorithms.

Results of k-means-MSE classification (Fig. 4b). These
class centres (centroids) visibly deviate from the correspond-
ing initialization fields (Fig. 4a) by the reduced magnitude
of anomalies as a result of averaging multiple fields. Classes
3, 5, and 9 also have skewed shapes of anomalies, originally
circular, as a result of averaging multiple patterns with vari-
ously placed anomalies. We already showed (Figs. 1 and 3)
that small MSE does not guarantee the structural similarity
of compared patterns. Classes built with k-means-MSE show
very little structural detail as a result of building cluster cen-
troids over multiple class elements, whose structural similar-
ity remained unaccounted. The danger of having such classes
“with vanishing structure” is that they may serve as attractors
for further elements as the clustering algorithm runs trying
to minimize MSE only. This leads to the so-called “snow-
balling” effect; i.e. the more elements are assigned to this
class, the less structure its centroid shows, the more elements
are assigned, and so on. Cluster 9 (Fig. S1 in the Supple-
ment) is a good example of such a “snowball” class: although
all shown elements have comparably small MSE to the fi-
nal class centre, their visual (for an observer) and computed
similarity (value of SSIM) differs strongly as shown for a
group of the first 28 elements (out of 132), indicating a strong
structural inhomogeneity of patterns contained in one class.
This example demonstrates the danger of building snowball
classes when using MSE as a distance metric for data with
highly structured patterns.

Results of k-means-SSIM classification (Fig. 4c). In an
attempt to avoid building structurally inhomogeneous clus-
ters we replaced the Euclidean distance metric MSE by the
structural similarity measure SSIM in the classification algo-
rithm, yielding the k-means-SSIM classification. Retrieved
classes show some structural patterns that resemble the ini-
tial anomaly patterns in the data, although they are weakly
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Figure 3. The pairs of geopotential anomaly fields a–b and a–c have the same small MSE= 0.1 but are strongly different in terms of SSIM:
SSIM(a,b)= 0.7 means that fields a and b are similar, and SSIM(a,c)=−0.3 means that fields a and c are dissimilar. Contour lines show
the amplitude of anomalies with an interval of 1.

Figure 4. Cluster centres: (a) derived by the HAC algorithm and used for the subsequent initialization of the partitioning algorithms;
resulting from (b) k-means-MSE classification, (c) k-means-SSIM classification, and (d) k-medoids-SSIM classification. Contour lines show
the amplitude of negative (black) and positive anomalies (red) with an interval of 0.25. In panels (b), (c), and (d) above each plot numbers of
elements (in brackets) in each class are shown.

pronounced: the amplitude of the large anomaly is reduced
and smaller anomalies have nearly vanished by averaging.
We see that using SSIM instead of MSE helped to preserve

circular shapes of the initial anomalies to some degree, im-
plying that only structurally similar patterns are grouped into
one class. However, resulting classes are too smooth in struc-
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ture (reduced amplitude of anomalies) due to averaging by
building centroids.

Assuming the synthetic data represent some physically
meaningful field, for example a pressure or a geopotential
field, the weakening of the anomaly amplitude by k-means-
SSIM and k-means-MSE may have serious implications for
the interpretability of the resulting classes; i.e. these classes
do not represent any of the original data elements and there-
fore none of the realistic states of the atmosphere associated
with these data. Additionally, such smooth fields would not
be able to represent synoptic situations with extreme gradi-
ents that may be linked to extreme weather.

We construct a new k-medoids-SSIM classification
(Fig. 4d) as we keep the similarity metric SSIM (it showed
advantages in structure-preserving compared to MSE) but re-
place the representation of cluster centres in the clustering
algorithm with single “representative” elements – medoids
(Kaufman and Rousseeuw, 1990). A medoid is the element
of the class with the smallest dissimilarity to all other ele-
ments in this class. Each medoid itself is part of the data.
Retrieved classes (Fig. 4d) show strong anomaly amplitudes
and do not necessarily resemble their initialization fields, ex-
cept classes 2 and 7: those medoids remained nearly “un-
touched” by the classification. The distribution of cluster el-
ements in k-medoids-SSIM is done at each step of the al-
gorithm by computing the medoid (the element with most
mean similarity to all cluster elements) of each cluster. This
procedure is less sensitive to the addition of new elements
to the cluster than the recomputation of centroids. New clus-
ter elements do not necessarily modify the cluster’s medoid
defined at the previous step of the algorithm. This robustness
of the k-medoids algorithm (Kaufman and Rousseeuw, 1990)
with regard to outliers and noise helps to avoid snowballing
in cluster building and explains the match of classes 2 and 7
with their initial fields; i.e. the initialization of these classes
was a “good guess” that proved to be robust throughout the
k-medoids-SSIM algorithm (note: initial fields ought not to
be good guesses and to remain preserved by the algorithm).

Following the arguments resulting from the application of
the three classification algorithms to the synthetic data with
structured patterns and structured errors, we propose using
the k-medoids algorithm with the similarity metric SSIM for
classification of the real geopotential data as only this algo-
rithm builds a set of classes that represent data elements and
include only structurally similar elements.

3.4 Initialization of classes

There are multiple ways of defining the number of classes for
the partitioning algorithm k-medoids (similarly to k-means)
ranging from a random guess to the analysis of the data based
on principal component analysis (PCA), also known as em-
pirical orthogonal functions (Huth, 2000). Lee and Sheri-
dan (2012) suggested the initialization of the clustering al-
gorithm by selected PCAs. The reason for this statement was

the common assumption that the first few modes returned by
PCA are physically interpretable and match the underlying
signal in the data. However, Fulton and Hegerl (2021) tested
this signal-extraction method and demonstrated that it has
serious deficiencies when extracting multiple additive syn-
thetic modes (false dipoles instead of monopoles, which may
lead to serious misinterpretation of extracted modes). They
also found that PCA tends to mix independent spatial regions
into single modes. Huth and Beranová (2021) demonstrated
that unrotated PCAs (still often used) result in patterns that
are rather artefacts of the analysis than true modes of vari-
ability. Additionally, methods that apply PCA filtering to in-
put data do not suit our purpose as these methods eliminate
rare synoptic patterns from the analysis, taking into account
only a few PCAs with the largest eigenvalues and prevent-
ing building classes for rare synoptic situations. Guided by
the abovementioned ideas, we decided not to use the PCA-
based initialization of the clustering algorithm. For the ini-
tialization of k-medoids we suggest using another classical
clustering algorithm – hierarchical agglomerative clustering
(HAC). An example of HAC-retrieved initial classes is de-
scribed in Sect. 3.3 with the synthetic data: the HAC algo-
rithm builds classes whose centres are used to initialize the
subsequent partitioning algorithm. Furthermore, we suggest
using a combination of the two clustering algorithms – HAC
and k-medoids – interactively; i.e. merge similar clusters at
the first step (HAC) and distribute all data elements to the
new clusters at the second step. This two-stage algorithm
stops when no similar clusters are left to combine. This is
the final set of clusters. The centres (medoids) of final clus-
ters give the set of classes. We describe the new two-stage
clustering algorithm below.

3.5 New classification method: two-stage clustering
algorithm

Following the previous considerations, we made three essen-
tial decisions to modify the classic k-means algorithm in or-
der to construct an algorithm better suited (from our perspec-
tive) for building classes of synoptic patterns.

– Decision 1: use an alternative similarity measure

– Decision 2: use medoids to represent classes

– Decision 3: use a two-stage algorithm for the stepwise
determination of the number of classes

The two-stage clustering algorithm combines two clustering
methods – hierarchical agglomerative clustering (HAC) and
k-medoids clustering – in such a way that the output from the
first is used as input into the second and vice versa. It inherits
the strengths of both contributing algorithms.

Initially each data element represents its own cluster. Sim-
ilarity between each pair of synoptic patterns is computed as
a structural similarity index metric (SSIM). The HAC is a
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very flexible clustering method that can use any distance or
(dis)similarity measure as it allows different rules for aggre-
gating data into clusters (Schubert and Rousseeuw, 2021).
At each step, HAC determines the number of clusters and
their medoids using a threshold on the SSIM value for merg-
ing similar elements into one cluster. The merging threshold
THmerge is set by the user and intuitively means the mini-
mal human-perceived similarity of a pair of data elements to
be merged in one cluster. K-medoids builds clusters (sim-
ilarly to the widely known method of k-means) using the
medoid prototypes and an arbitrary (dis)similarity measure
SSIM for cluster elements (D’urso and Massari, 2019; Schu-
bert and Rousseeuw, 2021): it rearranges all data elements
among medoid prototypes (an operation that HAC cannot
do) in order to maximize the within-cluster homogeneity.K-
medoids in few iterations produces optimized clusters. The
new medoids are computed and initialize the next step of
HAC and so on.

At each iteration of the two-stage clustering, the two steps
are done in the following way.

1. The first step: HAC (merge clusters)

1.1. Clusters with sufficient similarity SSIM > THmerge are
merged: clusters with higher similarity are merged prior
to those with lower similarity (the similarity between
two clusters is measured as the similarity between their
medoid fields).

1.2. Temporary cluster medoids are recomputed.

2. The second step: k-medoids (recompose clusters)

2.1. Temporary cluster medoids from the first step are used
to initialize the k-medoids clustering algorithm.

2.2. Each data element is assigned to the cluster with the
most similar medoid.

2.3. Cluster medoids are recomputed.

2.4. K-medoids clustering is repeated until an optimum (for
the given number of medoids) distribution of all data
elements is achieved.

Both steps are repeated until there is no sufficiently similar
pair of clusters left to be merged.

The presented classification method, as any other classi-
fication method, requires some pre-set parameters. The final
number of clusters produced by the two-stage clustering al-
gorithm depends on the threshold THmerge for merging el-
ements into clusters and, eventually, on the amount of data
to be clustered. Although the choice of THmerge is crucial,
there is no statistical or analytical formula for computing
this threshold; it can only be chosen subjectively by com-
paring pairs of synoptic patterns (SPs) and asking observers
about their perception of similarity. Examples of “similar”

synoptic patterns are shown in Fig. 5. We analysed multi-
ple pairs of SPs and, based on the personal perception of
similarity (our own as well as of persons not involved in
the development of this classification method), estimated that
the threshold value THmerge must lie between 0.40 and 0.45
for recognizable similarity; i.e. pairs with an SSIM value
less than 0.40 are generally perceived as dissimilar. Figure 5
illustrates examples of similarity between three exemplary
reference SPs and arbitrarily chosen SPs with SSIM val-
ues of 0.60, 0.50, 0.45, 0.40, and −0.10 to each reference.
SPs with SSIM≥ 0.60 are “strongly similar” to the refer-
ence, SPs with 0.40≤ SSIM<0.60 are similar, and those
with SSIM< 0.40 are “weakly similar” to the reference. SPs
with SSIM< 0 are “dissimilar” to the reference as, by defi-
nition of SSIM, the negative values of SSIM result from neg-
ative covariance of compared patterns.

The definition of the threshold THmerge implies that a re-
duction of its value loosens the requirement on data simi-
larity for cluster building and provides a smaller number of
final classes. On the contrary, an increase in THmerge tight-
ens the requirement on the data similarity for cluster build-
ing and therefore leads to a larger number of final classes. At
the same time, the higher THmerge also loosens the require-
ment of separation between classes and permits a higher sim-
ilarity among them. Thus, varying the value of THmerge may
be used, to some extent, to steer the clustering algorithm to
produce the number of final classes of a particularly desired
magnitude.

Keeping in mind the intended application (evaluation of
climate models), the following question arises: how many
classes do we need to describe the synoptic flow? In the
present study, we use 40 years of daily synoptic patterns and
14 600 daily data fields, which is a usual number of avail-
able reference data in climate research for the industrial time.
How many classes do we need to represent synoptic situa-
tions of these 40 years? Would 10 or 100 be sufficient? The
answer to this question is not trivial. The number of derived
classes depends on the pre-set parameter THmerge. Because
values of THmerge smaller than 0.40 were mainly discarded
by observers, testing higher values remains reasonable. We
test three values for the threshold THmerge – 0.40, 0.425, and
0.45. Thus, we produce three sets of classes whose separa-
bility as a function of THmerge can be analysed.

3.6 Criteria for the evaluation of the clustering algorithm
and the choice of the threshold THmerge for class
merging

We analyse the performance of the new method using four
criteria suggested by Huth (1996): the clusters should (i) be
consistent when pre-set parameters are changed, (ii) be well-
separated both from each other and from the entire dataset,
(iii) be stable in space and time, and (iv) reproduce realistic
synoptic patterns.
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Figure 5. Examples of three synoptic patterns zga (left column – reference). Each row contains examples of alternative synoptic patterns
with the SSIM value to the reference. Contour lines show the amplitude of anomalies with an interval of 1.

Cluster consistency. The consistent evolution of classes
implies that small changes in the pre-set parameter THmerge
lead only to small changes in the classes. To illustrate the sen-
sitivity of the clustering algorithm to the choice of THmerge
it was run for three values chosen in the previous chapter:
the reference value of 0.40 and two higher values of 0.425
and 0.45. Classes are consistent if an increase in the num-
ber of classes caused by a change in THmerge is realized pre-
dominantly by splitting a few classes, with others remain-
ing almost unchanged. Such evolution is difficult to quantify.
The consistency of the clusters is illustrated by similarity di-
agrams – diagrams that resemble the “arrow diagrams” in
Huth (1996) – for the sets of classes built with the varying
parameter THmerge.

Cluster separability. We calculate two metrics introduced
in the COST Action 733 report (Tveito et al., 2016) to char-
acterize the separability and within-class variability. Addi-
tionally we introduce a new indicator of class separability in
terms of similarity. The separation of clusters from randomly
chosen data is addressed by the comparison of the metrics or
indicators calculated from the clusters to the metrics calcu-
lated from “random groups”. The random groups are gener-
ated for each cluster as groups of the same size but of ran-
domly chosen data elements (one realization).

Metric 1: the explained variation EV of the data is deter-
mined as the residual between 1.0 and the ratio of the sum of
squares within classes (synoptic types) WSS to the total sum
of squares TSS:

EV= 1−
WSS
TSS

. (6)

Metric 2: the distance ratio DRATIO is the ratio of the mean
distance between elements assigned to the same class DI and

the mean distance between elements assigned to different
classes DO. The Euclidean distance is used to compute DI
and DO:

DRATIO=
DI
DO

. (7)

We construct a new indicator SSIMRATIO for the class sep-
arability; similarly to the DRATIO, it is defined as the ratio
of the mean similarity within classes (SSIMin) to the mean
similarity among different classes (SSIMout):

SSIMRATIO=
SSIMin

SSIMout
. (8)

The mean similarity within classes SSIMin is calculated as
the mean “internal” similarity of all classes, where the mean
similarity value of each element j to each element k of the
same class i is computed.

SSIMin =
1
n

n∑
i=1

SSIMinternal,i (9)

SSIMinternal,i =
1
mi

mi∑
j=1

1
mi

mi∑
k=1

SSIM(j,k) (10)

Here, n is the number of classes, mi is the number of ele-
ments in class i, and SSIM(j, k) is the similarity of element j
to element k of the same class i.

Mean similarity to other classes SSIMout is calculated as
the mean similarity of all class elements to all class elements
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of all other classes except its own:

SSIMout =
1
n

n∑
i=1

SSIMexternal,i, (11)

SSIMexternal,i =
1
mi

mi∑
j=1

1
n∑

k=1,k 6=j
mk

n∑
k=1,k 6=j

SSIM(j,k) ,

(12)

where n is the number of classes, mi is the number of ele-
ments in class i, SSIM(j, k) is the similarity of element j to
element k of any other class but not of the same class, and

n∑
k=1,k 6=j

mk is the number of all elements in all classes except

class j .
Indicator SSIMRATIO could be viewed as an indicator of

separability of classes in terms of pairwise similarity value:
larger values tell us about stronger within-class similarity in
comparison to similarity of other classes.

Note that after comparing the computed metrics and indi-
cators, we discuss the choice of the threshold THmerge. Once
chosen, this value of THmerge will be used for further analysis
throughout the paper.

According to the stop criterion of the clustering algorithm,
each pair of derived classes has a similarity value less than
THmerge; i.e. in the classification obtained with THmerge =

0.40 pairs of final class medoids are less similar to each other
than this threshold. Although the classes are represented by
the cluster medoids in the clustering algorithm, it is also rea-
sonable to require that the resulting cluster centroids (means)
be at least not strongly similar (SSIM< 0.60) to each other.
We compute matrices of similarities for medoids and for cen-
troids and analyse how well the medoid separation algorithm
provides the separation of centroids in the final set of classes.

Cluster temporal stability. The amount of input of synoptic
data is crucial for building the representative set of classes. In
periods of only few years of data important synoptic circula-
tions might be simply unrepresented or underrepresented be-
cause of long-term variability and therefore missing in the fi-
nal set of classes. The clustering algorithm is run on a contin-
uously increasing data volume of 1, 2, . . . , 40 years taken in
chronological order: classes for 1979–1979 (1-year period),
classes for 1979–1980 (2-year period), and classes for 1979–
2018 (40-year period). These input data used in chronologi-
cal order are called “reference data”.

However, the classification method may produce a differ-
ent number of classes for data of the same volume but differ-
ent years. Therefore, in order to produce estimations of class
numbers that are robust to the choice of the data, we addi-
tionally run 60 classifications for the same data volumes of
1, 2, . . . , 40 years but picking the data randomly: 30 clas-
sifications are built with data sampled randomly out of the
whole dataset (bootstrap method for data selection; i.e. data
elements may be repeated), and cluster centres are initialized

as described above in the method. Clusters with higher simi-
larity are merged prior to those with lower similarity.

A total of 30 other classifications are built on the data se-
lected randomly (but without repetitions) and cluster centres
are initialized randomly: cluster pairs are merged randomly
without the preference for more similar pairs (also in a case
when the input data are the same as the reference data, the
random initialization of cluster centres yields different path-
ways of class merging).

The first group of 30 classifications serves to prove the ro-
bustness of the classification method to the selection of the
input data. The second group of the 30 classifications serves
to illustrate the robustness to the initialization of clusters by
the input data. We call both of two groups together “random-
ized data”.

We expect that after a certain critical data amount is accu-
mulated, further increase does not lead to a discovery of new
classes and the temporal stability of the method is achieved.
The minimum critical data amount, minNYR (the minimum
number of years of data), is set when the number of resulting
classes “levels out” and stabilizes.

The total 61 classifications (obtained on 1 reference data
+ 60 randomized data) are compared to each other in the
following way.

1. Search for each class i of the classification k its coun-
terpart (most similar class) j in the classification l: each
pair of counterparts (i,j ) is detected by maximizing
SSIM(i,j) for all i and j .

2. Weight the similarity value SSIM(i, j) by the frequency
of i in the classification k: SSIM(i, j)*HIST(i), where
HIST(i) is the relative frequency of class i in the classi-
fication k.

3. Compute the total mean weighted similarity, mwSSIM,
of the classification k to the classification l as the sum
of weighted similarity values for all pairs of classes and
their counterparts:

mwSSIM(k, l)=
N∑
i

SSIM(i,j )×HIST(i) , (13)

where N is the number of classes in the classification k,
i =1,N , j is the counterpart of class i (class i belongs to the
classification k, class j is belongs to the classification l and is
the most similar element to i), and HIST(i) is the frequency
of class i in the classification k.

We compute the matrix of mwSSIM values using the 61
classifications retrieved for at least minNYR years of data
(note: the number minNYR is defined based on the refer-
ence data as the minimum number of years of input data
necessary to possibly represent all classes; i.e. a further in-
crease in this number does not increase the number of re-
sulting classes). We require this matrix to have all elements
mwSSIMi,j > 0.40; i.e. all pairs of classifications derived
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from the same volume of data must be on average similar
to each other. This “mean similarity” of the classifications
indicates the temporal stability of the classes.

Cluster spatial stability. The stability of the method in
space cannot be addressed by applying the clustering algo-
rithm straightforwardly to the data at a lower or higher spatial
resolution because the pre-set threshold for cluster merging
THmerge is not directly transferable to other spatial grids. The
reason for this is simple: a pair of images at a high resolu-
tion that appears dissimilar to an observer may have similar
low-resolution prototypes (when similarity-determining de-
tails are averaged out). However, it can be required that the
method determines structurally similar classes at any spatial
resolution. To test this, the clustering algorithm is run on the
same data but with reduced (4°×6°) and increased (1°×1.5°)
spatial resolution. The corresponding datasets were built by
resampling the original data at low resolution (4°× 6°) and
high resolution (1°× 1.5°). The retrieved classes from these
datasets are compared to the classes on the reference grid
(2°× 3°).

Cluster reproduction and representativity. The method
uses medoids as cluster centres, and therefore the resulting
class representatives (set of medoids) are elements of the
original data and are physically interpretable and plausible
synoptic patterns. However, it is necessary to demand that
a cluster medoid represents all cluster elements and their
whole entity as a group. For each cluster, we compare the
cluster centre (medoid) to the cluster mean (centroid) and
calculate their similarity value. Based on the similarity val-
ues we analyse the representativity of the cluster elements by
the medoids. We require that all medoids are strongly similar
(SSIM> 0.60) to their centroids. Representing a cluster by a
medoid guarantees that the medoid has a minimum similarity
to each of the cluster elements; furthermore, it is the element
with the largest total similarity to all of cluster elements. If
a centroid and a medoid of some class are dissimilar, this in-
dicates that there is a group of elements in the class that is
dissimilar to the medoid.

3.7 Statistics for model evaluation and the
Jensen–Shannon distance metric

The classification done on the reference data (ERA-Interim
reanalysis 1979–2018) yields the set of “reference SP
classes”. Each data element of the reference data, of an alter-
native reanalysis data (NCEP1), and of each CMIP6 model is
assigned to one of the reference SP classes to which it has the
maximal similarity. We suggest comparing different datasets
assigned to the reference SP classes using the following
statistics: histogram of frequencies (HIST) for SP classes
through all years and seasons, histograms of frequencies for
each season (HISTDJF, HISTMAM, HISTJJA, HISTSON), the
matrix of transitions (TRANSIT) between available classes
(frequency for each SP class to follow another SP class), and
probability of persistence (PERSIST) of each SP class for 1,

2, and 25 d. Whereas statistics HIST, HISTDJF, HISTMAM,
HISTJJA, and HISTSON are one-dimensional vectors with the
number of components equal to the number of SP classes,
the TRANSIT and PERSIST are two-dimensional matrices.
In the case of high dimensionality, i.e. many SP classes, the
comparison of these vectors and matrices may become awk-
ward and ambiguous. Therefore, to quantify differences be-
tween pairs of such statistics we suggest weighting contri-
butions of each class by its frequency. We compute Jensen–
Shannon divergence (Eq. 14, similar to the widely used
Kullback–Leibler divergence but symmetric, and it always
has a finite value): frequent elements govern contributions to
the distance measure, and rare elements make smaller con-
tributions. The Jensen–Shannon divergence, JSD, used here
to measure the similarity between two probability distribu-
tions P and Q defined on the same probability space χ , is
computed in this way:

JSD(P ‖Q)=
1
2

∑
x∈X

P (x) ln
P (x)
M(x)

+
1
2

∑
x∈X

Q(x) ln
Q(x)
M(x)

, (14)

where the probability distributions P and Q are the normal-
ized (the sum of all elements is 1.0) frequency histograms as
well as transition and persistence matrices of the reference
(Q) and a model (P ); space χ is a one- or two-dimensional
space; and M is the mean probability distribution.

M =
P +Q

2
(15)

It is common to compute the square root of JSD as a true
metric for distance, the Jensen–Shannon distance (Eq. 16):

JS(P ‖Q)=
√

JSD(P ‖Q). (16)

Such a distance measure is robust against the “noise” from
rare classes as well as rare class-to-class transitions but not
insensitive to them. We show the Jensen–Shannon distance
metric for various pairs of distributions in Fig. S2 and discuss
its sensitivity in the Supplement section “Sensitivity of the
Jensen–Shannon distance metric”.

4 Results

4.1 Synoptic classes, effect of the threshold THmerge on
the number of classes

We run the classification algorithm on the reference data for a
consistently increasing data volume of 1, 2, and 40 years and
perform 60 additional runs with the randomized data for the
same data volumes. We repeat every run three times, vary-
ing the threshold THmerge – the threshold on similarity be-
tween two SPs that defines when these SPs are merged into
one class. In total (1+ 60)× 3= 183 runs of the classifica-
tion algorithm, each yielding a set of classes, are available
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Figure 6. The number of classes depends on the threshold THmerge
and on the amount of clustered data. For each tested value of
THmerge the solid black line shows the mean number of classes
computed from 61 classifications (1 with reference data + 60 with
randomized data); the shaded area shows the range of 1 standard
deviation from the mean. The circles show numbers of classes from
classifications with the reference data, and circles with crosses high-
light class numbers with THmerge = 0.425. The horizontal dashed
lines show the mean number of classes for each THmerge value com-
puted from the reference data of 40 years.

for the analysis. Figure 6 shows the evolution of the num-
ber of classes as a function of the volume of input data for
three values of THmerge. Figure 6 illustrates the influence of
tightening the requirement on similarity for building clus-
ters: higher thresholds THmerge produce larger numbers of
final classes with higher within-class similarity of members.
However, at the same time the higher THmerge also loosens
the requirement for separation among classes (higher simi-
larity between classes is possible).

The application of three values for the threshold
(THmerge = 0.40, 0.425, and 0.45) to the reference data with
a maximal volume of 40 years produces 37, 52, and 89
classes, respectively. Computed for all 61 classifications (1
with reference data + 60 with randomized data) for vary-
ing THmerge the numbers of classes (mean ± standard devia-
tion) are estimated as 42±6, 59±4, and 84±5, respectively
(Fig. 6). As expected, the higher values of THmerge provide
larger numbers of classes, although not larger standard de-
viations of these numbers from their means, as a result of
tightening the requirement for within-class similarity.

One of the features of our new two-stage clustering al-
gorithm is that it classifies all synoptic patterns including
rare ones. This is the reason for the high number of classes
built by this algorithm. Figure 7 shows the 37 classes built
on 40 years of reference data with THmerge = 0.40: the six
most frequent classes SP1, SP3, SP4, SP6, SP15, and SP27
together represent∼ 42% of the input data, and 10 most rare
classes (SP11, SP20, SP21, SP23, SP26, SP30, SP31, SP34,

SP35, SP37) together represent less than 5 % of the input
data.

At first glance all 37 classes in Fig. 7 may look “patchy”
and not different enough from each other. However, all these
classes are not similar according to our definition as each
pair of them has a similarity value smaller than 0.40 (the
threshold chosen for the classification algorithm). It is im-
portant to note that as the class separation is done in terms of
SSIM these classes do not have to be differentiated in terms
of MSE. We also show (Figs. 1 and 3) examples of pairs of
patterns that are similar in terms of MSE but differ in terms
of SSIM.

We take a closer look at the six most frequent SP classes
and their full fields (mean + anomaly), as shown in Fig. 8.
We compare these six classes to the 29 synoptic weather
patterns GWL-REA v1.3 (personal communication) devel-
oped at the German Meteorological Service for the Hess–
Brezowksy Grosswetterlagen identified in reanalysis data
based on correlations in combination with Lamb weather
type statistics (James and Ostermöller, 2022). For each of the
six SP classes we compare the similarity value to each of the
GWL-REA v1.3 fields (geopotential) and identify the most
similar one (or pair).

– SP1: cyclonic southwesterly (SWZ – Südwestlage zyk-
lonal)/cyclonic westerly (WZ – Westlage zyklonal)

– SP6: low over central Europe (TM – Tief Mitteleuropa)

– SP27: low over the British Isles (TB – Tief Britische
Inseln)

– SP15: anticyclonic westerly (WA – Westlage antizyk-
lonal)

– SP4: anticyclonic southeasterly (SEA – Südostlage an-
tizyklonal)

– SP3: anticyclonic northwesterly (NWA – Nordwestlage
antizyklonal)

Correspondences of the six frequent classes to the patterns
GWL-REA v1.3 provide us with evidence that, albeit not
tuned to and not required to mimic semi-manual classifica-
tions, the new classification method determines not just ar-
bitrary synoptic patterns but meaningful synoptic situations
described by experts.

The three sets of classes obtained from the reference data
of the full volume with varying THmerge are further analysed
with respect to consistency, separability, stability, and repre-
sentativity of the data.

4.2 Cluster consistency

The evolution of classes built with different values of
THmerge is presented in the form of a diagram (Fig. 9), which
is also called an arrow diagram, suggesting that lines show
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Figure 7. SP classes (anomalies of geopotential height) obtained from the reference data (ERA-Interim reanalysis, 1979–2018) with the
threshold for similarity THmerge = 0.40. Frequencies of SP classes are shown above the corresponding plots.

Figure 8. Geopotential height (m) for the six most frequent SP classes. The contour lines show the geopotential height levels every 100 m
(labelled). The index of each SP class and its frequency are on the top of corresponding plots.

how classes are related among different sets of classes. For
the arrow diagram in Fig. 9 the classes are derived by run-
ning the clustering algorithm on the data for 1 full year. We
chose this minimal data volume to build classes with few
elements to demonstrate the tightening similarity constraint
(by the threshold THmerge) in the best way as classes with

large numbers of elements may reveal similarities among
subsets of some elements and overload the diagram. In Fig. 9
identical classes (SSIM = 1 for the medoids) are connected
with thick solid black lines, strongly similar classes (0.60≤
SSIM< 1) are connected with dashed thick black lines, and
similar classes (0.40≤ SSIM< 0.60) are connected by thin
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grey lines, where connections with 0.40≤ SSIM< 0.425
are dashed. When increasing the merging threshold of 0.40
to 0.425, the total number of classes rises from 31 to 34,
with 26 classes remaining identical or strongly similar, 5
classes remaining without a strongly similar counterpart, and
8 new classes emerging. Further increasing the threshold
value from 0.425 to 0.45 leads to building 39 classes, with
36 classes remaining identical or strongly similar, 2 classes
remaining without a strongly similar counterpart, and 7 new
classes emerging. The new emerging classes may have simi-
larity to more than one previous class. We see that 23 classes
retain their medoids through the two steps of tightening the
similarity constraint (0.40→ 0.425→ 0.45). It is important
to note that the identical classes have only one counterpart
in each set of classes, which means they are “transferred”
to the next set of classes obtained with a higher THmerge
and not “split” into new classes. The strongly similar classes
typically have only one or – rarely – only a few counter-
parts; i.e. they are rarely split. New emerging classes may
have similarities to multiple original classes. The fulfilment
of the demand for the consistency of class evolution is shown
by the prevalence of identical classes in the diagram, indi-
cating one-to-one correspondence between classes of differ-
ent sets. The identical classes, which remain unchanged, are
connected with thick solid lines and are often accompanied
by a “bunch” of thin lines. Such bunches are mainly pro-
duced by the breaking off of some elements from the class on
the left side into another class on the right side; the medoid
of the original class on the left side remains preserved. For
new emerging classes (on the right side) similarities to mul-
tiple original classes (on the left side) are acceptable as new
classes may contain elements broken off from multiple origi-
nal left-side classes. An unwanted form of the diagram would
be a distribution of classes from set to set connected with thin
lines, without clearly preserved identical types.

4.3 Cluster separability

The metrics EV and DRATIO and the indicators SSIMin,
SSIMout, and SSIMRATIO computed from the classes ob-
tained with increasing THmerge illustrate the importance of
the choice of this threshold and its influence on the number
of derived classes and their separability. Table 1 presents the
values of the chosen metrics and indicators. Please note that
metrics EV and DRATIO illustrate only the influence of the
THmerge on the final set of classes and do not describe the
quality of classes as they are computed using the Euclidean
distance – a measure that was not optimized by the clustering
algorithm. Therefore, EV and DRATIO should not be used to
assess the absolute performance of the classification, but the
relative performance depending on THmerge.

Classifications with larger numbers of classes achieve a
better skill EV than those with fewer classes due to the natu-
ral fact that a larger number of classes captures a higher frac-
tion of the variation. The extreme case, when the total varia-

Figure 9. Similarity between classes derived with different merg-
ing threshold: (left) 31 classes obtained with THmerge = 0.40,
(middle) 34 classes with THmerge = 0.425, and (right) 39 classes
with THmerge = 0.45. Thick black lines connect identical classes
(SSIM= 1), dashed black lines connect strongly similar classes
(0.60≤ SSIM< 1), and grey lines connect similar classes (0.40≤
SSIM< 0.60), where connections with 0.40≤ SSIM< 0.425 are
dashed. Following the solid black lines from left to right, 23 classes
retain their medoids.

tion is explained completely (EV = 1), is achieved when the
number of classes is equal to the number of data. Therefore,
it would be dangerous to favour classifications with larger
numbers of classes based on this metric. In the present study,
the set of classes obtained with THmerge = 0.45 provides the
highest ratio of explained variation. Clusters of randomly
chosen groups, as expected, show nearly no explained varia-
tion at all (see Table 1).

Values of the metric DRATIO< 1.0 indicate that, on aver-
age, elements within classes have shorter Euclidean distance
to each other than to elements of other classes. Smaller val-
ues of DRATIO indicate a stronger separation of classes. The
highest value of THmerge = 0.45 provides the lowest value of
DRATIO and therefore shows the best separation of classes
in terms of Euclidean distance. In randomly chosen groups
the value of DRATIO is close to 1, as also shown in Table 1,
because of nearly equal distances between elements of the
same class and of different classes.

Indicators SSIMin and SSIMout represent the influence
of the similarity constraint by THmerge on the separability
and homogeneity of the final classes. A good performance
of the classification is achieved when similarity among el-
ements of one class SSIMin is much higher than the sim-
ilarity to elements of other classes SSIMout; i.e. SSIMRA-
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Table 1. Metrics for classes obtained in three experiments with varying merging thresholds (THmerge) applied to the reference data of
40 years. Values after “/” are those computed for random groups.

THmerge Number EV DRATIO SSIMin SSIMout SSIMRATIO
of classes classes/random classes/random classes/random classes/random classes/random

0.40 37 0.3825/0.0028 0.6059/0.9968 0.3252/0.0317 0.0158/0.0316 20.58/1.00
0.425 52 0.4055/0.0042 0.5839/0.9954 0.3412/0.0319 0.0180/0.0316 19.96/1.01
0.45 89 0.4476/0.0066 0.5447/0.9929 0.3695/0.0317 0.0215/0.0316 17.19/1.00

TIO should be maximized. The maximal mean similarity
among elements of the same class (SSIin = 0.3695) is given
by THmerge = 0.45; however, the mean similarity between
pairs of elements of different classes (SSIout = 0.0215) is
also the highest for this threshold, indicating stronger sim-
ilarities among elements of different classes as well. Finally,
SSIMRATIO – an indicator of class separation in terms of
similarity – is highest (20.58) for THmerge = 0.40 and shows
the favourable separation of classes in terms of similarity
among elements.

At this point we make an important decision and choose
the classification obtained with the merging threshold of
THmerge = 0.40 for further analysis for two reasons: (1) this
threshold provides good class separation, and (2) using this
value we produce fewer classes, which can be meaningfully
statistically analysed (a higher threshold value would pro-
duce more classes with fewer members). It is also important
to note that a smaller number of classes is easier to describe
verbally, as well as more intuitive to understand and to sepa-
rate visually.

The stop criterion in the clustering algorithm guarantees
that the maximum similarity between final classes is less than
THmerge. In other words, there are no pairs of final medoids
similar to each other; otherwise, they would have ended up in
the same cluster. Although it cannot be demanded that clus-
ter centroids (means) also satisfy the same criterion for the
maximum pairwise similarity, it can be demanded that clus-
ter centroids are at least not strongly similar, i.e. pairwise
SSIM< 0.60. Figure 10 shows matrices of pairwise simi-
larities for medoids (left) and for corresponding centroids
(right). Some pairs of centroids have a similarity value higher
than any pair of medoids (circles show SSIM≥ 0.40) due to
the fact that the similarity of medoids but not of centroids
was the optimized quantity in the clustering algorithm. The
maximal similarity for a pair of centroids is SSIM = 0.542
(for centroids 1 and 22); i.e. there is no pair of strongly sim-
ilar centroids. This gives evidence that the two-stage clus-
tering algorithm that uses medoids as class centres produces
classes with meaningfully separated centroids.

4.4 Cluster stability

Temporal stability. As we apply the classification algorithm
to the data volume of 1, 2, and 40 years. The number of de-
rived classes levels off after approximately 30 years of daily

data for all values of THmerge (Fig. 6): this means that all
possible synoptic patterns are likely to be captured within
30 years. This data volume matches periods typically used
for assessing the variability of other climate variables. Thus,
we recommend a minimum critical data amount of min-
NYR = 30 years of data for a temporally stable classifica-
tion. To support this recommendation, we compute the ma-
trix of the “mean weighted similarity” mwSSIM for 61 sets
of classes retrieved for 30, 35 ,and 40 years of data. We re-
quire this matrix to have all elements mvSSIMi,j > 0.40; i.e.
pairs of sets of classes must be on average similar to each
other.

The number of classes in all 61 sets generated with min-
NYR = 30 years of data varies from 36 to 59 classes, with a
mean number of classes of 42. For all 61 sets of classes, we
computed the pairwise mean weighted similarity mwSSIM
(Fig. 11). The value of mwSSIM(k,l) shows the match of all
classes from the set k to all classes from the set l, weighted
by the frequency of the classes in the set k. The matrix of
pairwise mwSSIM values is not symmetric: mwSSIM(k, l) 6=
mwSSIM(k, l) as the sets k and l may have different numbers
of classes and also the classes differ. When the numbers of
classes in sets k and l are different, the following may oc-
cur: for class i from set k the class j from set l is the most
similar counterpart, but (!) for the class j from the set l a
different class h from set k is the most similar one, leaving
the class i being the second most similar counterpart for j .
In a case of a “perfect match”, the mwSSIM = 1, i.e. indi-
cating the identity of two sets of classes. Negative values of
mwSSIM would indicate two different sets of classes with-
out any element from one set similar to any element in the
other set. In our analysis we only consider mwSSIM for dif-
ferent pairs of classifications (diagonal elements of the mwS-
SIM matrix are always 1.0 anyway). The maximum mwS-
SIM =∼ 1.00 (two classifications are almost identical) is
attained by 7 % of all pairs, and 54 % of all pairs show strong
similarity with mwSSIM ≥ 0.60. The mean value of pair-
wise mwSSIM for all (different) classifications is 0.63. Fig-
ure 11 shows that all sets of classes are similar to all sets of
classes in a pairwise comparison; i.e. all pairwise similarity
values are greater than the threshold (THmerge = 0.40) with
the minimum mwSSIM = 0.53. This is indeed a good result.
This allows us to say that the two-stage classification pro-
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Figure 10. Matrix of pairwise similarity values for 37 classes derived with THmerge = 0.40. (a) The matrix of SSIM for cluster medoids.
(b) The matrix of SSIM for cluster centroids. Circles show similarity values greater than 0.40. Only the upper left half of each matrix is
shown due to the symmetry; diagonal elements have SSIM = 1.

Figure 11. Mean weighted similarity, mwSSIM, for each of 61 sets
of classes to each other. Each set of classes was derived on minNYR
= 30 years of input data. The diagonal elements are not shown be-
cause mwSSIM= 1 of a set of the classes to itself. The matrix is not
symmetric: mwSSIM(k, l) 6=mwSSIM(k, l) as the sets of classes k
and l may have a different number of classes.

duces similar sets of clusters when initialized by randomly
chosen subsets of the input data.

We repeat the calculation of mwSSIM for 35 and 40 years
of data (not shown) in order to make sure that the classifi-
cation algorithm produces similar sets of classes for larger
data volumes as well. When the data volume is set to min-
NYR= 35 the number of classes varies from 31 to 48 among
61 sets of classes, with minimum mwSSIM= 0.55 and mean
mwSSIM = 0.65. For the maximal data volume (40 years)

the number of classes varies from 35 to 49, with minimum
mwSSIM= 0.54 and mean mwSSIM= 0.64. These calcula-
tions of mwSSIM with other data volumes only support our
previous findings: all pairwise values of mwSSIM are greater
than the similarity threshold, indicating that our two-stage
clustering algorithm applied to randomly chosen data builds
sets of similar classes.

Spatial stability. To test the stability of the method in
space, additionally to the classes in the reference dataset
(2°× 3°), two sets of classes were built at low resolution
(4°× 6°) and high resolution (1°× 1.5°) by resampling the
original reanalysis fields to these spatial resolutions. The
clustering algorithm was run with the data at each spatial res-
olution using the same threshold THmerge = 0.40. This im-
poses some restrictions on the interpretation of the results.
First, two images at different spatial resolutions derived from
the same original image are not necessarily identical in terms
of SSIM because they contain different amounts of informa-
tion. The SSIM value deteriorates with the increasing spatial
resolution as the degree of detail in the images grows. Fol-
lowing this argument, it would be impossible to build the
same set of classes at various spatial resolutions with the
same threshold on similarity. However, it can be required that
some classes emerge at all spatial resolutions. Examples of
such SP classes are shown in Fig. 12 at three spatial resolu-
tions.

Figure 12 shows six SP classes at the original resolution
(middle plots) and their counterparts in the low- and high-
resolution sets of classes. Please note that the SP classes are
built at each resolution independently and are not just resam-
pled copies of the same classes. Therefore, some discrepancy
must be tolerated among the classes at different resolutions
as they are medoids of independently formed classes. Despite
such discrepancies the SP classes show essentially the same
geopotential anomalies at all spatial resolutions. Although it
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Figure 12. Examples of SP classes at three spatial resolutions. The middle column shows reference SPs built from the reference data (2°×3°,
22× 22 grid cells) with their frequencies (%). The left-side column shows corresponding patterns at low resolution (4°× 6°, 11× 11 grid
cells) and the right-side column shows high resolution (1°× 1.5°, 44× 44 grid cells). Both plots for low- and high-resolution counterparts
show the SSIM value for the reference SP class on top of each plot.

is not required, classifications based on the three spatial res-
olutions have 37 classes each. The mean similarity for all
37 SP classes built from the reference data to their counter-
parts at low resolution is 0.53 and to their counterparts at high
resolution is 0.52. These high numbers (> 0.40) indicate the
ability of the new clustering algorithm to reproduce similar
SP classes at different spatial resolutions, i.e. spatial stability
of this algorithm.

4.5 Cluster reproduction and representativity

The two-stage classification method uses medoids to repre-
sent clusters for reasons of stability. A medoid of a cluster
can be seen as “the representative element” of this cluster,

i.e. the element most similar to all other elements in the clus-
ter (definition of the medoid). Once the cluster is changed
(merged with another one by the hierarchical step for exam-
ple) the medoids are recomputed. Every new attribution of
an element to a cluster is done to the most similar medoid
(this ensures exclusive attribution of similar elements to clus-
ters). For the final set of classes we demonstrate that the
medoids are strongly similar to cluster means (centroids);
i.e. cluster medoids effectively represent the mean patterns
of their classes. We analyse the set of 37 classes built from
the reference data and compute for each class the similar-
ity value between its centroid and medoid (Table 2). A good
representativity is achieved when the medoid and centroid of
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each class are strongly similar. The Table 2 shows exactly
this: SSIM(medoidi ,centroidi)≥ 0.60 for all classes i. If the
medoid and the centroid are strongly similar, it guarantees
that there are no or negligibly few “extravagantly” dissim-
ilar members in that class. Otherwise, the mean (centroid)
would have lost its similarity to the medoid, being distorted
by the averaging with dissimilar members. Strong similar-
ity between medoids and centroids for all 37 classes was
found, indicating the very good representability of clusters
by their medoids. The mean similarity between medoids and
centroids over all 37 classes is 0.78 and weighted by the class
frequency is 0.79. This is a very good result that shows the
strong resemblance between medoids and centroids of the
clusters and illustrates the representativity of classes by their
medoids.

Figure 13 illustrates medoids and centroids for the five
most frequent SP classes. As expected, each medoid has a
higher amplitude of anomalies and the corresponding cen-
troid shows essentially the same pattern but with weaker
anomalies. The mean absolute difference (the sum of abso-
lute differences between each element in the class and its
medoid) between the two shows the highest values at the lo-
cations of strong amplitudes in the medoid fields and lower
values at locations on “edges” of synoptic patterns. This is
expected because the covariance term of SSIM (Eq. 3) penal-
izes a displacement of anomalies stronger than a mismatch
of anomalies’ amplitudes, i.e. steers the clustering method
to prefer correctly placed anomalies over their correctly es-
timated amplitudes (by a false placement). Figure 13 shows
the high similarity between the class medoids and their cen-
troids and indicates that these classes are not snowballs: al-
though the classes may have many members, they show pro-
nounced and similar (within the class) structural patterns.
This illustrates that the clustering method sensitively groups
SP patterns with similar composition of the anomalies into
classes using the SSIM as a similarity measure for pairs of
geopotential fields.

5 Weather extremes affiliated with the synoptic
classes

We compute maps of exceedance probabilities for two vari-
ables – daily near-surface air temperature (tas) and daily to-
tal precipitation (pr) – for each synoptic class using maps of
exceedance of the 90th percentile for days in corresponding
clusters. The map of exceedance probability computed for
each class is limited to the area of Germany only as we were
able to validate these data using national observations as data
sources. Figure 14 shows the maps of exceedance probabil-
ities of the 90th percentile for temperature and precipitation
affiliated with four exemplary synoptic classes. The class
SP5, not a very rare one with occurrence of 3.7 % in the data,
has no indication of exceptionally warm or wet weather as
both maps of exceedance probability remain “empty” (no ex-

ceedance). For the class SP2 the map of exceedance probabil-
ity for precipitation shows a frequent exceedance of the 90th
percentile everywhere in Germany, with a higher probability
in the southern region. The class SP35, one of the rare classes
with only 0.5 % of data, appears to be frequently “hot”. The
class SP29, also a rare one, frequently exhibits warm and wet
weather conditions.

Maps of exceedance probabilities for all classes are shown
in the Supplement (Figs. S3–S7). Some clusters show no ex-
ceedances of the 90th percentile for either variable (SP3, 5,
9, 14, 17, 37), but some others do. Apart from the types of ex-
treme events, which materialize through persistence of pos-
sibly not very rare circulation types (SP 1, 2, 6, 7, 15), there
are others that are related to rare circulation patterns. Rare
classes (with occurrence of less than 2 % in total data) SP
25, 28, 29, 30, 34, and 35 are often very warm. Rare classes
SP 19, 20, 21, 23, 24, 29, 30, 31, 32, and 36 show high
probabilities of intense precipitation. Precipitation is an es-
pecially “difficult” variable to evaluate in models. Dry–wet
biases in models may result from bad physical parameteri-
zations and/or from model inability to reproduce the correct
synoptic pattern. Therefore, knowing that a particular syn-
optic pattern often goes along with strong precipitation, we
can check if a model is able to reproduce this pattern or not.
This knowledge would help to attribute precipitation errors
to errors in models physics or dynamics.

6 Statistics and the Jensen–Shannon distance
metric for evaluation of CMIP6 historical climate
simulations

In Fig. 15 we show examples of the three statistics: histogram
of class frequencies HIST, class-to-class transition matrix
TRANSIT, and matrix of persistence PERSIST of each class
for 1–8 d. We chose to present these statistics for only three
datasets – the reference and two models – for demonstration
purposes. Figure 15a shows the large spread of frequencies of
SP classes that conditions high spread in frequencies of tran-
sition matrices (Fig. 15b) and persistence matrices (Fig. 15c).

As we suggest using the statistics HIST, TRANSIT, and
PERSIST for evaluation of climate models, a question on the
robustness of these statistics may arise. We take 40 subsam-
ples (30 years each) of the original ERA-Interim full dataset
of 1979–2018 and assign these data to the final 37 synoptic
classes. For each statistic we compute the mean and the stan-
dard deviation (SD) of these 40 resamples. As a very rough,
zeroth-order check of robustness we compare the estimated
values in the frequency histograms and the TRANSIT/PER-
SIST matrices with 2 times their resampling standard devia-
tion. We discuss the results of this analysis of robustness in
detail in the Supplement (“Analysis of the robustness of the
estimates for the statistics HIST/TRANSIT/PERSIST”).

For evaluation of CMIP6 climate historical simulations,
we assign each model’s output to the set of reference SP
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Table 2. Set of 37 SP classes for reference data with THmerge = 0.40: index of synoptic pattern (SP), fraction (Fr) in percent of the class in
the reference data, and the similarity (SSIM) value between the medoid and centroid of the class.

SP Fr [%] SSIM SP Fr [%] SSIM SP Fr [%] SSIM SP Fr [%] SSIM

1 11.6 0.77 11 0.5 0.71 21 0.1 0.67 31 0.2 0.75
2 4.4 0.85 12 2.2 0.79 22 3.9 0.77 32 1.6 0.76
3 4.9 0.81 13 3.3 0.78 23 0.9 0.70 33 3.8 0.84
4 5.2 0.81 14 2.3 0.83 24 1.0 0.76 34 0.9 0.73
5 3.7 0.80 15 5.7 0.80 25 1.0 0.76 35 0.5 0.81
6 8.0 0.79 16 3.7 0.76 26 0.5 0.84 36 1.7 0.76
7 3.7 0.81 17 3.3 0.80 27 6.5 0.76 37 0.3 0.74
8 1.8 0.79 18 2.1 0.82 28 1.5 0.72 – – –
9 3.1 0.77 19 2.0 0.74 29 1.1 0.75 – – –
10 2.4 0.77 20 0.4 0.73 30 0.3 0.79 – — –

Figure 13. Medoids (left column), means or centroids (centre column), and their mean absolute difference (right column) for the five most
frequent SP classes. The frequency of each SP class is shown on top of each medoid plot, and the SSIM between the medoid and centroid is
shown on the top of each plot of the mean.

classes and compute the Jensen–Shannon distance (Eq. 16)
for this model to the reference. As each class is represented
by its medoid, the class separation is sharper and the assign-
ment of data samples less ambiguous compared to the com-
mon practice of using centroids. The attribution of each data
element to a class is done using SSIM with respect to the
class medoids.

The Jensen–Shannon distance (JS) is computed for
the one-dimensional statistics (HIST, HISTDJF, HISTMAM,
HISTJJA, HISTSON) as well as for the two-dimensional
TRANSIT and PERSIST between the two probability distri-
butions for each model and the reference. Resulting values of
JS (Table 3) can be combined to suit objectives of the model
evaluation; for example, seasonally separated JS(HISTDJF),
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Figure 14. Examples of synoptic classes and corresponding maps of exceedance probability for temperature (tas) and precipitation (pr).

JS(HISTMAM), and JS(HISTJJA), JS(HISTSON) can be used
in evaluating seasonal frequencies of synoptic patterns and
JS(PERSIST) for evaluating of the duration of synoptic pat-
terns. In this paper, we equally weight all JSs and com-
pute the mean Jensen–Shannon distance (Table 3). A Jensen–
Shannon distance of 0.0 indicates the match between the
model and the reference. The benchmark for this study: the
mean Jensen–Shannon distance for the alternative reanalysis
NCEP1 is 0.034 and can be viewed as the best possible JS
for a model.

The mean Jensen–Shannon distance, meanJS, indicates
how well the respective model captures the synoptic circu-
lation in the reference data, ERA-Interim (smaller distance
means a better match between the model and the reference,
and vice versa). This distance metric can be easily trans-
formed into a quality index using the formulae of Sander-
son et al. (2015) and, together with quality indices for scalar
variables, can be used for ranking the climate model simu-
lations and as an evaluation measure. For example, the cli-
mate simulation NorESM2-LM seems to underperform all
other models (mean JS= 0.137), whereas other models show
lower values (i.e. smaller distances to the reference statis-
tics). Such a diagnostic is a useful complement for model
evaluation: poor quality scores from evaluation of synoptic
patterns should be seen as a warning prior to analysing scalar
variables.

7 Conclusions

We presented a new two-stage classification method that uses
the structural similarity index measure (SSIM) to build clas-
sifications of synoptic circulation patterns, which are de-
scribed by geopotential anomaly at the level of 500 hPa.
This classification method produces a set of well-separated,
consistent, and representative classes. The algorithm demon-
strated its robustness against temporal variability and the spa-
tial resolution of the data. It classifies all input data fields
without pre-filtering and pre-initialization of classes, and
it builds structurally different classes with inter-class ho-
mogeneity. While explaining the procedure of developing
the two-stage classification algorithm, we demonstrated the
disadvantage of using the classical clustering algorithm k-
means and the MSE as a distance measure for cluster build-
ing when classifying meteorological fields such as geopoten-
tial. We hope this demonstration helps users and develop-
ers of classification methods to be careful with interpreting
their results and to be conscious that some problems (such as
snowballing) may be avoided by simple modifications of the
clustering algorithm as illustrated in this paper.

The important strength of the new classification method
is its applicability to any region on the globe with no re-
quirements of prior knowledge about weather types in that
region. The applicability of our classification method to any
region allows evaluation of models quasi-globally as is done
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Figure 15. Examples of statistics for the reference data and two CMIP6-models: (a) HIST – histogram of frequencies for each SP class;
(b) TRANSIT matrices for each pair of SP classes; where diagonal elements show transition for the same class, i.e. persistence, (c) PER-
SISTENCE matrices that show number of events when each SP class persisted for 1, 2, 8 d (this statistic is shown in absolute values –
non-normalized – for better readability).

by Cannon (2020) for evaluation of CMIP5 and CMIP6 mod-
els in six continental-scale regions (or more).

In this paper we describe the method – the recipe – to build
a set of synoptic classes. We do not propose an “optimal clas-
sification” of synoptic patterns for all purposes. Depending
on the purpose of classification, the presented classification
method can be extended (from the single variable – geopo-
tential anomaly at 500 hPa) to multiple variables by either
targeting the optimization algorithm on a vector of similarity
values or defining the SSIM for vector-valued variables.

We apply the new method to the ERA-Interim reanaly-
sis data and build a set of synoptic classes (application of
the classification method to other datasets may build other

sets of synoptic classes). We demonstrate that separating rare
classes may be useful for diagnostics of extreme weather
events affiliated with these classes. Here we clearly make
use of multiple synoptic classes as only a few of them would
hamper such an attribution.

As an example, we use this set of classes to evaluate
the performance of 32 global CMIP6 climate models in the
CORDEX-EU domain. Model data were attributed to the ref-
erence set of classes and statistical parameters (frequency of
occurrence of each pattern, frequency of transitions from one
pattern to another, persistence of each pattern) were com-
puted for these models. We compared these statistical pa-
rameters to the parameters computed from the reference data,
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Table 3. CMIP6 models and their Jensen–Shannon distances (JSs). The mean Jensen–Shannon distance (mean JS) is computed for each
model as the mean of its individual JSs for each model statistic. The last two rows contain the mean and the standard deviation (SD) of all
JSs for the same statistic across 32 CMIP6 models.

No. Model name JS for individual statistics Mean JS

HIST HISTDFJ HISTMAM HISJJA HISTSON TRANSIT PERSIST

– ERAINT (ref.reanalysis) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
– NCEP (alt.reanalysis) 0.013 0.017 0.020 0.028 0.021 0.079 0.062 0.034
1 ACCESS-CM2 0.057 0.115 0.065 0.125 0.080 0.165 0.128 0.105
2 AWI-ESM-1-1-LR 0.072 0.097 0.092 0.126 0.114 0.170 0.125 0.114
3 BCC-CSM2-MR 0.061 0.096 0.085 0.140 0.111 0.168 0.122 0.112
4 BCC-ESM1 0.067 0.113 0.106 0.143 0.104 0.171 0.124 0.118
5 CanESM5 0.061 0.124 0.097 0.091 0.096 0.174 0.128 0.110
6 CESM2 0.064 0.093 0.081 0.116 0.101 0.164 0.126 0.107
7 CESM2-FV2 0.079 0.125 0.087 0.138 0.120 0.181 0.136 0.124
8 CESM2-WACCM-FV2 0.074 0.118 0.113 0.151 0.089 0.174 0.132 0.122
9 CMCC-CM2-SR5 0.073 0.111 0.080 0.161 0.100 0.176 0.125 0.118
10 CNRM-CM6-1 0.059 0.105 0.081 0.150 0.088 0.169 0.128 0.111
11 CNRM-ESM2-1 0.043 0.098 0.087 0.119 0.089 0.164 0.126 0.104
12 EC-Earth3 0.054 0.091 0.076 0.137 0.095 0.164 0.120 0.105
13 EC-Earth3-Veg 0.068 0.091 0.081 0.165 0.085 0.170 0.117 0.111
14 FGOALS-f3-L 0.068 0.147 0.104 0.173 0.076 0.170 0.124 0.123
15 FGOALS-g3 0.073 0.141 0.097 0.145 0.081 0.175 0.138 0.121
16 GISS-E2-1-G 0.061 0.127 0.097 0.178 0.093 0.171 0.120 0.121
17 HadGEM3-GC31-LL 0.050 0.108 0.078 0.107 0.086 0.161 0.132 0.103
18 HadGEM3-GC31-MM 0.054 0.090 0.084 0.116 0.077 0.163 0.122 0.101
19 INM-CM4-8 0.071 0.106 0.096 0.170 0.110 0.182 0.136 0.124
20 INM-CM5-0 0.059 0.089 0.095 0.121 0.123 0.166 0.139 0.113
21 IPSL-CM6A-LR 0.065 0.099 0.099 0.181 0.131 0.169 0.132 0.125
22 IPSL-CM6A-LR-INCA 0.056 0.124 0.094 0.176 0.131 0.168 0.136 0.126
23 KACE-1-0-G 0.051 0.090 0.081 0.125 0.079 0.163 0.130 0.103
24 MIROC6 0.063 0.105 0.076 0.136 0.094 0.164 0.136 0.111
25 MPI-ESM-1-2-HAM 0.061 0.104 0.085 0.127 0.104 0.168 0.122 0.110
26 MPI-ESM1-2-HR 0.057 0.105 0.082 0.098 0.088 0.166 0.118 0.102
27 MPI-ESM1-2-LR 0.056 0.103 0.070 0.112 0.085 0.164 0.124 0.102
28 MRI-ESM2-0 0.052 0.090 0.098 0.122 0.079 0.161 0.118 0.103
29 NorESM2-LM 0.077 0.124 0.134 0.175 0.126 0.180 0.142 0.137
30 NorESM2-MM 0.065 0.108 0.087 0.127 0.126 0.172 0.129 0.116
31 TaiESM1 0.060 0.121 0.091 0.119 0.091 0.166 0.134 0.112
32 UKESM1-0-LL 0.060 0.073 0.082 0.139 0.089 0.161 0.128 0.105

– Mean (32 models) 0.062 0.107 0.089 0.138 0.098 0.169 0.128 0.113

– SD (32 models) 0.008 0.016 0.013 0.024 0.017 0.006 0.007 0.009

calculating the Jensen–Shannon distance metric, and suggest
using it to compute a quality index (Sanderson et al., 2015)
in evaluation routines for climate models as an additional di-
agnostic measure. Using the distance metric proposed in this
study would help to avoid misinterpretations in model eval-
uation such as “the right results for the wrong reasons” –
when a good match of scalar variables (temperature, precip-
itation, etc.) between a model and the reference is achieved
but the distance metric for synoptic patterns alerts us to poor
model performance. We believe that the use of such a dis-
tance metric for synoptic patterns as proposed in this study
would improve evaluating routines currently used for climate

models and may give valuable feedback for model devel-
opers. We emphasize readers’ attention here: the evaluation
of model dynamics performed using synoptic classifications
should not replace but complement (!) existing evaluation
routines that use scalar variables and other metrics. Another
application of the synoptic classes in the evaluation of cli-
mate models is the so-called “weather-pattern-based model
evaluation” (Nigro et al., 2011). Surface climate model data
are analysed conditionally for each class: this allows for the
determination of model errors as a function of synoptic class
and can highlight if certain errors occur under some synoptic
situations and not others. Alternatively to evaluation, other
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applications of the two-stage classification are possible. A
linkage of synoptic classes to extreme weather could be used
to improve predictability of numerical models as was done by
Nguyen-Le and Yamada (2019), who classified anomalous
weather patterns associated with heavy rainfall in Thailand
and implemented classification results into a global spectral
model (GSM) of the Japan Meteorological Agency, improv-
ing the forecast skill with a lead time up to 3 d. However, we
doubt that using synoptic classes in the form of a “precur-
sor” for particular weather events would be the best-suited
method for improving weather forecasts beyond a 3 d lead
time.
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