Articles | Volume 15, issue 4
https://doi.org/10.5194/esd-15-1153-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-15-1153-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cautionary remarks on the planetary boundary visualisation
Miguel D. Mahecha
CORRESPONDING AUTHOR
Institute for Earth System Science and Remote Sensing, Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, 04130 Leipzig, Germany
German Centre for Integrative Biodiversity Research (iDiv), Halle–Jena–Leipzig, Germany
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden–Leipzig, Germany
Guido Kraemer
Institute for Earth System Science and Remote Sensing, Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, 04130 Leipzig, Germany
Fabio Crameri
Undertone.design, Bern, Switzerland
International Space Science Institute, Bern, Switzerland
Related authors
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024, https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
Anca Anghelea, Ewelina Dobrowolska, Gunnar Brandt, Martin Reinhardt, Miguel Mahecha, Tejas Morbagal Harish, and Stephan Meissl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, 2024
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Francesco Martinuzzi, Miguel D. Mahecha, David Montero, Lazaro Alonso, and Karin Mora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, 2024
David Montero, Miguel D. Mahecha, César Aybar, Clemens Mosig, and Sebastian Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 105–112, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, 2024
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
D. Montero, C. Aybar, M. D. Mahecha, and S. Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego, Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha
Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-1033-2020, https://doi.org/10.5194/bg-17-1033-2020, 2020
Short summary
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Milan Flach, Sebastian Sippel, Fabian Gans, Ana Bastos, Alexander Brenning, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 15, 6067–6085, https://doi.org/10.5194/bg-15-6067-2018, https://doi.org/10.5194/bg-15-6067-2018, 2018
Short summary
Short summary
Northern forests enhanced their productivity during and before the 2010 Russian mega heatwave. We scrutinize this issue with a novel type of multivariate extreme event detection approach. Forests compensate for 54 % of the carbon losses in agricultural ecosystems due to vulnerable conditions in spring and better water management in summer. The findings highlight the importance of forests in mitigating climate change, while not alleviating the consequences of extreme events for food security.
Paul Bodesheim, Martin Jung, Fabian Gans, Miguel D. Mahecha, and Markus Reichstein
Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, https://doi.org/10.5194/essd-10-1327-2018, 2018
Short summary
Short summary
We provide continuous half-hourly carbon and energy fluxes for 2001 to 2014 at 0.5° spatial resolution, which allows for analyzing diurnal cycles globally. The data set contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H). In addition, we provide a derived product that only contains monthly average diurnal cycles but which also enables us to study the important characteristics of subdaily patterns at a global scale.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Sebastian Sippel, Jakob Zscheischler, Miguel D. Mahecha, Rene Orth, Markus Reichstein, Martha Vogel, and Sonia I. Seneviratne
Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, https://doi.org/10.5194/esd-8-387-2017, 2017
Short summary
Short summary
The present study (1) evaluates land–atmosphere coupling in the CMIP5 multi-model ensemble against an ensemble of benchmarking datasets and (2) refines the model ensemble using a land–atmosphere coupling diagnostic as constraint. Our study demonstrates that a considerable fraction of coupled climate models overemphasize warm-season
moisture-limitedclimate regimes in midlatitude regions. This leads to biases in daily-scale temperature extremes, which are alleviated in a constrained ensemble.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
X. Wu, F. Babst, P. Ciais, D. Frank, M. Reichstein, M. Wattenbach, C. Zang, and M. D. Mahecha
Biogeosciences, 11, 3057–3068, https://doi.org/10.5194/bg-11-3057-2014, https://doi.org/10.5194/bg-11-3057-2014, 2014
J. Zscheischler, M. Reichstein, S. Harmeling, A. Rammig, E. Tomelleri, and M. D. Mahecha
Biogeosciences, 11, 2909–2924, https://doi.org/10.5194/bg-11-2909-2014, https://doi.org/10.5194/bg-11-2909-2014, 2014
J. v. Buttlar, J. Zscheischler, and M. D. Mahecha
Nonlin. Processes Geophys., 21, 203–215, https://doi.org/10.5194/npg-21-203-2014, https://doi.org/10.5194/npg-21-203-2014, 2014
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024, https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
Anca Anghelea, Ewelina Dobrowolska, Gunnar Brandt, Martin Reinhardt, Miguel Mahecha, Tejas Morbagal Harish, and Stephan Meissl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, 2024
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Francesco Martinuzzi, Miguel D. Mahecha, David Montero, Lazaro Alonso, and Karin Mora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, 2024
David Montero, Miguel D. Mahecha, César Aybar, Clemens Mosig, and Sebastian Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 105–112, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, 2024
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
D. Montero, C. Aybar, M. D. Mahecha, and S. Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022, https://doi.org/10.5194/se-13-583-2022, 2022
Short summary
Short summary
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust, mantle, and core that are not directly observable. In this review, we present a comprehensive yet concise overview of the modelling process with an emphasis on best practices. We also highlight synergies with related fields, such as seismology and geology. Hence, this review is the perfect starting point for anyone wishing to (re)gain a solid understanding of geodynamic modelling as a whole.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego, Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha
Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-1033-2020, https://doi.org/10.5194/bg-17-1033-2020, 2020
Short summary
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Milan Flach, Sebastian Sippel, Fabian Gans, Ana Bastos, Alexander Brenning, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 15, 6067–6085, https://doi.org/10.5194/bg-15-6067-2018, https://doi.org/10.5194/bg-15-6067-2018, 2018
Short summary
Short summary
Northern forests enhanced their productivity during and before the 2010 Russian mega heatwave. We scrutinize this issue with a novel type of multivariate extreme event detection approach. Forests compensate for 54 % of the carbon losses in agricultural ecosystems due to vulnerable conditions in spring and better water management in summer. The findings highlight the importance of forests in mitigating climate change, while not alleviating the consequences of extreme events for food security.
Paul Bodesheim, Martin Jung, Fabian Gans, Miguel D. Mahecha, and Markus Reichstein
Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, https://doi.org/10.5194/essd-10-1327-2018, 2018
Short summary
Short summary
We provide continuous half-hourly carbon and energy fluxes for 2001 to 2014 at 0.5° spatial resolution, which allows for analyzing diurnal cycles globally. The data set contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H). In addition, we provide a derived product that only contains monthly average diurnal cycles but which also enables us to study the important characteristics of subdaily patterns at a global scale.
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Sebastian Sippel, Jakob Zscheischler, Miguel D. Mahecha, Rene Orth, Markus Reichstein, Martha Vogel, and Sonia I. Seneviratne
Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, https://doi.org/10.5194/esd-8-387-2017, 2017
Short summary
Short summary
The present study (1) evaluates land–atmosphere coupling in the CMIP5 multi-model ensemble against an ensemble of benchmarking datasets and (2) refines the model ensemble using a land–atmosphere coupling diagnostic as constraint. Our study demonstrates that a considerable fraction of coupled climate models overemphasize warm-season
moisture-limitedclimate regimes in midlatitude regions. This leads to biases in daily-scale temperature extremes, which are alleviated in a constrained ensemble.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
X. Wu, F. Babst, P. Ciais, D. Frank, M. Reichstein, M. Wattenbach, C. Zang, and M. D. Mahecha
Biogeosciences, 11, 3057–3068, https://doi.org/10.5194/bg-11-3057-2014, https://doi.org/10.5194/bg-11-3057-2014, 2014
J. Zscheischler, M. Reichstein, S. Harmeling, A. Rammig, E. Tomelleri, and M. D. Mahecha
Biogeosciences, 11, 2909–2924, https://doi.org/10.5194/bg-11-2909-2014, https://doi.org/10.5194/bg-11-2909-2014, 2014
J. v. Buttlar, J. Zscheischler, and M. D. Mahecha
Nonlin. Processes Geophys., 21, 203–215, https://doi.org/10.5194/npg-21-203-2014, https://doi.org/10.5194/npg-21-203-2014, 2014
Related subject area
Topics: Antroposphere | Interactions: Human/Earth system interactions | Methods: Earth system and climate modeling
Applying global warming levels of emergence to highlight the increasing population exposure to temperature and precipitation extremes
David Gampe, Clemens Schwingshackl, Andrea Böhnisch, Magdalena Mittermeier, Marit Sandstad, and Raul R. Wood
Earth Syst. Dynam., 15, 589–605, https://doi.org/10.5194/esd-15-589-2024, https://doi.org/10.5194/esd-15-589-2024, 2024
Short summary
Short summary
Using a special suite of climate simulations, we determine if and when climate change is detectable and translate this to the global warming prevalent in the corresponding year. Our results show that, at 1.5°C warming, >85 % of the global population (>95 % at 2.0° warming) is already exposed to nighttime temperatures altered by climate change beyond natural variability. Furthermore, even incremental changes in global warming levels result in increased human exposure to emerged climate signals.
Cited articles
Bachmann, M., Zibunas, C., Hartmann, J., Tulus, V., Suh, S., Guillén-Gosálbez, G., and Bardow, A.: Towards circular plastics within planetary boundaries, Nat. Sustain., 6, 599–610, 2023. a
Biermann, F. and Kim, R. E.: The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a “safe operating space” for humanity, Annu. Rev. Env. Resour., 45, 497–521, 2020. a
Brasseur, L.: Florence Nightingale's Visual Rhetoric in the Rose Diagrams, Technical Communication Quarterly, 14, 161–182, https://doi.org/10.1207/s15427625tcq1402_3, 2005. a
Brettel, H., Viénot, F., and Mollon, J. D.: Computerized simulation of color appearance for dichromats, J. Opt. Soc. Am. A, 14, 2647–2655, https://doi.org/10.1364/JOSAA.14.002647, 1997. a, b
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020. a, b
IPBES: Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Tech. rep., IPBES secretariat, Bonn, Germany, Zenodod, https://doi.org/10.5281/zenodo.3831673, 2019. a
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023. a
Kovesi, P. D.: MATLAB and Octave Functions for Computer Vision and Image Processing, https://www.peterkovesi.com/matlabfns/ (last access: 22 August 2024), 2017. a
Kraemer, G., Mahecha, M. D., and Crameri, F.: Cautionary Remarks on the Planetary Boundary Visualization, Zenodo [code], https://doi.org/10.5281/zenodo.10182293, 2024. a
Machado, G. M., Oliveira, M. M., and Fernandes, L. A.: A physiologically-based model for simulation of color vision deficiency, IEEE T. Vis. Comput. Gr., 15, 1291–1298, 2009. a
Montoya, J. M., Donohue, I., and Pimm, S. L.: Planetary boundaries for biodiversity: implausible science, pernicious policies, Trends Ecol. Evol., 33, 71–73, 2018. a
Nash, K. L., Cvitanovic, C., Fulton, E. A., Halpern, B. S., Milner-Gulland, E., Watson, R. A., and Blanchard, J. L.: Planetary boundaries for a blue planet, Nat. Ecol. Evol., 1, 1625–1634, 2017. a
Nightingale, F.: Notes on Matters Affecting the Health, Efficiency and Hospital Administration of the British Army, Royal Collection Trust, https://www.rct.uk/collection/1075240/notes-on-matters-affecting-the-health-efficiency-and-hospital-administration-of (last access: 22 August 2024), 1858. a
Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., De Wit, C. A., Diamond, M. L., Fantke, P., Hassellöv, M., MacLeod, M., Ryberg, M. W., Søgaard Jørgensen, P., Villarrubia-Gómez, P., Wang, Z., and Hauschild, M. Z.: Outside the safe operating space of the planetary boundary for novel entities, Environ. Sci. Technol., 56, 1510–1521, 2022. a
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., Virkki, V., Wang-Erlandsson, L., Weber, L., and Rockström, J.: Earth beyond six of nine planetary boundaries, Sci. Adv., 9, eadh2458, https://doi.org/10.1126/sciadv.adh2458, 2023. a, b, c, d, e, f, g, h, i, j, k
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space for humanity, Nature, 461, 472–475, 2009a. a, b
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., De Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J.: Planetary boundaries: exploring the safe operating space for humanity, Ecol. Soc., 14, 32, 2009b. a, b
Rockström, J., Richardson, K., Steffen, W., and Mace, G.: Planetary boundaries: Separating fact from fiction. A response to Montoya et al., Trends Ecol. Evol., 33, 233–234, 2018. a
Sharma, G., Wu, W., and Dalal, E. N.: The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations, Color Res. Appl., 30, 21–30, https://doi.org/10.1002/col.20070, 2005. a, b, c
Söchting, M., Mahecha, M. D., Montero, D., and Scheuermann, G.: Lexcube: Interactive Visualization of Large Earth System Data Cubes, IEEE Comput. Graph., 44, 25–37, https://doi.org/10.1109/MCG.2023.3321989, 2023. a
Solso, R. L.: Cognition and the visual arts, MIT press, ISBN 9780262691864, 1994. a
Spence, I. and Krizel, P.: Children's Perception of Proportion in Graphs, Child Dev., 65, 1193–1213, https://doi.org/10.2307/1131314, 1994. a
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., et al.: Planetary boundaries: Guiding human development on a changing planet, Science, 347, 1259855, https://doi.org/10.1126/science.1259855 2015. a, b, c
Tandon, A.: “Safe and just” climate boundary has already been breached, says contested study, Online, https://www.carbonbrief.org/safe-and-just-climate-boundary-has-already-been-breached-says-contested-study/ (last access: 28 September 2023), 2023. a
Tufte, E. R.: The visual display of quantitative information, vol. 2, Graphics press Cheshire, CT, ISBN 10 9780961392147, 2001. a
Turner, M. G. and Seidl, R.: Novel disturbance regimes and ecological responses, Annu. Rev. Ecol. Evol. S., 54, 63–83, 2023. a
van der Walt, S. and Smith, N.: MPL Colour Maps, https://bids.github.io/colormap (last access: 10 October 2023, 2020. a
Waldner, M., Diehl, A., Gracanin, D., Splechtna, R., Delrieux, C., and Matkovic, K.: A Comparison of Radial and Linear Charts for Visualizing Daily Patterns, IEEE T. Vis. Comput. Gr., 26, 1033–1042, https://doi.org/10.1109/TVCG.2019.2934784, 2019. a
Zommers, Z., Marbaix, P., Fischlin, A., Ibrahim, Z. Z., Grant, S., Magnan, A. K., Pörtner, H.-O., Howden, M., Calvin, K., Warner, K., Thiery, W., Sebesvari, Z., Davin, E., Evans, J., Rosenzweig, C., Oneill, B., Patwardhan, A., Warren, R., Aalst, M., and Hulbert, M.: Burning embers: towards more transparent and robust climate-change risk assessments, Nat. Rev. Earth Environ., 1, 516–529, 2020. a, b
Chief editor
This paper makes an important criticism about the visualisation of the planetary boundary concept. Hopefully, future publications will take up on the suggestions being made in this paper to communicate the concept more objectively in a scientific manner.
This paper makes an important criticism about the visualisation of the planetary boundary...
Short summary
Our paper examines the visual representation of the planetary boundary concept, which helps convey Earth's capacity to sustain human life. We identify three issues: exaggerated impact sizes, confusing color patterns, and inaccessibility for colour-vision deficiency. These flaws can lead to overstating risks. We suggest improving these visual elements for more accurate and accessible information for decision-makers.
Our paper examines the visual representation of the planetary boundary concept, which helps...
Altmetrics
Final-revised paper
Preprint