Articles | Volume 14, issue 6
https://doi.org/10.5194/esd-14-1363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-1363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding variations in downwelling longwave radiation using Brutsaert's equation
Yinglin Tian
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
Biospheric Theory and Modelling, Max Planck Institute for Biogeochemistry, 07701 Jena, Germany
Deyu Zhong
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
Sarosh Alam Ghausi
Biospheric Theory and Modelling, Max Planck Institute for Biogeochemistry, 07701 Jena, Germany
International Max Planck Research School on Global Biogeochemical Cycles (IMPRS-gBGC), 07701 Jena, Germany
Guangqian Wang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
Biospheric Theory and Modelling, Max Planck Institute for Biogeochemistry, 07701 Jena, Germany
Related authors
No articles found.
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024, https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Short summary
Estimates of power output from regional wind turbine deployments in energy scenarios assume that the impact of the atmospheric feedback on them is minimal. But numerical models show that the impact is large at the proposed scales of future deployment. We show that this impact can be captured by accounting only for the kinetic energy removed by turbines from the atmosphere. This can be easily applied to energy scenarios and leads to more physically representative estimates.
Pin-Hsin Hu, Christian H. Reick, Reiner Schnur, Axel Kleidon, and Martin Claussen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-111, https://doi.org/10.5194/gmd-2024-111, 2024
Preprint under review for GMD
Short summary
Short summary
We introduce the new plant functional diversity model JeDi-BACH, a novel tool that integrates the Jena Diversity Model (JeDi) within the land component of the ICON Earth System Model. JeDi-BACH captures a richer set of plant trait variations based on environmental filtering and functional tradeoffs without a priori knowledge of the vegetation types. JeDi-BACH represents a significant advancement in modeling the complex interactions between plant functional diversity and climate.
Axel Kleidon
Earth Syst. Dynam., 14, 861–896, https://doi.org/10.5194/esd-14-861-2023, https://doi.org/10.5194/esd-14-861-2023, 2023
Short summary
Short summary
The second law of thermodynamics has long intrigued scientists, but what role does it play in the Earth system? This review shows that its main role is that it shapes the conversion of sunlight into work. This work can then maintain the dynamics of the physical climate system, the biosphere, and human societies. The relevance of it is that apparently many processes work at their limits, directly or indirectly, so they become predictable by simple means.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Axel Kleidon and Lee M. Miller
Geosci. Model Dev., 13, 4993–5005, https://doi.org/10.5194/gmd-13-4993-2020, https://doi.org/10.5194/gmd-13-4993-2020, 2020
Short summary
Short summary
When winds are used as renewable energy by more and more wind turbines, one needs to account for the effect of wind turbines on the atmospheric flow. The Kinetic Energy Budget of the Atmosphere (KEBA) model provides a simple, physics-based approach to account for this effect very well when compared to much more detailed numerical simulations with an atmospheric model. KEBA should be useful to derive lower, more realistic wind energy resource potentials of different regions.
Annu Panwar, Maik Renner, and Axel Kleidon
Hydrol. Earth Syst. Sci., 24, 4923–4942, https://doi.org/10.5194/hess-24-4923-2020, https://doi.org/10.5194/hess-24-4923-2020, 2020
Short summary
Short summary
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation cools surface temperature significantly in short vegetation. In the forest, the high aerodynamic conductance explains 56 % of the reduced surface temperature. Therefore, the main cooling agent in the forest is the high aerodynamic conductance and not evaporation. Additionally, we propose the diurnal variation in surface temperature as being a potential indicator of evaporation in short vegetation.
Axel Kleidon, Erwin Zehe, and Ralf Loritz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-52, https://doi.org/10.5194/esd-2019-52, 2019
Manuscript not accepted for further review
Short summary
Short summary
Many fluxes in Earth systems are not homogeneously distributed across space, but occur highly concentrated in structures, such as turbulent eddies, river networks, vascular networks of plants, or human-made infrastructures. Yet, the highly-organized nature of these fluxes is typically only described at a rudimentary level, if at all. We propose that it requires a novel approach to describe these structures that focuses on the work done to build and maintain these structures, and the feedbacks.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019, https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary
Short summary
The trace gases NO and HONO are crucial for atmospheric chemistry. It has been suggested that biological soil crusts in drylands contribute substantially to global NO and HONO emissions, based on empirical upscaling of laboratory and field observations. Here we apply an alternative, process-based modeling approach to predict these emissions. We find that biological soil crusts emit globally significant amounts of NO and HONO, which also vary depending on the type of biological soil crust.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 9, 1127–1140, https://doi.org/10.5194/esd-9-1127-2018, https://doi.org/10.5194/esd-9-1127-2018, 2018
Short summary
Short summary
Turbulent fluxes represent an efficient way to transport heat and moisture from the surface into the atmosphere. Due to their inherently highly complex nature, they are commonly described by semiempirical relationships. What we show here is that these fluxes can also be predicted by viewing them as the outcome of a heat engine that operates between the warm surface and the cooler atmosphere and that works at its limit.
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Corina Buendía, Axel Kleidon, Stefano Manzoni, Björn Reu, and Amilcare Porporato
Biogeosciences, 15, 279–295, https://doi.org/10.5194/bg-15-279-2018, https://doi.org/10.5194/bg-15-279-2018, 2018
Short summary
Short summary
Amazonia is highly biodiverse and of global importance for regulating the climate system. Because soils are highly weathered, phosphorus (P) is suggested to limit ecosystem productivity. Here, we evaluate the importance of P redistribution by animals using a simple mathematical model synthesizing the major processes of the Amazon P cycle. Our findings suggest that food web complexity plays an important role for sustaining the productivity of terra firme forests.
Axel Kleidon and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-674, https://doi.org/10.5194/hess-2017-674, 2017
Revised manuscript not accepted
Short summary
Short summary
At larger scales, the flow of rivers can often be described by a relatively simple, exponential decay, and it is unclear how such simple behaviour can be explained given that river basins show such vast complexity. Here, we use a highly idealised model to show that such simple behaviour can be explained by viewing it as the emergent consequence of the groundwater system (which feeds river flow) minimising its energy dissipation.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, https://doi.org/10.5194/esd-8-849-2017, 2017
Short summary
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Philipp Porada, Ulrich Pöschl, Axel Kleidon, Christian Beer, and Bettina Weber
Biogeosciences, 14, 1593–1602, https://doi.org/10.5194/bg-14-1593-2017, https://doi.org/10.5194/bg-14-1593-2017, 2017
Short summary
Short summary
Lichens and bryophytes have been shown to release nitrous oxide, which is a strong greenhouse gas and atmospheric ozone-depleting agent. Here we apply a process-based computer model of lichens and bryophytes at the global scale, to estimate growth and respiration of the organisms. By relating respiration to nitrous oxide release, we simulate global nitrous oxide emissions of 0.27 (0.19–0.35) Tg yr−1. Moreover, we quantify different sources of uncertainty in nitrous oxide emission rates.
Anke Hildebrandt, Axel Kleidon, and Marcel Bechmann
Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, https://doi.org/10.5194/hess-20-3441-2016, 2016
Short summary
Short summary
This theoretical paper describes the energy fluxes and dissipation along the flow paths involved in root water uptake, an approach that is rarely taken. We show that this provides useful additional insights for understanding the biotic and abiotic impediments to root water uptake. This approach shall be applied to explore efficient water uptake strategies and help locate the limiting processes in the complex soil–plant–atmosphere system.
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon
Biogeosciences, 11, 3661–3683, https://doi.org/10.5194/bg-11-3661-2014, https://doi.org/10.5194/bg-11-3661-2014, 2014
A. Kleidon, M. Renner, and P. Porada
Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, https://doi.org/10.5194/hess-18-2201-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
S. P. K. Bowring, L. M. Miller, L. Ganzeveld, and A. Kleidon
Earth Syst. Dynam., 5, 43–53, https://doi.org/10.5194/esd-5-43-2014, https://doi.org/10.5194/esd-5-43-2014, 2014
A. Kleidon and M. Renner
Earth Syst. Dynam., 4, 455–465, https://doi.org/10.5194/esd-4-455-2013, https://doi.org/10.5194/esd-4-455-2013, 2013
P. Porada, B. Weber, W. Elbert, U. Pöschl, and A. Kleidon
Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, https://doi.org/10.5194/bg-10-6989-2013, 2013
E. Zehe, U. Ehret, T. Blume, A. Kleidon, U. Scherer, and M. Westhoff
Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, https://doi.org/10.5194/hess-17-4297-2013, 2013
E. Simoncini, N. Virgo, and A. Kleidon
Earth Syst. Dynam., 4, 317–331, https://doi.org/10.5194/esd-4-317-2013, https://doi.org/10.5194/esd-4-317-2013, 2013
A. Kleidon and M. Renner
Hydrol. Earth Syst. Sci., 17, 2873–2892, https://doi.org/10.5194/hess-17-2873-2013, https://doi.org/10.5194/hess-17-2873-2013, 2013
A. Kleidon, E. Zehe, U. Ehret, and U. Scherer
Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, https://doi.org/10.5194/hess-17-225-2013, 2013
Cited articles
Aase, J. K. and Idso, S. B.: A comparison of two formula types for calculating long-wave radiation from the atmosphere, Water Resour. Res., 14, 623–625, https://doi.org/10.1029/WR014i004p00623, 1978.
Alados, I., Foyo-Moreno, I., and Alados-Arboledas, L.: Estimation of downwelling longwave irradiance under all-sky conditions, Int. J. Climatol., 32, 781–793, https://doi.org/10.1002/joc.2307, 2012.
Allan, R. P., Ringer, M. A., Pamment, J. A., and Slingo, A.: Simulation of the Earth's radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40), J. Geophys. Res., 109, D18107, https://doi.org/10.1029/2004JD004816, 2004.
Allan, R. P.: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Met. Apps, 18, 324–333, https://doi.org/10.1002/met.285, 2011.
Alekseev, G., Kuzmina, S., Bobylev, L., Urazgildeeva, A., and Gnatiuk, N.: Impact of atmospheric heat and moisture transport on the Arctic warming, Int. J. Climatol., 39, 3582–3592, https://doi.org/10.1002/joc.6040, 2019.
Budyko, M. I.: The Heat Balance of the Earth's Surface, trs. Nina A. Stepanova, US Department of Commerce, Weather Bureau, Washington, DC, 259 pp., https://books.google.de/books/about/The_Heat_Balance_of_the_Earth_s_Surface.html?id=9osJAQAAIAAJ&redir_esc=y (last access: 20 December 2023), 1958.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742, 1975.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of global daily precipitation, J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132, 2008.
CPC Global Unified Temperature: NOAA PSL [data set], Boulder, Colorado, USA, https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html (last access: 6 March 2022), 2022.
CPC Global Unified Gauge-Based Analysis of Daily Precipitation: NOAA PSL [data set], Boulder, Colorado, USA, https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html (last access: 5 March 2022), 2022.
Crawford, T. M. and Duchon, C. E.: An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation, J. Appl. Meteorol., 38, 474–480, https://doi.org/10.1175/1520-0450(1999)038<0474:Aipfee>2.0.Co;2, 1999.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., and Sun, M.: Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Ocean. Tech., 30, 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1, 2013.
Doelling, D. R., Sun, M., Nguyen, L. T., Nordeen, M. L., Haney, C. O., Keyes, D. F., and Mlynczak, P. E.: Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1 deg) product, J. Atmos. Ocean. Tech., 33, 503–521, https://doi.org/10.1175/JTECH-D-15-0147.1, 2016.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Du, M., Kleidon, A., Sun, F., Renner, M., and Liu, W.: Stronger global warming on nonrainy days in observations from China, J. Geophys. Res.-Atmos., 125, e2019JD031792, https://doi.org/10.1029/2019JD031792, 2020.
Duarte, H. F., Dias, N. L., and Maggiotto, S. R.: Assessing daytime downward longwave radiation estimates for clear and cloudy skies in Southern Brazil, Agr. Forest Meteorol., 139, 171–181, https://doi.org/10.1016/j.agrformet.2006.06.008, 2006.
Flerchinger, G. N., Xaio, W., Marks, D., Sauer, T. J., and Yu, Q.: Comparison of algorithms for incoming atmospheric long-wave radiation, Water Resour. Res., 45, W03423, https://doi.org/10.1029/2008WR007394, 2009.
FLUXNET2015 cummunity: FLUXNET2015 Dataset: CC-BY-4.0 [data set], https://fluxnet.org/data/download-data/ (last access: 19 January 2022), 2022.
Ghausi, S. A., Ghosh, S., and Kleidon, A.: Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling, Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, 2022.
Ghausi, S. A., Tian, Y., Zehe, E., and Kleidon, A.: Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land, P. Natl. Acad. Sci. USA, 120, e2220400120, https://doi.org/10.1073/pnas.2220400120, 2023.
Hatfield, J. L., Reginato, R. J., and Idso, S. B.: Comparison of long-wave radiation calculation methods over the United States, Water Resour. Res., 19, 285–288, https://doi.org/10.1029/WR019i001p00285, 1983.
Held, I. M. and Soden, B. J.: Water Vapor Feedback and Global Warming, Annu. Rev. Environ. Resour., 25, 441–475, https://doi.org/10.1146/annurev.energy.25.1.441, 2000.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2022.
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. E., Loeb, N. G., Doelling, D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product, J. Clim., 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1, 2018.
Kleidon, A. and Renner, M.: An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle, Earth Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, 2017.
Lee, S., Gong, T., Feldstein, S. B., Screen, J. A., and Simmonds, I.: Revisiting the Cause of the 1989–2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes, Geophys. Res. Lett., 44, 10654–610661, https://doi.org/10.1002/2017GL075375, 2017.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 data product, J. Clim., 31, 895–918, https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.
Malek, E.: Evaluation of effective atmospheric emissivity and parameterization of cloud at local scale, Atmos. Res., 45, 41–54, https://doi.org/10.1016/S0169-8095(97)00020-3, 1997.
Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics, 3rd Edn., Academic Press, New York, 9–14, https://doi.org/10.1016/C2010-0-66393-0, 2008.
NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols Monthly Terra-Aqua Edition4A [data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGMONTH_L3.004A, 2017.
Panwar, A. and Kleidon, A.: Evaluating the Response of Diurnal Variations in Surface and Air Temperature to Evaporative Conditions across Vegetation Types in FLUXNET and ERA5, J. Clim., 35, 6301–6328, https://doi.org/10.1175/JCLI-D-21-0345.1, 2022.
Park, H.-S., Lee, S., Son, S.-W., Feldstein, S. B., and Kosaka, Y.: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability, J. Clim., 28, 5030–5040, https://doi.org/10.1175/JCLI-D-15-0074.1, 2015.
Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Prata, A. J.: A new long-wave formula for estimating downward clear-sky radiation at the surface, Q. J. R. Meteorol. Soc., 122, 1127–1151, https://doi.org/10.1002/qj.49712253306, 1996.
Previdi, M.: Radiative feedbacks on global precipitation, Environ. Res. Lett., 5, 025211, https://doi.org/10.1088/1748-9326/5/2/025211, 2010.
Satterlund, D. R.: An improved equation for estimating long-wave radiation from the atmosphere, Water Resour. Res., 15, 1649–1650, https://doi.org/10.1029/WR015i006p01649, 1979.
Shakespeare C. J. and Roderick. M.: Diagnosing Instantaneous Forcing and Feedbacks of Downwelling Longwave Radiation at the Surface: A Simple Methodology and Its Application to CMIP5 Models, J. Clim., 35, 3785–3801, https://doi.org/10.1175/JCLI-D-21-0865.1, 2022.
Sridhar, V. and Elliott, R. L.: On the development of a simple downwelling longwave radiation scheme, Agr. Forest Meteorol., 112, 237–243, https://doi.org/10.1016/S0168-1923(02)00129-6, 2022.
Su, J., Duan, A., and Xu, H.: Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation, Atmos. Sci. Lett., 18, 112–117, https://doi.org/10.1002/asl.732, 2017.
Tian, Y., Zhang, Y., Zhong, D., Zhang, M., Li, T., Xie, D., and Wang, G.: Atmospheric Energy Sources for Winter Sea Ice Variability over the North Barents–Kara Seas, J. Clim., 35, 5379–5398, https://doi.org/10.1175/JCLI-D-21-0652.1, 2022.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's Global Energy Budget, Bull Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Viúdez-Mora, A., Costa-Surós, M., Calbó, J., and González, J. A.: Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height, J. Geophys. Res.-Atmos., 120, 199–214, https://doi.org/10.1002/2014JD022310, 2015.
Wang, K. and Liang S.: Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008, J. Geophys. Res.-Atmos., 114, D19101, https://doi.org/10.1029/2009JD011800, 2009.
Wei, Y., Zhang, X., Li, W., Hou, N., Zhang, W., Xu, J., Feng, C., Jia, K., Yao, Y., Cheng, J., Jiang, B., Wang, K., and Liang, S.: Trends and Variability of Atmospheric Downward Longwave Radiation Over China From 1958 to 2015, Earth Space Sci., 8, e2020EA001370, https://doi.org/10.1029/2020EA001370, 2021.
Wild, M., Folini, D., Hakuba, M. Z., Schär, C., Seneviratne, S. I., Kato, S., Rutan, D., Ammann, C., Wood, E. F., and König-Langlo, G.: The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Clim. Dynam., 44, 3393–3429, https://doi.org/10.1007/s00382-014-2430-z, 2015.
Wild, M., Ohmura, A., Schär, C., Müller, G., Folini, D., Schwarz, M., Hakuba, M. Z., and Sanchez-Lorenzo, A.: The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes, Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, 2017.
Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., and Liu, C.: A Gauge-Based Analysis of Daily Precipitation over East Asia, J. Hydrometeorol., 8, 607–626, https://doi.org/10.1175/JHM583.1, 2007.
Zampieri, M., D'Andrea, F., Vautard, R., Ciais, P., de Noblet-Ducoudré, N., and Yiou, P.: Hot European Summers and the Role of Soil Moisture in the Propagation of Mediterranean Drought, J. Clim., 22, 4747–4758, https://doi.org/10.1175/2009JCLI2568.1, 2009.
Zeppetello, L. R. V., Donohoe, A., and Battisti, D. S.: Does surface temperature respond to or determine downwelling longwave radiation?, Geophys. Res. Lett., 46, 2781–2789, https://doi.org/10.1029/2019GL082220, 2019.
Zhou, Y. and Savijärvi, H.: The effect of aerosols on long wave radiation and global warming, Atmos. Res., 135/136, 102–111, https://doi.org/10.1016/j.atmosres.2013.08.009, 2014.
Short summary
Downward longwave radiation (Rld) is critical for the surface energy budget, but its climatological variation on a global scale is not yet well understood physically. We use a semi-empirical equation derived by Brutsaert (1975) to identify the controlling role that atmospheric heat storage plays in spatiotemporal variations of Rld. Our work helps us to better understand aspects of climate variability, extreme events, and global warming by linking these to the mechanistic contributions of Rld.
Downward longwave radiation (Rld) is critical for the surface energy budget, but its...
Altmetrics
Final-revised paper
Preprint