Articles | Volume 14, issue 5
https://doi.org/10.5194/esd-14-1065-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-1065-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low confidence in multi-decadal trends of wind-driven upwelling across the Benguela Upwelling System
Mohammad Hadi Bordbar
CORRESPONDING AUTHOR
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock,
Germany
Volker Mohrholz
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock,
Germany
Martin Schmidt
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock,
Germany
Related authors
No articles found.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Dirk S. van Maren, Christian Maushake, Jan-Willem Mol, Daan van Keulen, Jens Jürges, Julia Vroom, Henk Schuttelaars, Theo Gerkema, Kirstin Schulz, Thomas H. Badewien, Michaela Gerriets, Andreas Engels, Andreas Wurpts, Dennis Oberrecht, Andrew J. Manning, Taylor Bailey, Lauren Ross, Volker Mohrholz, Dante M. L. Horemans, Marius Becker, Dirk Post, Charlotte Schmidt, and Petra J. T. Dankers
Earth Syst. Sci. Data, 15, 53–73, https://doi.org/10.5194/essd-15-53-2023, https://doi.org/10.5194/essd-15-53-2023, 2023
Short summary
Short summary
This paper reports on the main findings of a large measurement campaign aiming to better understand how an exposed estuary (the Ems Estuary on the Dutch–German border) interacts with a tidal river (the lower Ems River). Eight simultaneously deployed ships measuring a tidal cycle and 10 moorings collecting data throughout a spring–neap tidal cycle have produced a dataset providing valuable insight into processes determining exchange of water and sediment between the two systems.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Cited articles
Abrahams, A., Schlegel, R. W., and Smit, A. J.: Variation and change of
upwelling dynamics detected in the world's eastern boundary upwelling
systems, Front. Mar. Sci., 8, 626411, https://doi.org/10.3389/fmars.2021.626411, 2021a.
Abrahams, A., Schlegel, R. W., and Smit, A. J.: A novel approach to quantify
metrics of upwelling intensity, frequency, and duration, PLoS One, 16,
e0254026, https://doi.org/10.1371/journal.pone.0254026, 2021b.
Bakun, A.: Global climate change and intensification of coastal ocean
upwelling, Science, 247, 198–201, 1990.
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019.
Bonino, G., Di Lorenzo, E., Masina, S., and Iovino, D.: Interannual to
decadal variability within and across the major Eastern Boundary Upwelling
Systems, Sci. Rep., 9, 1–14, 2019.
Bordbar, M. H., Martin, T., Latif, M., and Park, W.: Effects of long-term
variability on projections of twenty-first century dynamic sea level, Nat.
Clim. Change, 5, 343–347, 2015.
Bordbar, M. H., England, M. H., Sen Gupta, A., Santoso, A., Taschetto, A.,
Martin, T., Park, W., and Latif, M.: Uncertainty in near-term global surface
warming linked to tropical Pacific climate variability, Nat.
Commun., 10, 1–10, 2019.
Bordbar, M. H., Mohrholz, V., and Schmidt, M.: The relation of wind-driven
coastal and offshore upwelling in the Benguela Upwelling System, J.
Phys. Ocean., 51, 3117–3133, 2021.
Brandt, P., Bordbar, M. H., Coelho, P., Koungue, R. A. I., Körner, M.,
Lamont, T., Lübbecke, J. F., Mohrholz, M., Prigent, A., Roch, M.,
Schmidt, M., vanderPlas, A. K., and Veitch, J.: Physical drivers of Southwest
African coastal upwelling and its response to climate variability and
change. Sustainability of Southern African Ecosystems under Global Change,
Ecol. Stud., Vol. 248, Springer, Cham,
https://doi.org/10.1007/978-3-031-10948-5_9a, 2023.
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz,
N.: Geographical variability of the first baroclinic Rossby radius of
deformation, J. Phys. Ocean., 28, 433–460, 1998.
Chelton, D. B., Schlax, M. G., Freilich, M. H., and Milliff, R. F.:
Satellite measurements reveal persistent small-scale features in ocean
winds, Science, 303, 978–983, 2004.
de Szoeke, R. A. and Richman, R.: On wind-driven mixed layers with strong
horizontal gradients – A theory with application to coastal upwelling, J.
Phys. Oceanogr., 14, 364–377, 1984.
Ekman, V. W.: On the influence of the Earth's rotation on ocean-currents,
Ark. Mat. Astron. Fys., 2, 1–52, 1905.
Feistel, R., Hagen, E., and Grant, K.: Climatic changes in the subtropical
Southeast Atlantic: The St. Helena Island climate index (1893–1999), [data set],
Prog. Oceanogr., 59, 321–337,
https://doi.org/10.1016/j.pocean.2003.07.002, 2003.
Fennel, W.: Theory of the Benguela upwelling system, J. Phys. Oceanogr., 29,
177–190, https://doi.org/10.1175/1520-0485(1999), 1999.
Fennel, W. and Lass, H. U.: On the impact of wind curls on coastal
currents, J. Mar. Syst., 68, 128–142, 2007.
Fogt, R. L. and Marshall, G. A.: The Southern Annular Mode: variability,
trends, and climate impacts across the Southern Hemisphere, Wiley
Interdisciplinary Reviews, Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020.
Gill, A. E.: Atmosphere-Ocean Dynamics, International Geophysics Series,
Vol. 30, Academic Press, 662 pp., 1982.
Gillett, N. P., Kell, T. D., and Jones, P. D.: Regional climate impacts of
the Southern Annular Mode, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027721, 2006.
Gilliland, J. M. and Keim, B. D.: Position of the South Atlantic
Anticyclone and its impact on surface conditions across Brazil, J. Appl. Meteorol. Clim., 57, 535–553, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J. N.: ERA5
hourly data on pressure levels from 1979 to present, Copernicus climate
change service (c3s) climate data store (cds), [data set], 10, https://cds.climate.copernicus.eu/ (last access: April 2022),
2018.
Hirahara, S., Balmaseda, M. A., Boisseson, E. D., and Hersbach, H.: 26 sea
surface temperature and sea ice concentration for ERA5. Eur. Centre Medium
Range Weather Forecasts, Berkshire, UK, ERA Rep. Ser, 26, 2016.
Hösen, E., Möller, J., Jochumsen, K., and Quadfasel, D.: Scales and
properties of cold filaments in the Benguela upwelling system off
Lüderitz. J. Geophys. Res.-Oceans, 121, 1896–1913,
https://doi.org/10.1002/2015JC011411, 2016.
Imbol Koungue, R. A., Rouault, M., Illig, S., Brandt, P., and Jouanno, J.:
Benguela Niños and Benguela Niñas in Forced Ocean Simulation From
1958 to 2015. J. Geophys. Res.-Oceans, 124, 5923–5951,
https://doi.org/10.1029/2019jc015013, 2019.
Jarre, A., Hutchings, L., Kirkman, S. P., Kreiner, A., Tchipalanga, P. C.,
Kainge, P., Uanivi, U., van der Plas, A. K., Blamey, L. K., Coetzee, J. C.,
and Lamont, T.: Synthesis: climate effects on biodiversity, abundance and
distribution of marine organisms in the Benguela, Fish. Oceanogr.
24, 122–149, https://doi.org/10.1111/fog.12086, 2015.
Johnson, J. A.: Modifications of coastal currents and upwelling by offshore
variations in wind stress, Tellus, 28, 254–260,
https://doi.org/10.3402/tellusa.v28i3.10287, 1976.
Junker, T., Mohrholz, V., Siegfried, L., and van der Plas, A.: Seasonal to
interannual variability of water mass characteristics and currents on the
Namibian shelf, J. Mar. Syst., 165, 36–46, 2017.
Kainge, P., Kirkman, S. P., Estevão, V., van der Lingen, C. D., Uanivi,
U., Kathena, J. N., van der Plas, A., Githaiga-Mwicigi, J., Makhado, A.,
Nghimwatya, L., and Endjambi, T.: Fisheries yields, climate change, and
ecosystem-based management of the Benguela Current Large Marine Ecosystem,
Environ. Develop., 36, 100567, https://doi.org/10.1016/j.envdev.2020.100567, 2020.
Kidson, J. W.: Interannual variations in the Southern Hemisphere
circulation, J. Climate, 1, 1177–1198, 1988.
Lamont, T., García-Reyes, M., Bograd, S. J., Van Der Lingen, C. D., and
Sydeman, W. J.: Upwelling indices for comparative ecosystem studies:
Variability in the Benguela Upwelling System, J. Mar. Syst.,
188, 3–16, 2018.
Lamont, T., Barlow, R. G., and Brewin, R. J.: Long-term trends in
phytoplankton chlorophyll a and size structure in the Benguela upwelling
system, J. Geophys. Res.-Oceans, 124, 1170–1195,
https://doi.org/10.1029/2018JC014334, 2019.
Lass, H. U. and Mohrholz, V.: On the interaction between the subtropical
gyre and the subtropical cell on the shelf of the SE Atlantic, J. Mar.
Syst., 74, 1–43, 2008.
Latif, M., Martin, T., Park, W., and Bordbar, M. H.: Internal Southern Ocean
Centennial Variability: Dynamics, Impacts and Implications for Global
Warming, in: Climate Change: Multidecadal and Beyond, 109–124, 2016.
Li, X., Bordbar, M. H., Latif, M., Park, W., and Harlaß, J.: Monthly to
seasonal prediction of tropical Atlantic sea surface temperature with
statistical models constructed from observations and data from the Kiel
Climate Model, Clim. Dynam., 54, 1829–1850, 2020.
Lubbecke, J. F., Boning, C. W., Keenlyside, N. S., and Xie, S. P.: On the
connection between Benguela and equatorial Niños and the role of the
South Atlantic Anticyclone, J. Geophys. Res., 115, C09015, https://doi.org/10.1029/2009JC005964, 2010.
Marshall, G. J., Fogt, R. L., Turner, J., and Clem, K. R.: Can current
reanalyses accurately portray changes in Southern Annular Mode structure
prior to 1979?, Clim. Dynam., 59, 3717–3740, 2022.
Narayan, N., Paul, A., Mulitza, S., and Schulz, M.: Trends in coastal upwelling intensity during the late 20th century, Ocean Sci., 6, 815–823, https://doi.org/10.5194/os-6-815-2010, 2010.
Patricola, C. M. and Chang, P.: Structure and dynamics of the Benguela
low-level coastal 1004 jet, Clim. Dynam., 49, 2765–2788, 2017.
Pauly, D. and Christensen, V.: Primary production required to sustain
global fisheries, Nature, 374, 255–257, 1995.
Polonsky, A. B. and Serebrennikov, A. N.: Long-Term Tendencies of Intensity
of Eastern Boundary Upwelling Systems Assessed from Different Satellite
Data, Part 1: Atlantic Upwellings, Izvestiya, Atmos. Ocean. Phys., 57, 1658–1669, 2021.
Prigent, A., Imbol Koungue, R. A., Lübbecke, J. F., Brandt, P., and
Latif, M.: Origin of weakened interannualsea surface temperature variability
in the southeastern tropical Atlantic Ocean, Geophys. Res. Lett.,
47, e2020GL089348, https://doi.org/10.1029/2020GL089348, 2020.
Reintges, A., Latif, M., Bordbar, M. H., and Park, W.: Wind stress-induced
multiyear predictability of annual extratropical North Atlantic Sea surface
temperature anomalies, Geophys. Res. Lett., 47,
e2020GL087031, https://doi.org/10.1029/2020GL087031, 2020.
Ricciardulli, L. and Wentz, F. J.: Remote sensing systems ASCAT C-2015
daily ocean vector winds on 0.25 deg grid, version 02.1, Remote Sensing
Systems,
http://www.remss.com/missions/ascat (last access: 1 June 2019), 2016.
Richter, I., Mechoso, C. R., and Robertson, A. W.: What determines the
position and intensity of the South Atlantic anticyclone in austral winter?,
An AGCM study, J. Climate, 21, 214–229, 2008.
Richter, I., Behera, S. K., Masumoto, Y., Taguchi, B., Komori, N., and
Yamagata, T.: On the triggering of Benguela Niños: Remote equatorial
versus local influences, Geophys. Res. Lett., 37, L20604, https://doi.org/10.1029/2010GL044461, 2010.
Rouault, M. and Tomety, F. S.: Impact of the El Niño Southern
Oscillation on the Benguela upwelling, J. Phys. Ocean., 52,
2573–2587, 2022.
Rykaczewski, R. R. and Checkley, D. M.: Influence of ocean winds on the
pelagic ecosystem in upwelling regions, P. Natl. Acad. Sci. USA, 105, 1965–1970, 2008.
Rykaczewski, R., Dunne, J. P., Sydeman, W. J., García-Reyes, M., Black,
B. A., and Bograd, S. J.: Poleward displacement of coastal
upwelling-favorable winds in the ocean's eastern boundary currents through
the 21st century, Geophys. Res. Lett., 42, 6424–6431, 2015.
Shannon, L. V.: The Benguela ecosystem, Part I: Evolution of the Benguela,
physical features and processes, Ocean. Mar. Biol., 23, 105–182, 1985.
Shannon, L. V., Boyd, A. J., Brundrit, G. B., and Taunton-Clark, J.: On the
Existence of an El-Niño-Type Phenomenon in the Benguela System, J. Mar. Res., 44, 495–520, 1986.
Shannon, L. V. and Nelson, G.: The Benguela: large scale features and
processes and system variability, The South Atlantic, Springer,
Berlin, Heidelberg, 163–210, 1996.
Sun, X., Cook, K. H., and Vizy, E. K.: The South Atlantic subtropical high:
climatology and interannual variability, J. Climate, 30,
3279–3296, 2017.
Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R.,
Thompson, S. A., Black, B. A., and Bograd, S. J.: Climate change and wind
intensification in coastal upwelling ecosystems, Science, 345,
77–80, 2014.
Tim, N., Zorita, E., and Hünicke, B.: Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation, Ocean Sci., 11, 483–502, https://doi.org/10.5194/os-11-483-2015, 2015.
Wachter, P., Beck, C., Philipp, A., Höppner, K., and Jacobeit, J.:
Spatiotemporal variability of the Southern Annular Mode and its influence on
Antarctic surface temperatures, J. Geophys. Res.-Atmos., 125, e2020JD033818, https://doi.org/10.1029/2020JD033818, 2020.
Yari, S., Mohrholz, V., and Bordbar, M. H.: Wind variability across the North
Humboldt Upwelling System, Front. Mar. Sci., 10, 1087980, https://doi.org/10.3389/fmars.2023.1087980, 2023.
Yoshida, K.: A theory of the Cromwell Current (the equatorial undercurrent)
and of equatorial upwelling, J. Oceanogr. Soc. Jap., 15, 159–170, 1959.
Short summary
The Benguela Upwelling System hosts highly productive marine ecosystems, supporting the livelihood of the local inhabitants. Regional distribution of nutrients in this system is affected by upwelling, primarily wind-driven and related to the South Atlantic Anticyclone, which is believed to intensify in the future. We found that this system's southern and northern parts respond to the anticyclone changes differently. Due to climate variability, the uncertainty in the upwelling trend is high.
The Benguela Upwelling System hosts highly productive marine ecosystems, supporting the...
Altmetrics
Final-revised paper
Preprint