Articles | Volume 13, issue 2
https://doi.org/10.5194/esd-13-795-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-795-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupling human and natural systems for sustainability: experience from China's Loess Plateau
Bojie Fu
CORRESPONDING AUTHOR
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Invited contribution by Bojie Fu, recipient of the EGU Alexander von Humboldt Medal 2020.
Xutong Wu
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Zhuangzhuang Wang
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Xilin Wu
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Shuai Wang
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Related authors
Yichu Huang, Xiaoming Feng, Chaowei Zhou, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3393, https://doi.org/10.5194/egusphere-2024-3393, 2024
Preprint archived
Short summary
Short summary
This study uses an integrated water-energy-land optimization model to explore sustainable water use pathways in the Yellow River Basin. We find water conflicts between energy and irrigation water use, and quantify the mitigation and spillover effects of water transfer. We also highlight the critical role of energy production, implying that the energy sector transformation is key to the water system of the Yellow River Basin.
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022, https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary
Short summary
A reasonable assessment of the contribution of the water resources in a river basin to domestic crops supplies will be the first step in balancing the water–food nexus. Our results showed that although the Yellow River basin had reduced its virtual water outflow, its importance to crop production in China had been increasing when water footprint networks were considered. Our complexity-based approach provides a new perspective for understanding changes in a basin with a severe water shortage.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Xuejing Leng, Xiaoming Feng, Bojie Fu, and Yu Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-377, https://doi.org/10.5194/hess-2021-377, 2021
Manuscript not accepted for further review
Short summary
Short summary
At present, there is a lack of time series of runoff generated by glacial regions in the world. In this paper, we quantified glacial runoff (including meltwater runoff and delayed runoff) in arid regions of China from 1961 to 2015 by using remote sensing datasets of glacier mass balance with high resolution. Glacier runoff is the water resource used by oases in arid regions of China. The long-term glacial runoff data can indicate the climate risk faced by different basins in arid regions.
Yongzhe Chen, Xiaoming Feng, and Bojie Fu
Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, https://doi.org/10.5194/essd-13-1-2021, 2021
Short summary
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020, https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Short summary
Freshwater availability is crucial for sustainable development across the Asian and eastern European regions. Our results indicate widespread decline in terrestrial water storage (TWS) over the region during 2002–2017, primarily due to the intensive over-extraction of groundwater and warmth-induced surface water loss. The findings provide insights into changes in TWS and its components over the Asian and eastern European regions, where there is growing demand for food grains and water supplies.
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020, https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Short summary
We proposed an approach that integrates universal multifractals and a segmentation algorithm to precisely identify extreme precipitation (EP) and assess spatiotemporal EP variation over the Loess Plateau, using daily data. Our results explain how EP contributes to the widely distributed severe natural hazards. These findings are of great significance for ecological management in the Loess Plateau. Our approach is also helpful for spatiotemporal EP assessment at the regional scale.
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
Yuan Zhang, Xiaoming Feng, Xiaofeng Wang, and Bojie Fu
Hydrol. Earth Syst. Sci., 22, 1749–1766, https://doi.org/10.5194/hess-22-1749-2018, https://doi.org/10.5194/hess-22-1749-2018, 2018
Short summary
Short summary
We characterized drought by linking climate anomalies with the change in precipitation–runoff relationships in China's Loess Plateau, where drought is of major concern for revegetation. Multi-year drought causes a change in the precipitation–runoff relationship in this water limited area. The drought causing a decrease in runoff ratio is vital to ecosystem management. The revegetation in the Loess Plateau should live with the spatially varied drought.
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Short summary
This study extracted spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield across the Loess Plateau during 1961–2011. The impacts of precipitation on sediment yield declined with time and the precipitation-sediment relationship showed a coherent spatial pattern. The sediment coefficient, representing the effect of LUCC, decreases linearly with fraction of area treated with erosion control measures and the slopes were highly variable among the catchments.
Yonggang Yang and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, https://doi.org/10.5194/hess-21-1757-2017, 2017
Short summary
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.
Ji Zhou, Bojie Fu, Guangyao Gao, Yihe Lü, and Shuai Wang
Hydrol. Earth Syst. Sci., 21, 1491–1514, https://doi.org/10.5194/hess-21-1491-2017, https://doi.org/10.5194/hess-21-1491-2017, 2017
Short summary
Short summary
We constructed an integrated probabilistic assessment to describe, simulate and evaluate the stochasticity of soil erosion in restoration vegetation in the Loess Plateau. We found that morphological structures in vegetation are the source of different stochasticities of soil erosion, and proved that the Poisson model is fit for predicting erosion stochasticity. This assessment could be an important complement to develop restoration strategies to improve understanding of stochasticity of erosion.
Chuan Yuan, Guangyao Gao, and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1421–1438, https://doi.org/10.5194/hess-21-1421-2017, https://doi.org/10.5194/hess-21-1421-2017, 2017
Short summary
Short summary
We computed stemflow yield and efficiency, and analyzed the influential mechanism at smaller scales of leaf and raindrop. We found that precipitation was the most influential meteorological feature on stemflow. The smaller threshold precipitation to start stemflow and the more beneficial leaf traits might partly explain the larger and more efficient stemflow production. At defoliated period, the newly exposed stems replaced leaves to intercept raindrops and might really matter in stemflow yield.
N. Lu, J. Liski, R. Y. Chang, A. Akujärvi, X. Wu, T. T. Jin, Y. F. Wang, and B. J. Fu
Biogeosciences, 10, 7053–7063, https://doi.org/10.5194/bg-10-7053-2013, https://doi.org/10.5194/bg-10-7053-2013, 2013
J. Zhou, B. J. Fu, N. Lü, G. Y. Gao, Y. H. Lü, and S. Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10083-2013, https://doi.org/10.5194/hessd-10-10083-2013, 2013
Revised manuscript not accepted
Y. D. Xu, B. J. Fu, and C. S. He
Hydrol. Earth Syst. Sci., 17, 2185–2193, https://doi.org/10.5194/hess-17-2185-2013, https://doi.org/10.5194/hess-17-2185-2013, 2013
Yichu Huang, Xiaoming Feng, Chaowei Zhou, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3393, https://doi.org/10.5194/egusphere-2024-3393, 2024
Preprint archived
Short summary
Short summary
This study uses an integrated water-energy-land optimization model to explore sustainable water use pathways in the Yellow River Basin. We find water conflicts between energy and irrigation water use, and quantify the mitigation and spillover effects of water transfer. We also highlight the critical role of energy production, implying that the energy sector transformation is key to the water system of the Yellow River Basin.
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022, https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary
Short summary
A reasonable assessment of the contribution of the water resources in a river basin to domestic crops supplies will be the first step in balancing the water–food nexus. Our results showed that although the Yellow River basin had reduced its virtual water outflow, its importance to crop production in China had been increasing when water footprint networks were considered. Our complexity-based approach provides a new perspective for understanding changes in a basin with a severe water shortage.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Xuejing Leng, Xiaoming Feng, Bojie Fu, and Yu Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-377, https://doi.org/10.5194/hess-2021-377, 2021
Manuscript not accepted for further review
Short summary
Short summary
At present, there is a lack of time series of runoff generated by glacial regions in the world. In this paper, we quantified glacial runoff (including meltwater runoff and delayed runoff) in arid regions of China from 1961 to 2015 by using remote sensing datasets of glacier mass balance with high resolution. Glacier runoff is the water resource used by oases in arid regions of China. The long-term glacial runoff data can indicate the climate risk faced by different basins in arid regions.
Yongzhe Chen, Xiaoming Feng, and Bojie Fu
Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, https://doi.org/10.5194/essd-13-1-2021, 2021
Short summary
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020, https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Short summary
Freshwater availability is crucial for sustainable development across the Asian and eastern European regions. Our results indicate widespread decline in terrestrial water storage (TWS) over the region during 2002–2017, primarily due to the intensive over-extraction of groundwater and warmth-induced surface water loss. The findings provide insights into changes in TWS and its components over the Asian and eastern European regions, where there is growing demand for food grains and water supplies.
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020, https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Short summary
We proposed an approach that integrates universal multifractals and a segmentation algorithm to precisely identify extreme precipitation (EP) and assess spatiotemporal EP variation over the Loess Plateau, using daily data. Our results explain how EP contributes to the widely distributed severe natural hazards. These findings are of great significance for ecological management in the Loess Plateau. Our approach is also helpful for spatiotemporal EP assessment at the regional scale.
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
Yuan Zhang, Xiaoming Feng, Xiaofeng Wang, and Bojie Fu
Hydrol. Earth Syst. Sci., 22, 1749–1766, https://doi.org/10.5194/hess-22-1749-2018, https://doi.org/10.5194/hess-22-1749-2018, 2018
Short summary
Short summary
We characterized drought by linking climate anomalies with the change in precipitation–runoff relationships in China's Loess Plateau, where drought is of major concern for revegetation. Multi-year drought causes a change in the precipitation–runoff relationship in this water limited area. The drought causing a decrease in runoff ratio is vital to ecosystem management. The revegetation in the Loess Plateau should live with the spatially varied drought.
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Short summary
This study extracted spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield across the Loess Plateau during 1961–2011. The impacts of precipitation on sediment yield declined with time and the precipitation-sediment relationship showed a coherent spatial pattern. The sediment coefficient, representing the effect of LUCC, decreases linearly with fraction of area treated with erosion control measures and the slopes were highly variable among the catchments.
Yonggang Yang and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, https://doi.org/10.5194/hess-21-1757-2017, 2017
Short summary
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.
Ji Zhou, Bojie Fu, Guangyao Gao, Yihe Lü, and Shuai Wang
Hydrol. Earth Syst. Sci., 21, 1491–1514, https://doi.org/10.5194/hess-21-1491-2017, https://doi.org/10.5194/hess-21-1491-2017, 2017
Short summary
Short summary
We constructed an integrated probabilistic assessment to describe, simulate and evaluate the stochasticity of soil erosion in restoration vegetation in the Loess Plateau. We found that morphological structures in vegetation are the source of different stochasticities of soil erosion, and proved that the Poisson model is fit for predicting erosion stochasticity. This assessment could be an important complement to develop restoration strategies to improve understanding of stochasticity of erosion.
Chuan Yuan, Guangyao Gao, and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1421–1438, https://doi.org/10.5194/hess-21-1421-2017, https://doi.org/10.5194/hess-21-1421-2017, 2017
Short summary
Short summary
We computed stemflow yield and efficiency, and analyzed the influential mechanism at smaller scales of leaf and raindrop. We found that precipitation was the most influential meteorological feature on stemflow. The smaller threshold precipitation to start stemflow and the more beneficial leaf traits might partly explain the larger and more efficient stemflow production. At defoliated period, the newly exposed stems replaced leaves to intercept raindrops and might really matter in stemflow yield.
N. Lu, J. Liski, R. Y. Chang, A. Akujärvi, X. Wu, T. T. Jin, Y. F. Wang, and B. J. Fu
Biogeosciences, 10, 7053–7063, https://doi.org/10.5194/bg-10-7053-2013, https://doi.org/10.5194/bg-10-7053-2013, 2013
J. Zhou, B. J. Fu, N. Lü, G. Y. Gao, Y. H. Lü, and S. Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10083-2013, https://doi.org/10.5194/hessd-10-10083-2013, 2013
Revised manuscript not accepted
Y. D. Xu, B. J. Fu, and C. S. He
Hydrol. Earth Syst. Sci., 17, 2185–2193, https://doi.org/10.5194/hess-17-2185-2013, https://doi.org/10.5194/hess-17-2185-2013, 2013
Related subject area
Management of the Earth system: sustainability science
Governing change: a dynamical systems approach to understanding the stability of environmental governance
Disentangling the climate divide with emotional patterns: a network-based mindset reconstruction approach
Lotka's wheel and the long arm of history: how does the distant past determine today's global rate of energy consumption?
Groundwater storage dynamics in the world's large aquifer systems from GRACE: uncertainty and role of extreme precipitation
Linking resilience and robustness and uncovering their trade-offs in coupled infrastructure systems
Exploring the biogeophysical limits of global food production under different climate change scenarios
A framework for modelling the complexities of food and water security under globalisation
Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea
Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution
Weather and resource information as tools for dealing with farmer–pastoralist conflicts in the Sahel
Revolutions in energy input and material cycling in Earth history and human history
Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth system
Socio-environmental cooperation and conflict? A discursive understanding and its application to the case of Israel and Palestine
Gender and climate change in the Indian Himalayas: global threats, local vulnerabilities, and livelihood diversification at the Nanda Devi Biosphere Reserve
Policies, economic incentives and the adoption of modern irrigation technology in China
Migration and global environmental change: methodological lessons from mountain areas of the global South
Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
Applying the concept of "energy return on investment" to desert greening of the Sahara/Sahel using a global climate model
Nusrat Molla, John DeIonno, Thilo Gross, and Jonathan Herman
Earth Syst. Dynam., 13, 1677–1688, https://doi.org/10.5194/esd-13-1677-2022, https://doi.org/10.5194/esd-13-1677-2022, 2022
Short summary
Short summary
How the structure of resource governance systems affects how they respond to change is not yet well understood. We model the stability of thousands of different governance systems, revealing that greater diversity and interdependence among actors are destabilizing, while venue shopping and advocacy organizations are stabilizing. This study suggests that complexity in governance corresponds to responsiveness to change, while providing insight into managing them to balance adaptivity and stability
Roger Cremades and Massimo Stella
Earth Syst. Dynam., 13, 1473–1489, https://doi.org/10.5194/esd-13-1473-2022, https://doi.org/10.5194/esd-13-1473-2022, 2022
Short summary
Short summary
We analyse the speeches of prominent climate activism and climate disinformation figures, finding that the emotional patterns behind the words reveal more than the words themselves and showing the emerging revolutionary characteristics of climate activism and some strange emotional connections on the side of disinformation, where there is surprisingly no worry about change at all.
Timothy J. Garrett, Matheus R. Grasselli, and Stephen Keen
Earth Syst. Dynam., 13, 1021–1028, https://doi.org/10.5194/esd-13-1021-2022, https://doi.org/10.5194/esd-13-1021-2022, 2022
Short summary
Short summary
Current world economic production is rising relative to energy consumption. This increase in
production efficiencysuggests that carbon dioxide emissions can be decoupled from economic activity through technological change. We show instead a nearly fixed relationship between energy consumption and a new economic quantity, historically cumulative economic production. The strong link to the past implies inertia may play a more dominant role in societal evolution than is generally assumed.
Mohammad Shamsudduha and Richard G. Taylor
Earth Syst. Dynam., 11, 755–774, https://doi.org/10.5194/esd-11-755-2020, https://doi.org/10.5194/esd-11-755-2020, 2020
Short summary
Short summary
Recent assessments of the sustainability of global groundwater resources using the Gravity Recovery and Climate Experiment (GRACE) satellites assume that the underlying trends are linear. Here, we assess recent changes in groundwater storage (ΔGWS) in the world’s large aquifer systems using an ensemble of GRACE datasets and show that trends are mostly non-linear. Non-linearity in ΔGWS derives, in part, from the episodic nature of groundwater replenishment associated with extreme precipitation.
Mehran Homayounfar, Rachata Muneepeerakul, John M. Anderies, and Chitsomanus P. Muneepeerakul
Earth Syst. Dynam., 9, 1159–1168, https://doi.org/10.5194/esd-9-1159-2018, https://doi.org/10.5194/esd-9-1159-2018, 2018
Short summary
Short summary
For many complex social-ecological systems, robustness and resilience are difficult to quantify and the connections and trade-offs between them difficult to study. In this study, we present an analytical framework to address the linkage between robustness and resilience more systematically. The results reveal the trade-offs between robustness and resilience. They also show how the nature of such trade-offs varies with the choices of certain policies, internal stresses, and external disturbances.
Philipp de Vrese, Tobias Stacke, and Stefan Hagemann
Earth Syst. Dynam., 9, 393–412, https://doi.org/10.5194/esd-9-393-2018, https://doi.org/10.5194/esd-9-393-2018, 2018
Short summary
Short summary
The potential food supply depends strongly on climatic conditions, while agricultural activity has substantial impacts on climate. Using an Earth system model, we investigate the climate–agriculture interactions resulting from a maximization of the global cropland area during the 21st century. We find that the potential food supply can be increased substantially, but guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Björn Claremar, Karin Haglund, and Anna Rutgersson
Earth Syst. Dynam., 8, 901–919, https://doi.org/10.5194/esd-8-901-2017, https://doi.org/10.5194/esd-8-901-2017, 2017
Short summary
Short summary
Shipping is the most cost-effective option for the global transport of goods, and over 90 % of world trade is carried by sea. The shipping sector, however, contributes to emissions of pollutants into the air and water. Estimates of deposition and near-surface concentrations of sulfur, nitrogen, and particulate matter originating from shipping in the Baltic Sea region have been developed for present conditions concerning traffic intensity and fuel as well as for future scenarios until 2050.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Ole Mertz, Kjeld Rasmussen, and Laura Vang Rasmussen
Earth Syst. Dynam., 7, 969–976, https://doi.org/10.5194/esd-7-969-2016, https://doi.org/10.5194/esd-7-969-2016, 2016
Short summary
Short summary
Conflicts over land and water resources between livestock herders and farmers are common in the Sahelian region of Africa. In this paper we show that improved information on weather, grazing areas, and water resources may reduce the level of conflict if communicated in such a way so that not too many livestock herds go to the same areas. However, if this information is not accompanied by information on herd crowding and potential conflict areas, it may lead to more conflict.
Timothy M. Lenton, Peter-Paul Pichler, and Helga Weisz
Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, https://doi.org/10.5194/esd-7-353-2016, 2016
Short summary
Short summary
We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Ide and C. Fröhlich
Earth Syst. Dynam., 6, 659–671, https://doi.org/10.5194/esd-6-659-2015, https://doi.org/10.5194/esd-6-659-2015, 2015
Short summary
Short summary
We investigate why some social groups engage in conflicts over shared natural resources while other groups cooperate over the same issue. Drawing on evidence from the particularly puzzling case of water conflict and cooperation in Israel and Palestine, we show that the discursive construction of identities and situation assessments is a crucial explanatory factor. This finding highlights the relevance of bottom-up discursive conflict transformation.
M. V. Ogra and R. Badola
Earth Syst. Dynam., 6, 505–523, https://doi.org/10.5194/esd-6-505-2015, https://doi.org/10.5194/esd-6-505-2015, 2015
R. Cremades, J. Wang, and J. Morris
Earth Syst. Dynam., 6, 399–410, https://doi.org/10.5194/esd-6-399-2015, https://doi.org/10.5194/esd-6-399-2015, 2015
Short summary
Short summary
Econometric analyses results revealed that policy support via subsidies and extension services have played an important role in promoting the adoption of irrigation technology. Strikingly, the present irrigation pricing policy has played significant but contradictory roles in promoting the adoption of different types of irrigation technology. Irrigation pricing showed a positive impact on household-based irrigation technology, and a negative impact on community-based irrigation technology.
A. Milan, G. Gioli, and T. Afifi
Earth Syst. Dynam., 6, 375–388, https://doi.org/10.5194/esd-6-375-2015, https://doi.org/10.5194/esd-6-375-2015, 2015
M. Abid, J. Scheffran, U. A. Schneider, and M. Ashfaq
Earth Syst. Dynam., 6, 225–243, https://doi.org/10.5194/esd-6-225-2015, https://doi.org/10.5194/esd-6-225-2015, 2015
Short summary
Short summary
Based on a farm household survey of 450 farmers, this study examined the adaptation to climate change and factors affecting the adoption of various adaptation measures at the farm level in Pakistan. The study demonstrates that awareness of climate change is widespread in the area, and farmers are adapting their crops to climate variability. However the adaptation process is constrained due to several factors such as lack of information, lack of money, lack of resources and shortage of water.
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014, https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary
Short summary
Climate change will have impacts on many different sectors of society, but a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable. This paper presents the AHEAD approach, which allows for relating impacts of climate change to 16 dimensions of livelihoods and well-being. Using the example of changes in water availability, the results show how climate change impacts AHEAD. The approach also provides a tool to frame uncertainties from climate models.
S. P. K. Bowring, L. M. Miller, L. Ganzeveld, and A. Kleidon
Earth Syst. Dynam., 5, 43–53, https://doi.org/10.5194/esd-5-43-2014, https://doi.org/10.5194/esd-5-43-2014, 2014
Cited articles
An, W., Li, Z., Wang, S., Wu, X., Lu, Y., Liu, G., and Fu, B.: Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China, Ecol. Eng., 107, 144–151, https://doi.org/10.1016/j.ecoleng.2017.07.017, 2017.
Barton, L., Newsome, S. D., Chen, F. H., Wang, H., Guilderson, T. P., and Bettinger, R. L.: Agricultural origins and the isotopic identity of domestication in northern China, P. Natl. Acad. Sci. USA, 106, 5523–5528, https://doi.org/10.1073/pnas.0809960106, 2009.
Bennett, E. M., Peterson, G. D., and Gordon, L. J.: Understanding relationships among multiple ecosystem services, Ecol. Lett., 12, 1394–1404, https://doi.org/10.1111/j.1461-0248.2009.01387.x, 2009.
Bi, N., Wang, H., and Yang, Z.: Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities, Cont. Shelf Res., 90, 70–78, 2014.
Biggs, R., de Vos, A., Preiser, R., Clements, H., Maciejewski, K., and Schlüter, M.: The Routledge Handbook of Research Methods for Social-Ecological Systems, Routledge, https://doi.org/10.4324/9781003021339, 2021.
Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., Stafford-Smith, M., Wu, J., He, C., Yu, D., Liu, Z., Li, A., Huang, Q., Ren, H., Deng, X., Zheng, H., Niu, J., Han, G., and Hou, X.: China's response to a national land-system sustainability emergency, Nature, 559, 193–204, https://doi.org/10.1038/s41586-018-0280-2, 2018.
Cao, S.: Impact of China's Large-Scale Ecological Restoration Program on the Environment and Society in Arid and Semiarid Areas of China: Achievements, Problems, Synthesis, and Applications, Crit. Rev. Env. Sci. Tec., 41, 317–335, https://doi.org/10.1080/10643380902800034, 2011.
Carpenter, S. R., Mooney, H. A., Agard, J., Capistrano, D., Defries, R. S., Diaz, S., Dietz, T., Duraiappah, A. K., Oteng-Yeboah, A., Pereira, H. M., Perrings, C., Reid, W. V., Sarukhan, J., Scholes, R. J., and Whyte, A.: Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment, P. Natl. Acad. Sci. USA, 106, 1305–1312, https://doi.org/10.1073/pnas.0808772106, 2009.
Chen, L., Wei, W., Fu, B., and Lü, Y.: Soil and water conservation on the Loess Plateau in China: Review and perspective, Prog. Phys. Geog., 31, 389–403, https://doi.org/10.1177/0309133307081290, 2007.
Chen, L., Wang, J., Wei, W., Fu, B., and Wu, D.: Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China, Forest Ecol. Manag., 259, 1291–1298, https://doi.org/10.1016/j.foreco.2009.10.025, 2010.
Chen, Y.: Flood dynamics of the lower Yellow River over the last 3000 years: Characteristics and implications for geoarchaeology, Quatern. Int., 521, 147–157, https://doi.org/10.1016/j.quaint.2019.05.040, 2019.
Chen, Y., Syvitski, J. P. M., Gao, S., Overeem, I., and Kettner, A. J.: Socio-economic Impacts on Flooding: A 4000-Year History of the Yellow River, China, Ambio, 41, 682–698, https://doi.org/10.1007/s13280-012-0290-5, 2012.
Chen, Y., Wang, K., Lin, Y., Shi, W., Song, Y., and He, X.: Balancing green and grain trade, Nat. Geosci., 8, 739–741, https://doi.org/10.1038/ngeo2544, 2015.
Costanza, R., De Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., and Grasso, M.: Twenty years of ecosystem services: How far have we come and how far do we still need to go?, Ecosyst. Serv., 28, 1–16, https://doi.org/10.1016/j.ecoser.2017.09.008, 2017.
Cumming, G.: Theoretical Frameworks for the Analysis of Social-Ecological Systems, in: Social-ecological systems in transition,
edited by: Sakai, S. and Umetsu, C., Springer, Tokyo, 3–24, https://doi.org/10.1007/978-4-431-54910-9_1, 2014.
Deng, J., Sun, P., Zhao, F., Han, X., Yang, G., and Feng, Y.: Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models, Sci. Total Environ., 550, 382–390, https://doi.org/10.1016/j.scitotenv.2016.01.152, 2016.
Dong, X., Wang, X., Wei, H., Fu, B., Wang, J., and Uriarte-Ruiz, M.: Trade-offs between local farmers' demand for ecosystem services and ecological restoration of the Loess Plateau, China, Ecosyst. Serv., 49, 101295, https://doi.org/10.1016/j.ecoser.2021.101295, 2021.
Feng, X., Fu, B., Yang, X., and Lü, Y.: Remote sensing of ecosystem services: An opportunity for spatially explicit assessment, Chinese Geogr. Sci., 20, 522–535, https://doi.org/10.1007/s11769-010-0428-y, 2010.
Feng, X., Fu, B., Lu, N., Zeng, Y., and Wu, B.: How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China's Loess Plateau, Sci. Rep.-UK, 3, 2846, https://doi.org/10.1038/srep02846, 2013.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's Loess Plateau is approaching sustainable water resource limits, Nat. Clim. Change, 6, 1019–1022, https://doi.org/10.1038/nclimate3092, 2016.
Fu, B.: Promoting Geography for Sustainability, Geography and Sustainability, 1, 1–7, https://doi.org/10.1016/j.geosus.2020.02.003, 2020.
Fu, B. and Li, Y.: Bidirectional coupling between the Earth and human systems is essential for modeling sustainability, Natl. Sci. Rev., 3, 397–398,
https://doi.org/10.1093/nsr/nww094, 2016.
Fu, B. and Wei, Y.: Editorial overview: Keeping fit in the dynamics of coupled natural and human systems, Curr. Opin. Env. Sust., 33, A1–A4, https://doi.org/10.1016/j.cosust.2018.07.003, 2018.
Fu, B., Liang, D., and Lu, N.: Landscape ecology: Coupling of pattern, process, and scale, Chinese Geogr. Sci., 21, 385, https://doi.org/10.1007/s11769-011-0480-2, 2011a.
Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., and Wu, B.: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China, Ecol. Complex., 8, 284–293, https://doi.org/10.1016/j.ecocom.2011.07.003, 2011b.
Fu, B., Wang, S., Su, C., and Forsius, M.: Linking ecosystem processes and ecosystem services, Curr. Opin. Env. Sust., 5, 4–10, https://doi.org/10.1016/j.cosust.2012.12.002, 2013.
Fu, B., Zhang, L., Xu, Z., Zhao, Y., Wei, Y., and Skinner, D.: Ecosystem services in changing land use, J. Soil. Sediment., 15, 833–843, https://doi.org/10.1007/s11368-015-1082-x, 2015.
Fu, B., Shuai, W., Yu, L., Jianbo, L., Wei, L., and Chiyuan, M.: Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China, Annu. Rev. Earth Pl. Sc., 45, 223–243, https://doi.org/10.1146/annurev-earth-063016-020552, 2017.
Fu, B., Tian, T., Liu, Y., and Zhao, W.: New Developments and Perspectives in Physical Geography in China, Chinese Geogr. Sci., 29, 363–371, https://doi.org/10.1007/s11769-019-1038-y, 2019.
Gao, G., Ma, Y., and Fu, B.: Multi-temporal scale changes of streamflow and sediment load in a loess hilly watershed of China, Hydrol. Process., 30, 365–382, https://doi.org/10.1002/hyp.10585, 2016.
Gao, G., Zhang, J., Liu, Y., Ning, Z., Fu, B., and Sivapalan, M.: Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China, Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, 2017.
Gunderson, L., Cosens, B. A., Chaffin, B. C., Arnold, C. A., Fremier, A. K., Garmestani, A. S., Craig, R. K., Gosnell, H., Birge, H. E., Allen, C. R., Benson, M. H., Morrison, R. R., Stone, M. C., Hamm, J. A., Nemec, K., Schlager, E., and Llewellyn, D.: Regime shifts and panarchies in regional scale social-ecological water systems, Ecol. Soc., 22, 31, https://doi.org/10.5751/es-08879-220131, 2017.
He, G., Wang, Z., Shen, J., Cui, Z., and Zhang, F.: Transition of agriculture on the Loess Plateau of China toward green development, Front. Agr. Sci. Eng., 8, 491–500, https://doi.org/10.15302/j-fase-2021428, 2021.
Hu, H., Fu, B., Lü, Y., and Zheng, Z.: SAORES: a spatially explicit assessment and optimization tool for regional ecosystem services, Landscape Ecol., 30, 547–560, https://doi.org/10.1007/s10980-014-0126-8, 2015.
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Summary for policymakers of the global assessment report on biodiversity and ecosystem services (summary for policy makers), IPBES Plenary at its seventh session (IPBES 7, Paris, 2019), Zenodo, https://doi.org/10.5281/zenodo.3553579, 2019.
Jia, X., Fu, B., Feng, X., Hou, G., Liu, Y., and Wang, X.: The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China, Ecol. Indic., 43, 103–113, https://doi.org/10.1016/j.ecolind.2014.02.028, 2014.
Koellner, T., Bonn, A., Arnhold, S., Bagstad, K. J., Fridman, D., Guerra, C. A., Kastner, T., Kissinger, M., Kleemann, J., Kuhlicke, C., Liu, J., López-Hoffman, L., Marques, A., Martín-López, B., Schulp, C. J. E., Wolff, S., and Schröter, M.: Guidance for assessing interregional ecosystem service flows, Ecol. Indic., 105, 92–106, https://doi.org/10.1016/j.ecolind.2019.04.046, 2019.
Kong, D., Miao, C., Borthwick, A. G. L., Duan, Q., Liu, H., Sun, Q., Ye, A., Di, Z., and Gong, W.: Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011, J. Hydrol., 520, 157–167, https://doi.org/10.1016/j.jhydrol.2014.09.038, 2015.
Lewis, S. L. and Maslin, M. A.: Defining the Anthropocene, Nature, 519, 171–180, https://doi.org/10.1038/nature14258, 2015.
Li, J., Feldman, M. W., Li, S., and Daily, G. C.: Rural household income and inequality under the Sloping Land Conversion Program in western China, P. Natl. Acad. Sci. USA, 108, 7721–7726, https://doi.org/10.1073/pnas.1101018108, 2011.
Li, T., Lu, Y., Fu, B., Comber, A. J., Harris, P., and Wu, L.: Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships, Sci. Total Environ., 607–608, 911–919, https://doi.org/10.1016/j.scitotenv.2017.07.044, 2017.
Li, T., Lü, Y., Fu, B., Hu, W., and Comber, A. J.: Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies, Ecol. Indic., 99, 332–342, https://doi.org/10.1016/j.ecolind.2018.12.041, 2019.
Liang, H., Xue, Y., Li, Z., Wang, S., Wu, X., Gao, G., Liu, G., and Fu, B.: Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau, Forest Ecol. Manag., 412, 62–69, https://doi.org/10.1016/j.foreco.2018.01.041, 2018.
Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., and Taylor, W. W.: Complexity of Coupled Human and Natural Systems, Science, 317, 1513–1516, https://doi.org/10.1126/science.1144004, 2007.
Liu, J., Li, S., Ouyang, Z., Tam, C., and Chen, X.: Ecological and socioeconomic effects of China's policies for ecosystem services, P. Natl. Acad. Sci. USA, 105, 9477–9482, 2008.
Liu, J., Dietz, T., Carpenter, S. R., Folke, C., and Trade, S. W. T. M.: Coupled Human and Natural Systems, Ambio, 36, 639–649, 2009.
Liu, J., Hull, V., Batistella, M., Defries, R., Dietz, T., Fu, F., Hertel, T. W., Izaurralde, R. C., Lambin, E. F., Li, S., Martinelli, L. A., McConnell, W. J., Moran, E. F., Naylor, R., Ouyang, Z., Polenske, K. R., Reenberg, A., De Miranda Rocha, G., Simmons, C. S., Verburg, P. H., Vitousek, P. M., Zhang, F., and Zhu, C.: Framing Sustainability in a Telecoupled World, Ecol. Soc., 18, 26, https://doi.org/10.5751/es-05873-180226, 2013.
Liu, J., Dietz, T., Carpenter, S. R., Taylor, W. W., Alberti, M., Deadman, P., Redman, C., Pell, A., Folke, C., Ouyang, Z., and Lubchenco, J.: Coupled human and natural systems: The evolution and applications of an integrated framework, Ambio, 50, 1778–1783, https://doi.org/10.1007/s13280-020-01488-5, 2021.
Liu, Q., Wang, Y., Zhang, J., and Chen, Y.: Filling gullies to create farmland on the loess plateau, Environ. Sci. Technol., 47, 7589–7590, https://doi.org/10.1021/es402460r, 2013.
Liu, Y., Fu, B., Lü, Y., Wang, Z., and Gao, G.: Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China, Geomorphology, 138, 404–414, https://doi.org/10.1016/j.geomorph.2011.10.009, 2012.
Liu, Y., Lü, Y., Fu, B., Harris, P., and Wu, L.: Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale, Sci. Total Environ., 650, 1029–1040, https://doi.org/10.1016/j.scitotenv.2018.09.082, 2019.
Lu, N., Fu, B., Jin, T., and Chang, R.: Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes, Landscape Ecol., 29, 1697–1708, https://doi.org/10.1007/s10980-014-0101-4, 2014.
Lü, Y., Fu, B., Feng, X., Zeng, Y., Liu, Y., Chang, R., Sun, G., and Wu, B.: A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China, PLoS One, 7, e31782, https://doi.org/10.1371/journal.pone.0031782, 2012.
Luo, Y., Lü, Y., Fu, B., Zhang, Q., Li, T., Hu, W., and Comber, A.: Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau, Sci. Total Environ., 651, 2546–2557, https://doi.org/10.1016/j.scitotenv.2018.10.116, 2019.
MA: Ecosystems and Human Well-being: Synthesis, Island Press, Washington, DC, ISBN 1-59726-040-1, 2005.
Mandle, L., Shields-Estrada, A., Chaplin-Kramer, R., Mitchell, M. G. E., Bremer, L. L., Gourevitch, J. D., Hawthorne, P., Johnson, J. A., Robinson, B. E., Smith, J. R., Sonter, L. J., Verutes, G. M., Vogl, A. L., Daily, G. C., and Ricketts, T. H.: Increasing decision relevance of ecosystem service science, Nature Sustainability, 4, 161–169, https://doi.org/10.1038/s41893-020-00625-y, 2021.
Nelson, D. R., Adger, W. N., and Brown, K.: Adaptation to Environmental Change: Contributions of a Resilience Framework, Annu. Rev. Environ. Resour., 32, 395–419, https://doi.org/10.1146/annurev.energy.32.051807.090348, 2007.
Ostrom, E.: A General Framework for Analyzing Sustainability of Social-Ecological Systems, Science, 325, 419–422, https://doi.org/10.1126/science.1172133, 2009.
Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L., Xiao, Y., Rao, E., Jiang, L., Lu, F., Wang, X., Yang, G., Gong, S., Wu, B., Zeng, Y., Yang, W., and Daily, G. C.: Improvements in ecosystem services from investments in natural capital, Science, 352, 1455–1459, https://doi.org/10.1126/science.aaf2295, 2016.
Page, G. and Bellotti, B.: Farmers value on-farm ecosystem services as important, but what are the impediments to participation in PES schemes?, Sci. Total Environ., 515–516, 12–19, https://doi.org/10.1016/j.scitotenv.2015.02.029, 2015.
Partelow, S.: A review of the social-ecological systems framework: applications, methods, modifications, and challenges, Ecol. Soc., 23, 36, https://doi.org/10.5751/es-10594-230436, 2018.
Quintas-Soriano, C., Brandt, J., Baxter, C. V., Bennett, E. M., Requena-Mullor, J. M., and Castro, A. J.: A framework for assessing coupling and de-coupling trajectories in river social-ecological systems, Sustain. Sci., 17, 121–134, https://doi.org/10.1007/s11625-021-01048-0, 2021.
Rocha, J. C., Peterson, G. D., and Biggs, R.: Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience, PLoS One, 10, e0134639, https://doi.org/10.1371/journal.pone.0134639, 2015.
Song, C., Zhang, Y., Mei, Y., Liu, H., Zhang, Z., Zhang, Q., Zha, T., Zhang, K., Huang, C., and Xu, X.: Sustainability of forests created by China's sloping land conversion program: a comparison among three sites in Anhui, Hubei and Shanxi, Forest Policy Econ., 38, 161–167, 2014.
Steffen, W., Crutzen, P. J., and Mcneill, J. R.: The Anthropocene: are humans now overwhelming the great forces of Nature?, Ambio, 36, 614–621, 2007.
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., and Ludwig, C.: The trajectory of the Anthropocene: The Great Acceleration, The Anthropocene Review, 2, 81–98, 2015.
Su, C., Dong, M., Fu, B., and Liu, G.: Scale effects of sediment retention, water yield, and net primary production: A case-study of the Chinese Loess Plateau, Land Degrad. Dev., 31, 1408–1421, https://doi.org/10.1002/ldr.3536, 2020.
Sun, Z., Shao, J., Liu, L., Cui, J., Bonomo, M. F., Guo, Q., Wu, X., and Wang, J.: The first Neolithic urban center on China's north Loess Plateau: The rise and fall of Shimao, Archaeological Research in Asia, 14, 33–45, https://doi.org/10.1016/j.ara.2017.02.004, 2018.
Tian, Q.: Complex Adaptive Systems and a Sustainability Framework, in: Rural Sustainability, Springer, Cham, 1–14, https://doi.org/10.1007/978-3-319-52685-0_1, 2017.
Uchida, E., Rozelle, S., and Xu, J.: Conservation payments, liquidity constraints, and off-farm labor: impact of the Grain-for-Green Program on rural households in China, Am. J. Agr. Econ., 91, 70–86, 2009.
UN: Transforming our world: the 2030 Agenda for sustainable development, UN, New York, https://digitallibrary.un.org/record/3923923/files/A_RES_70_1-EN.pdf (last access: 11 March 2022), 2015.
UN: The Sustainable Development Goals Report 2019, United Nations, New York, ISBN 9789211014037, 2019.
Vallecillo, S., La Notte, A., Ferrini, S., and Maes, J.: How ecosystem services are changing: an accounting application at the EU level, Ecosyst. Serv., 40, 101044, https://doi.org/10.1016/j.ecoser.2019.101044, 2019.
Wang, S., Fu, B., Gao, G., Liu, Y., and Zhou, J.: Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China, Catena, 101, 122–128, https://doi.org/10.1016/j.catena.2012.10.006, 2013.
Wang, S., Fu, B., Piao, S., Lü, Y., Ciais, P., Feng, X., and Wang, Y.: Reduced sediment transport in the Yellow River due to anthropogenic changes, Nat. Geosci., 9, 38–41, https://doi.org/10.1038/ngeo2602, 2016.
Wang, S., Fu, B., Liang, W., Liu, Y., and Wang, Y.: Driving forces of changes in the water and sediment relationship in the Yellow River, Sci. Total Environ., 576, 453–461, https://doi.org/10.1016/j.scitotenv.2016.10.124, 2017.
Wang, S., Fu, B., Chen, H., and Liu, Y.: Regional development boundary of China's Loess Plateau: Water limit and land shortage, Land Use Policy, 74, 130–136, https://doi.org/10.1016/j.landusepol.2017.03.003, 2018a.
Wang, S., Fu, B., Zhao, W., Liu, Y., and Wei, F.: Structure, function, and dynamic mechanisms of coupled human–natural systems, Curr. Opin. Env. Sust., 33, 87–91, https://doi.org/10.1016/j.cosust.2018.05.002, 2018b.
Wang, S., Fu, B., Bodin, Ö., Liu, J., Zhang, M., and Li, X.: Alignment of social and ecological structures increased the ability of river management, Sci. Bull., 64, 1318–1324, https://doi.org/10.1016/j.scib.2019.07.016, 2019.
Wang, T., Wu, J., Kou, X., Oliver, C., Mou, P., and Ge, J.: Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China, Ecol. Appl., 20, 1126–1135, https://doi.org/10.1890/09-0229.1, 2010.
Wang, X., Shen, J., and Zhang, W.: Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy, Energ. Policy, 67, 508–516, https://doi.org/10.1016/j.enpol.2013.12.060, 2014.
Wang, Y., Shao, M., Zhu, Y., and Liu, Z.: Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China, Agr. Forest Meteorol., 151, 437–448, https://doi.org/10.1016/j.agrformet.2010.11.016, 2011.
Wei, W., Chen, L., Fu, B., Huang, Z., Wu, D., and Gui, L.: The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China, J. Hydrol., 335, 247–258, https://doi.org/10.1016/j.jhydrol.2006.11.016, 2007.
Wei, W., Chen, L., Fu, B., and Chen, J.: Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China, Catena, 81, 24–31, https://doi.org/10.1016/j.catena.2010.01.002, 2010.
Wu, X., Wang, S., Fu, B., Feng, X., and Chen, Y.: Socio-ecological changes on the Loess Plateau of China after Grain to Green Program, Sci. Total Environ., 678, 565–573, https://doi.org/10.1016/j.scitotenv.2019.05.022, 2019.
Wu, X., Wei, Y., Fu, B., Wang, S., Zhao, Y., and Moran, E. F.: Evolution and effects of the social-ecological system over a millennium in China's Loess Plateau, Sci. Adv., 6, eabc0276, https://doi.org/10.1126/sciadv.abc0276, 2020.
Wu, X., Liu, J., Fu, B., Wang, S., and Wei, Y.: Integrating multiple influencing factors in evaluating the socioeconomic effects of payments for ecosystem services, Ecosyst. Serv., 51, 101348, https://doi.org/10.1016/j.ecoser.2021.101348, 2021a.
Wu, X., Wang, S., and Fu, B.: Multilevel analysis of factors affecting participants' land reconversion willingness after the Grain for Green Program, Ambio, 50, 1394–1403, https://doi.org/10.1007/s13280-020-01475-w, 2021b.
Yang, H., Yang, W., Zhang, J., Connor, T., and Liu, J.: Revealing pathways from payments for ecosystem services to socioeconomic outcomes, Sci. Adv., 4, eaao6652, https://doi.org/10.1126/sciadv.aao6652, 2018.
Yao, X., Fu, B., Lü, Y., Chang, R., Wang, S., Wang, Y., and Su, C.: The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China, J. Soil. Sediment., 12, 694–703, https://doi.org/10.1007/s11368-012-0481-5, 2012.
Yin, R., Liu, C., Zhao, M., Yao, S., and Liu, H.: The implementation and impacts of China's largest payment for ecosystem services program as revealed by longitudinal household data, Land Use Policy, 40, 45–55, https://doi.org/10.1016/j.landusepol.2014.03.002, 2014.
Yu, Y., Zhao, W., Martinez-Murillo, J. F., and Pereira, P.: Loess Plateau: from degradation to restoration, Sci. Total Environ., 738, 140206, https://doi.org/10.1016/j.scitotenv.2020.140206, 2020.
Zhang, S., Yang, D., Yang, Y., Piao, S., Yang, H., Lei, H., and Fu, B.: Excessive Afforestation and Soil Drying on China's Loess Plateau, J. Geophys. Res.-Biogeo., 123, 923–935, https://doi.org/10.1002/2017JG004038, 2018.
Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P.: Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China, Land Degrad. Dev., 24, 499–510, https://doi.org/10.1002/ldr.2246, 2013.
Zheng, Z., Fu, B., and Feng, X.: GIS-based analysis for hotspot identification of tradeoff between ecosystem services: A case study in Yanhe Basin, China, Chinese Geogr. Sci., 26, 466–477, https://doi.org/10.1007/s11769-016-0816-z, 2016.
Zhou, J., Fu, B., Gao, G., Lü, Y., Liu, Y., Lü, N., and Wang, S.: Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China, Catena, 137, 1–11, https://doi.org/10.1016/j.catena.2015.08.015, 2016.
Zhou, Y., Huang, H. Q., Nanson, G. C., Huang, C., and Liu, G.: Progradation of the Yellow (Huanghe) River delta in response to the implementation of a basin-scale water regulation program, Geomorphology, 243, 65–74, 2015.
Zhu, H., Fu, B., Wang, S., Zhu, L., Zhang, L., Jiao, L., and Wang, C.: Reducing soil erosion by improving community functional diversity in semi-arid grasslands, J. Appl. Ecol., 52, 1063–1072, https://doi.org/10.1111/1365-2664.12442, 2015.
Zwierzchowska, I., Hof, A., Iojă, I.-C., Mueller, C., Poniży, L., Breuste, J., and Mizgajski, A.: Multi-scale assessment of cultural ecosystem services of parks in Central European cities, Urban For. Urban Gree., 30, 84–97, https://doi.org/10.1016/j.ufug.2017.12.017, 2018.
Short summary
To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we propose a conceptual
pattern–process–service–sustainabilitycascade framework. The use of this framework is systematically illustrated by a review of CHANS research experience in China's Loess Plateau in terms of coupling landscape patterns and ecological processes, linking ecological processes to ecosystem services, and promoting social–ecological sustainability.
To understand the dynamics of a coupled human and natural system (CHANS) and promote its...
Altmetrics
Final-revised paper
Preprint