Articles | Volume 13, issue 1
Earth Syst. Dynam., 13, 219–230, 2022
https://doi.org/10.5194/esd-13-219-2022
Earth Syst. Dynam., 13, 219–230, 2022
https://doi.org/10.5194/esd-13-219-2022
Research article
31 Jan 2022
Research article | 31 Jan 2022

Exploration of a novel geoengineering solution: lighting up tropical forests at night

Xueyuan Gao et al.

Related authors

A GeoNEX-based high spatiotemporal resolution product of land surface downward shortwave radiation and photosynthetically active radiation
Ruohan Li, Dongdong Wang, Weile Wang, and Ramakrishna Nemani
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-319,https://doi.org/10.5194/essd-2022-319, 2022
Preprint under review for ESSD
Short summary
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022,https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-284,https://doi.org/10.5194/essd-2022-284, 2022
Preprint under review for ESSD
Short summary
Global land surface 250-m 8-day Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) product from 2000 to 2020
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, and Aolin Jia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-131,https://doi.org/10.5194/essd-2022-131, 2022
Revised manuscript accepted for ESSD
Short summary
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022,https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary

Related subject area

Management of the Earth system: engineering responses to climate change
How large is the design space for stratospheric aerosol geoengineering?
Yan Zhang, Douglas G. MacMartin, Daniele Visioni, and Ben Kravitz
Earth Syst. Dynam., 13, 201–217, https://doi.org/10.5194/esd-13-201-2022,https://doi.org/10.5194/esd-13-201-2022, 2022
Short summary
The response of terrestrial ecosystem carbon cycling under different aerosol-based radiation management geoengineering
Hanna Lee, Helene Muri, Altug Ekici, Jerry Tjiputra, and Jörg Schwinger
Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021,https://doi.org/10.5194/esd-12-313-2021, 2021
Short summary
Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs
Walker Lee, Douglas MacMartin, Daniele Visioni, and Ben Kravitz
Earth Syst. Dynam., 11, 1051–1072, https://doi.org/10.5194/esd-11-1051-2020,https://doi.org/10.5194/esd-11-1051-2020, 2020
Short summary
Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: a direct comparison of carbon capture and sulfur injection
Yangyang Xu, Lei Lin, Simone Tilmes, Katherine Dagon, Lili Xia, Chenrui Diao, Wei Cheng, Zhili Wang, Isla Simpson, and Lorna Burnell
Earth Syst. Dynam., 11, 673–695, https://doi.org/10.5194/esd-11-673-2020,https://doi.org/10.5194/esd-11-673-2020, 2020
Short summary
Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare
Koen G. Helwegen, Claudia E. Wieners, Jason E. Frank, and Henk A. Dijkstra
Earth Syst. Dynam., 10, 453–472, https://doi.org/10.5194/esd-10-453-2019,https://doi.org/10.5194/esd-10-453-2019, 2019
Short summary

Cited articles

Abatayo, A. Lou, Bosetti, V., Casari, M., Ghidoni, R., and Tavoni, M.: Solar geoengineering may lead to excessive cooling and high strategic uncertainty, P. Natl. Acad. Sci. USA, 117, 13393–13398, https://doi.org/10.1073/pnas.1916637117, 2020. 
Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S. L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T. R., Gvozdevaite, A., Hubau, W., Moore, S., Peprah, T., Ziemińska, K., Phillips, O. L., and Oliveras, I.: Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity, Nat. Commun., 11, 3–18, https://doi.org/10.1038/s41467-020-16973-4, 2020. 
Boisvenue, C. and Running, S. W.: Impacts of climate change on natural forest productivity - Evidence since the middle of the 20th century, Global Change Biol., 12, 862–882, https://doi.org/10.1111/j.1365-2486.2006.01134.x, 2006. 
Borchert, R., Renner, S. S., Calle, Z., Havarrete, D., Tye, A., Gautier, L., Spichiger, R., and Von Hildebrand, P.: Photoperiodic induction of synchronous flowering near the Equator, Nature, 433, 627–629, https://doi.org/10.1038/nature03259, 2005. 
Chatterjee, S. and Huang, K. W.: Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways, Nat. Commun., 11, 4–9, https://doi.org/10.1038/s41467-020-17203-7, 2020. 
Download
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Altmetrics
Final-revised paper
Preprint