Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-1239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind speed stilling and its recovery due to internal climate variability
Climate Policy Group, Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
Doris Folini
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Bryn Pickering
Climate Policy Group, Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
Related authors
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024, https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Short summary
We evaluate how winds change when humans grow or cut down forests. Our analysis draws from climate model simulations with extreme scenarios where Europe is either fully forested or covered with grass. We find that the effect of land use change on wind energy is very important: wind energy potentials are twice as high above grass as compared to forest in some locations. Our results imply that wind profile changes should be better incorporated in climate change assessments for wind energy.
Charlotte Neubacher, Dirk Witthaut, and Jan Wohland
Adv. Geosci., 54, 205–215, https://doi.org/10.5194/adgeo-54-205-2021, https://doi.org/10.5194/adgeo-54-205-2021, 2021
Short summary
Short summary
In our study, we investigate the variability of potential offshore wind power over Europe on time scales of more than 10 years. Detailed spectral analysis of potential offshore wind power capacities over the last century indicates a strong coupling to large climate patterns such as the NAO. Furthermore, combining the wind power potential at the German North Sea and the Portuguese Atlantic coast shows that the variability can be mitigated.
William Wandji Nyamsi, Ville Leinonen, Antti Lipponen, Else van den Besselaar, Santtu Mikkonen, Arturo Sanchez–Lorenzo, Martin Wild, Doris Folini, Tero Mielonen, Harri Kokkola, Antti Kukkurainen, Neus Sabater, Rei Kudo, Ben Liley, Raghav Srinivasan, Bruce W. Forgan, Alexandru Dumitrescu, Grzegorz Urban, Michał K. Kowalewski, Márcia Akemi Yamasoe, Nilton Évora do Rosário, Dimitra Founda, Stelios Kazadzis, Veronica Manara, Derbetini A. Vondou, Christian Gueymard, Anders V. Lindfors, Atsumu Ohmura, and Antti Arola
EGUsphere, https://doi.org/10.5194/egusphere-2025-5950, https://doi.org/10.5194/egusphere-2025-5950, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Worldwide reconstructed historical aerosol load reveals that during the period of: 1900–1959: the atmosphere became cleaner in most European cities; 1960–1985: anthropogenic aerosols were responsible for the dimming phenomenon in Europe. AOD increased over Southeast Brazil and decreased noticeably over Japan while a small negative trend was found over Oceania; 1986–2015: generally, the atmosphere has become much cleaner everywhere after the reversal trend around 1980s mainly observed in Europe.
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024, https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Short summary
We evaluate how winds change when humans grow or cut down forests. Our analysis draws from climate model simulations with extreme scenarios where Europe is either fully forested or covered with grass. We find that the effect of land use change on wind energy is very important: wind energy potentials are twice as high above grass as compared to forest in some locations. Our results imply that wind profile changes should be better incorporated in climate change assessments for wind energy.
Lucas Ferreira Correa, Doris Folini, Boriana Chtirkova, and Martin Wild
Atmos. Chem. Phys., 24, 8797–8819, https://doi.org/10.5194/acp-24-8797-2024, https://doi.org/10.5194/acp-24-8797-2024, 2024
Short summary
Short summary
We investigated the causes of the decadal trends of solar radiation measured at 34 stations in Brazil in the first 2 decades of the 21st century. We observed strong negative trends in north and northeast Brazil associated with changes in both atmospheric absorption (anthropogenic) and cloud cover (natural). In other parts of the country no strong trends were observed as a result of competing effects. This provides a better understanding of the energy balance in the region.
Xinyuan Hou, Martin Wild, Doris Folini, Stelios Kazadzis, and Jan Wohland
Earth Syst. Dynam., 12, 1099–1113, https://doi.org/10.5194/esd-12-1099-2021, https://doi.org/10.5194/esd-12-1099-2021, 2021
Short summary
Short summary
Solar photovoltaics (PV) matters for the carbon neutrality goal. We use climate scenarios to quantify climate risk for PV in Europe and find higher PV potential. The seasonal cycle of PV generation changes in most places. We find an increase in the spatial correlations of daily PV production, implying that PV power balancing through redistribution will be more difficult in the future. Thus, changes in the spatiotemporal structure of PV generation should be included in power system design.
Charlotte Neubacher, Dirk Witthaut, and Jan Wohland
Adv. Geosci., 54, 205–215, https://doi.org/10.5194/adgeo-54-205-2021, https://doi.org/10.5194/adgeo-54-205-2021, 2021
Short summary
Short summary
In our study, we investigate the variability of potential offshore wind power over Europe on time scales of more than 10 years. Detailed spectral analysis of potential offshore wind power capacities over the last century indicates a strong coupling to large climate patterns such as the NAO. Furthermore, combining the wind power potential at the German North Sea and the Portuguese Atlantic coast shows that the variability can be mitigated.
Cited articles
Befort, D. J., Wild, S., Kruschke, T., Ulbrich, U., and Leckebusch, G. C.:
Different long-term trends of extra-tropical cyclones and windstorms in
ERA-20C and NOAA-20CR reanalyses: Extra-tropical cyclones and windstorms in 20th century reanalyses, Atmos. Sci. Lett., 17, 586–595, https://doi.org/10.1002/asl.694, 2016. a
Bichet, A., Wild, M., Folini, D., and Schär, C.: Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model: Decadal Variations Of Land Wind Speed, Geophys. Res. Lett., 39, L11701, https://doi.org/10.1029/2012GL051685, 2012. a, b, c, d
Bloomfield, H. C., Shaffrey, L. C., Hodges, K. I., and Vidale, P. L.: A
critical assessment of the long-term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis, Environ. Res. Lett., 13, 094004, https://doi.org/10.1088/1748-9326/aad5c5, 2018. a
Cardone, V. J., Greenwood, J. G., and Cane, M. A.: On trends in historical
marine wind data, J. Climate, 3, 113–127, 1990. a
Earth System Grid Federation: Climate Model Intercomparison Project – Phase 6, https://esgf-data.dkrz.de/search/cmip6-dkrz/, last access: 12 November 2021. a
Emeis, S.: Wind energy meteorology: atmospheric physics for wind power
generation, Springer, Berlin, 2018. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Gonzalez, P. L. M., Brayshaw, D. J., and Zappa, G.: The contribution of North
Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe, Clim. Dynam., 53, 4095–4113,
https://doi.org/10.1007/s00382-019-04776-3, 2019. a, b
Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional Climate Predictions, B. Am. Meteorol. Soc., 90, 1095–1108, https://doi.org/10.1175/2009BAMS2607.1, 2009. a
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer,
G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D.,
Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova,
E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P.,
and Wang, Y. P.: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Climatic Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011. a, b
Karnauskas, K. B., Lundquist, J. K., and Zhang, L.: Southward shift of the
global wind energy resource under high carbon dioxide emissions, Nat. Geosci., 11, 38–43, https://doi.org/10.1038/s41561-017-0029-9, 2018. a
Klink, K.: Atmospheric Circulation Effects on Wind Speed Variability at Turbine Height, J. Appl. Meteorol. Clim., 46, 445–456, https://doi.org/10.1175/JAM2466.1, 2007. a
Land Use Harmonization, LUH Products used for CMIP5, available at: https://luh.umd.edu/data.shtml#LUH1_Data, last access: 12 November 2021. a
Maher, N., Milinski, S., Suarez‐Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li,
H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina,
T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability, J. Adv. Model. Earth Syst., 11, 2050–2069, https://doi.org/10.1029/2019MS001639, 2019. a, b
McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G.,
Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M.,
Mescherskaya, A. V., Kruger, A. C., Rehman, S., and Dinpashoh, Y.: Global
review and synthesis of trends in observed terrestrial near-surface wind
speeds: Implications for evaporation, J. Hydrol., 416-417, 182–205, https://doi.org/10.1016/j.jhydrol.2011.10.024, 2012. a
Max Planck Institute for Meteorology: MPI Grand Ensemble, Max Planck Institute for Meteorology [data], https://esgf-data.dkrz.de/projects/mpi-ge/, last access: 12 November 2021. a
Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., and Sakaguchi, K.: Climate change impacts on wind power generation, Nat. Rev. Earth Environ., 1, 627–643, https://doi.org/10.1038/s43017-020-0101-7, 2020. a, b, c
Reyers, M., Moemken, J., and Pinto, J. G.: Future changes of wind energy
potentials over Europe in a large CMIP5 multi-model ensemble: Future Changes Of Wind Energy Over Europe In A CMIP5 Ensemble, Int. J. Climatol., 36, 783–796, https://doi.org/10.1002/joc.4382,2016. a
Schlott, M., Kies, A., Brown, T., Schramm, S., and Greiner, M.: The impact of
climate change on a cost-optimal highly renewable European electricity
network, Appl. Energy, 230, 1645–1659, https://doi.org/10.1016/j.apenergy.2018.09.084,
2018. a
Stocker, T.: Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2014. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: A Summary of the CMIP5
Experiment Design, available at: https://pcmdi.llnl.gov/mips/cmip5/docs/Taylor_CMIP5_design.pdf, last access: 12 November 2021. a
Tobin, I., Jerez, S., Vautard, R., Thais, F., van Meijgaard, E., Prein, A.,
Déqué, M., Kotlarski, S., Maule, C. F., Nikulin, G., Noël, T., and
Teichmann, C.: Climate change impacts on the power generation potential of a
European mid-century wind farms scenario, Environ. Res. Lett., 11, 034013, https://doi.org/10.1088/1748-9326/11/3/034013, 2016. a
Torralba, V., Doblas-Reyes, F. J., and Gonzalez-Reviriego, N.: Uncertainty in
recent near-surface wind speed trends: a global reanalysis intercomparison,
Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58, 2017. a
Troccoli, A., Muller, K., Coppin, P., Davy, R., Russell, C., and Hirsch, A. L.: Long-Term Wind Speed Trends over Australia, J. Climate, 25, 170–183, https://doi.org/10.1175/2011JCLI4198.1, 2012. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N., and Ciais, P.: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness, Nat. Geosci., 3, 756–761, https://doi.org/10.1038/ngeo979, 2010. a, b
Ward, M. N. and Hoskins, B. J.: Near-surface wind over the global ocean 1949–1988, J. Climate, 9, 1877–1895, 1996. a
Wever, N.: Quantifying trends in surface roughness and the effect on surface
wind speed observations: Surface Roughness And Wind Speed Trends, J. Geophys. Res.-Atmos., 117, D11104, https://doi.org/10.1029/2011JD017118, 2012. a
Wohland, J. and Pickering, B.: MPI-GE wind stilling (version: publication), GitHub [code], https://github.com/jwohland/stilling_MPI-GE, last access: 12 November 2021. a
Wohland, J., Reyers, M., Weber, J., and Witthaut, D.: More homogeneous wind
conditions under strong climate change decrease the potential for inter-state
balancing of electricity in Europe, Earth Syst. Dynam., 8, 1047–1060,
https://doi.org/10.5194/esd-8-1047-2017, 2017. a
Wohland, J., Omrani, N., Witthaut, D., and Keenlyside, N. S.: Inconsistent
Wind Speed Trends in Current Twentieth Century Reanalyses, J. Geophys. Res.-Atmos., 124, 1931–1940, https://doi.org/10.1029/2018JD030083, 2019a. a
Wohland, J., Omrani, N. E., Keenlyside, N., and Witthaut, D.: Significant
multidecadal variability in German wind energy generation, Wind Energ.
Sci., 4, 515–526, https://doi.org/10.5194/wes-4-515-2019, 2019b. a, b
Wohland, J., Brayshaw, D., Bloomfield, H., and Wild, M.: European multidecadal solar variability badly captured in all centennial reanalyses except CERA20C, Environ. Res. Lett., 15, 104021, https://doi.org/10.1088/1748-9326/aba7e6, 2020. a, b
Wu, J., Zha, J., Zhao, D., and Yang, Q.: Changes in terrestrial near-surface
wind speed and their possible causes: an overview, Clim. Dynam., 51,
2039–2078, https://doi.org/10.1007/s00382-017-3997-y, 2018. a
Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in wind
speed and wave height, Science, 364, 548–552, https://doi.org/10.1126/science.aav9527,
2019.
a
Zeng, Z., Ziegler, A. D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao,
S., Li, L. Z. X., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell,
A., Medvigy, D., and Wood, E. F.: A reversal in global terrestrial stilling
and its implications for wind energy production, Nat. Clim. Change, 9, 979–985, https://doi.org/10.1038/s41558-019-0622-6, 2019.
a, b, c, d
Zhang, Z., Wang, K., Chen, D., Li, J., and Dickinson, R.: Increase in Surface
Friction Dominates the Observed Surface Wind Speed Decline during 1973–2014 in the Northern Hemisphere Lands, J. Climate, 32, 7421–7435, https://doi.org/10.1175/JCLI-D-18-0691.1, 2019. a, b, c
Short summary
Surface winds fluctuate. From around 1980 to 2010, surface onshore winds generally became weaker, and they have gained in strength since then. While these fluctuations are well known, we currently do not fully understand why they happen. To investigate the reasons, we use a large set of climate simulations with one model, a so-called large ensemble. We find that the observed long-term wind fluctuations occur naturally under current and future conditions and do not require a specific trigger.
Surface winds fluctuate. From around 1980 to 2010, surface onshore winds generally became...
Altmetrics
Final-revised paper
Preprint