Articles | Volume 10, issue 4
https://doi.org/10.5194/esd-10-685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-10-685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced emissions and non-CO2 carbon export flows: a global model assessment
National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
Japan Agency for Marine-Earth Science and Technology, 3173-25
Showa-machi, Kanazawa-ku, Yokohama, 2360001, Japan
Related authors
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025, https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the Land Use Model Intercomparison Project (LUMIP) and the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that LUC-induced carbon emissions contribute to a BGC warming of 0.21 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasize the need for improved representations of LUC processes.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris D. Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
Biogeosciences, 22, 1447–1473, https://doi.org/10.5194/bg-22-1447-2025, https://doi.org/10.5194/bg-22-1447-2025, 2025
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations (CO2 concentration- and emission-driven experiments). We successfully identified problems with regard to the global carbon budget in each model. We also found urgent issues with regard to land use change CO2 emissions that should be solved in the latest generation of models.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025, https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the Land Use Model Intercomparison Project (LUMIP) and the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that LUC-induced carbon emissions contribute to a BGC warming of 0.21 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasize the need for improved representations of LUC processes.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris D. Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
Biogeosciences, 22, 1447–1473, https://doi.org/10.5194/bg-22-1447-2025, https://doi.org/10.5194/bg-22-1447-2025, 2025
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations (CO2 concentration- and emission-driven experiments). We successfully identified problems with regard to the global carbon budget in each model. We also found urgent issues with regard to land use change CO2 emissions that should be solved in the latest generation of models.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Cited articles
Adachi, M., Ito, A., Ishida, A., Kadir, W. R., Ladpala, P., and Yamagata, Y.: Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements, Biogeosciences, 8, 2635–2647, https://doi.org/10.5194/bg-8-2635-2011, 2011.
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C.,
Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S.,
Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatio-temporal patterns
of terrestrial gross primary production: A review, Rev. Geophys., 53, 785–818,
https://doi.org/10.1002/2015RG000483, 2015.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B.,
Bayer, A. D., Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M.,
Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S.,
Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and Zaehle, S.:
Historical carbon dioxide emissions caused by land-use changes are possibly
larger than assumed, Nat. Geosci., 10, 79–84,
https://doi.org/10.1038/NGEO2882, 2017.
Baccini, A., Walker, W., Carvalho, I., Farina, M., Sulla-Menashe, D., and
Houghton, R. A.: Tropical forests are a net carbon source based on
aboveground measurements of gain and loss, Science, 358, 230–234,
https://doi.org/10.1126/science.aam5962, 2017.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., Pau U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: a new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434,
2001.
Baldocchi, D., Sturtevant, C., and Fluxnet-contributors: Does day and night
sampling reduce spurious correlation between canopy photosynthesis and
ecosystem respiration?, Agr. Forest Meteorol., 207, 117–126,
https://doi.org/10.1016/j.agrformet.2015.03.010, 2015.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon
sink, Science, 331, p. 50, https://doi.org/10.1126/science.1196808, 2011.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter,
A., and Tranvik, L. J.: The boudless carbon cycle, Nat. Geosci., 2,
598–600, 2009.
Berhe, A. A., Barnes, R. T., Six, J., and Marín-Spiotta, E.: Role of
soil erosion in biogeochemical cycling of essential elements: carbon,
nitrogen, and phosphorus, Annu. Rev. Earth Pl. Sc., 46, 521–548,
https://doi.org/10.1146/annurev-earth-082517-010018, 2018.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial
carbon balamce, Glob. Change Biol., 13, 679–706,
https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T.,
Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J.,
Rivera-Monroy, V. H., Smith, T. J. I., and Twilley, R. R.: Mangrove
production and carbon sinks: A revision of global budget estimates, Global
Biogeochem. Cy., 22, GB2013, https://doi.org/10.1029/2007GB003052, 2008.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D.: Overview
of a simple model describing variation of dissolved organic carbon in an
upland catchment, Ecol. Model., 86, 183–188, 1996.
Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., De Paula, M. D.,
Pütz, S., Sexton, J. O., Song, D., and Huth, A.: High resolution
analysis of tropical forest fragmentation and its impact on the global
carbon cycle, Nat. Commun., 8, 14855, https://doi.org/10.1038/ncomms14855, 2017.
Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A.,
Launois, T., Belviso, S., Bopp, L., and Laine, M.: Large historical growth
in global terrestrial gross primary production, Nature, 544, 84–87,
https://doi.org/10.1038/nature22030, 2017.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B.,
Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.: Global
covariation of carbon turnover times with climate in terrestrial ecosystems,
Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Chapin, F. S. III, Woodwell, G. M., Randerson, J. T., Rastetter, E. B.,
Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D.
S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L.,
Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D.,
Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L.,
Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze,
E.-D.: Reconciling carbon-cycle concepts, terminology, and methods,
Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Chappell, A., Baldock, J., and Sanderman, J.: The global significance of
omitting soil erosion from soil organic carbon cycling schemes, Nat. Clim.
Change, 6, 187–191, https://doi.org/10.1038/NCLIMATE2829, 2016.
Chen, M., Rafique, R., Asrar, G. R., Bond-Lamberty, B., Ciais, P., Zhao, F.,
Reyer, C. P. O., Ostberg, S., Chang, J., Ito, A., Yang, J., Zeng, N.,
Kalnay, E., West, T., Leng, G., Francois, L., Munhoven, G., Henrot, A.,
Tian, H., Pan, S., Nishida, K., Viovy, N., Morfopoulos, C., Betts, R.,
Schaphoff, S., Steinkamp, J., and Hickler, T.: Regional contribution to
variability and trends of global gross primary productivity, Environ. Res.
Lett., 12, 105005, https://doi.org/10.1088/1748-9326/aa8978, 2017.
Chu, H., Gottgens, J. F., Chen, J., Sun, G., Deai, A. R., Ouyang, Z., Shao,
C., and Czajkowski, K.: Climatic variability, hydrologic anomaly, and
methane emission can turn productive freshwater marshes into net carbon
sources, Glob. Change Biol., 21, 1165–1181,
https://doi.org/10.1111/gcb.12760, 2015.
Ciais, P., Bousquet, P., Freibauer, A., and Naegler, T.: Horizontal
displacement of carbon associated with agriculture and its impact on
atmospheric CO2, Global Biogeochem. Cy., 21, GB2014,
https://doi.org/10.1029/2006GB002741, 2007.
Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.
Climate Research Unit (CRU): CRU TS3.25: Climatic Research Unit (CRU) Time-Series (TS) Version 3.25 of High-Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901–Dec. 2016), University of East Anglia, available at: https://crudata.uea.ac.uk/cru/data/hrg/, last access: 1 November 2019.
Curry, C. L.: Modeling the soil consumption of atmospheric methane at the
global scale, Global Biogeochem. Cy., 21, GB4012,
https://doi.org/10.1029/2006GB002818, 2007.
Dai, M., Yin, Z., Meng, F., Liu, Q., and Cai, W.-J.: Spatial distribution of
riverine DOC inputs to the ocean: an updated global synthesis, Curr.
Opin. Env. Sust., 4, 170–178,
https://doi.org/10.1016/j.cosust.2012.03.003, 2012.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and
Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14,
https://doi.org/10.1007/s13593-017-0421-2, 2017.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon
inputs to inland waters: A current synthesis of estimates and uncertainty,
Limnol. Oceanogr. Lett., 3, 132–142, https://doi.org/10.1002/lol2.10055,
2018.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae,
M. O., and Pöschl, U.: Contribution of cryptogamic covers to the global
cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462,
https://doi.org/10.1038/NGEO1486, 2012.
Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N.,
Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M.,
Pongratz, J., Thurner, M., and Luyssaert, S.: Unexpectedly large impact of
forest management and grazing on global vegetation biomass, Nature, 553, 73–76,
https://doi.org/10.1038/nature25138, 2018.
Fang, Y., Michalak, A. M., Schwalm, C. R., Huntzinger, D. N., Berry, J. A.,
Ciais, P., Piao, S., Poulter, B., Fisher, J. B., Cook, R. B., Hayes, D.,
Huang, M., Ito, A., Jain, A., Lei, H., Lu, C., Mao, J., Parazoo, N. C.,
Peng, S., Ricciuto, D. M., Shi, X., Tao, B., Tian, H., Wang, W., Wei, Y.,
and Yang, J.: Global land carbon sink response to temperature and
precipitation varies with ENSO phase, Environ. Res. Lett., 12, 064007,
https://doi.org/10.1088/1748-9326/aa6e8e, 2017.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate projections
due to carbon cycle feedbacks, J. Climate, 27, 511–526, 2014.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R. M., Betts, R.,
Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P., Ito, A.,
Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick,
R., Peylin, P., Schaphoff, S., Vuichard, N., Warszwski, L., Wiltshire, A.,
and Woodward, F. I.: Carbon residence time dominates uncertainty in
terrestrial vegetation responses to future climate and atmospheric CO2,
P. Natl. Acad. Sci. USA, 111, 3280–3285,
https://doi.org/10.1073/pnas.1222477110, 2014.
Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., and Niu, S.:
Recovery time and state change of terrestrial carbon cycle after
disturbance, Environ. Res. Lett., 12, 104004, https://doi.org/10.1088/1748-9326/aa8a5c,
2017.
Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W., and Eberle, J.:
Gross changes in reconstructions of historic land cover/use for Europe
between 1900 and 2010, Glob. Change Biol., 21, 299–313,
https://doi.org/10.1111/gcb.12714, 2015.
Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P.,
and Fraser, P. J.: Three-dimensional model synthesis of the global methane
cycle, J. Geophys. Res., 96, 13033–13065, 1991.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export
from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Geron, C. D., Daly, R. W., Arnts, R. R., Guenther, A. B., and Mowry, F. L.:
Canopy level emissions of 2-methyl-3-buten-2-ol, monoterpenes, and
sesquiterpenes from an experimental Pinus taeda plantation, Sci. Total Environ.,
565, 730–741, https://doi.org/10.1016/j.scitotenv.2016.05.034, 2016.
Gower, S. T.: Patterns and mechanisms of the forest carbon cycle, Annu. Rev.
Env. Resour., 28, 169–204,
https://doi.org/10.1146/annurev.energy.28.050302.105515, 2003.
Grieve, I. C.: A model of dissolved organic carbon concentrations in soil
and stream waters, Hydrol. Process., 5, 301–307, 1991.
Guenther, A.: Seasonal and spatial variations in natural volatile organic
compound emissions, Ecol. Appl., 7, 34–45, 1997.
Guenther, A., Baugh, W., Davis, K., Hampton, G., Harley, P., Klinger, L.,
Vierling, L., Zimmerman, P., Allwine, E., Dilts, S., Lamb, B., Westberg, H.,
Baldocchi, D., Geron, C., and Pierce, T.: Isoprene fluxes measured by
enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer
gradient, and mixed layer mass balance techniques, J. Geophys. Res., 101,
18555–18567, 1996.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.:
Global CO2-consumption by chemical weathering: What is the contribution
of highly active weathering regions?, Global Planet. Change, 69, 185–194,
https://doi.org/10.1016/j.gloplacha.2009.07.007, 2009.
Hirata, R., Takagi, K., Ito, A., Hirano, T., and Saigusa, N.: The impact of climate variation and disturbances on the carbon balance of forests in Hokkaido, Japan, Biogeosciences, 11, 5139–5154, https://doi.org/10.5194/bg-11-5139-2014, 2014.
Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon,
M.: Global Wildland Fire Emission Model (GWEM): Evaluating the use of global
area burnt satellite data, J. Geophys. Res., 109, D14S04,
https://doi.org/10.1029/2003JD003666, 2004.
Houghton, R. A.: Revised estimates of the annual net flux of carbon to the
atmosphere from changes in land use and land management 1850–2000, Tellus,
55B, 378–390, 2003.
Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon
from land use and land cover change 1850–2015, Global Biogeochem. Cy.,
31, 456–472, https://doi.org/10.1002/2016GB005546, 2017.
Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J.,
Shaver, G. R., and Woodwell, G. M.: Changes in the carbon content of
terrestrial biota and soils between 1860 and 1980: a net release of CO2
to the atmosphere, Ecol. Monogr., 53, 235–262, 1983.
Houghton, R. A., Davidson, E. A., and Woodwell, G. M.: Missing sinks,
feedbacks, and understanding the role of terrestrial ecosystems in the
global carbon balance, Global Biogeochem. Cy., 12, 25–34, 1998.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J.,
Parrington, M., Inness, A., Murdiyarso, D., Main, B., and van Weele, M.:
Fire carbon emissions over maritime southeast Asia in 2015 largest since
1997, Sci. Rep., 6, 26886, https://doi.org/10.1038/srep26886, 2016.
Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W.,
Fang, Y., Schaefer, K., Wei, Y., Cook, R. B., Fisher, J. B., Hayes, D.,
Huang, M., Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J.,
Parazoo, N., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tian, H., Wang,
W., Zeng, N., and Zhao, F.: Uncertainty in the response of terrestrial
carbon sink to environmental drivers undermines carbon-climate feedback
predictions, Sci. Rep., 7, 4765, https://doi.org/10.1038/s41598-017-03818-2,
2017.
Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E.,
Malyshev, S., Pacala, S. W., and Houghton, R. A.: The underpinnings of
land-use history: three centuries of global gridded land-use transitions,
wood-harvest activity, and resulting secondary lands, Glob. Change Biol.,
12, 1–22, https://doi.org/10.1111/j.1365-2486.2006.01150.x, 2006 (data available at: http://luh.umd.edu/data.shtml, last access: 1 November 2019).
Ichii, K., Kondo, M., Lee, Y.-H., Wang, S.-Q., Kim, J., Ueyama, M., Lim,
H.-J., Shi, H., Suzuki, T., Ito, A., Ju, W., Huang, M., Sasai, T., Asanuma,
J., Han, S., Hirano, T., Hirata, R., Kato, T., Kwon, H., Li, S.-G., Li,
Y.-N., Maeda, T., Miyata, A., Matsuura, Y., Murayama, S., Nakai, Y., Ohta,
T., Saitoh, T. M., Saigusa, N., Takagi, K., Tang, Y.-H., Wang, H.-M., Yu,
G.-R., Zhang, Y.-P., and Zaho, F.-H.: Site-level model-data synthesis of
terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation
network: Toward future modeling efforts, J. Forest Res., 18, 13–20,
https://doi.org/10.1007/s10310-012-0367-9, 2013.
Inatomi, M., Ito, A., Ishijima, K., and Murayama, S.: Greenhouse gas budget
of a cool temperate deciduous broadleaved forest in Japan estimated using a
process-based model, Ecosystems, 13, 472–483,
https://doi.org/10.1007/s10021-010-9332-7, 2010.
Ito, A.: Simulated impacts of climate and land-cover change on soil erosion
and implication for the carbon cycle, 1901 to 2100, Geophys. Res. Lett., 34, L09403,
https://doi.org/10.1029/2007GL029342, 2007.
Ito, A.: Changing ecophysiological processes and carbon budget in East Asian
ecosystems under near-future changes in climate: Implications for long-term
monitoring from a process-based model, J. Plant Res., 123, 577–588,
https://doi.org/10.1007/s10265-009-0305-x, 2010.
Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, https://doi.org/10.5194/bg-9-759-2012, 2012.
Ito, A. and Oikawa, T.: A simulation model of the carbon cycle in land
ecosystems (Sim-CYCLE): A description based on dry-matter production theory
and plot-scale validation, Ecol. Model., 151, 147–179, 2002.
Ito, A., Inatomi, M., Huntzinger, D. N., Schwalm, C., Michalak, A. M., Cook,
R., King, A. W., Mao, J., Wei, Y., Post, W. M., Wang, W., Arain, M. A.,
Huang, M., Lei, H., Tian, H., Lu, C., Yang, J., Tao, B., Jain, A., Poulter,
B., Peng, S., Ciais, P., Fisher, J. B., Parazoo, N., Schaefer, K., Peng, C.,
Zeng, N., and Zhao, F.: Decadal trends in the seasonal-cycle amplitude of
terrestrial CO2 exchange resulting from the ensemble of terrestrial
biosphere models, Tellus B, 68, 28968, https://doi.org/10.3402/tellusb.v68.28968,
2016.
Ito, A., Nishina, K., Reyer, C. P. O., François, L., Henrot, A.-J.,
Munhoven, G., Jacquemin, I., Tian, H., Yang, J., Pan, S., Morfopoulos, C.,
Betts, R., Hickler, T., Steinkamp, J., Ostberg, S., Schaphoff, S., Ciais,
P., Chang, J., Rafique, R., Zeng, F., and Zhao, F.: Photosynthetic
productivity and its efficiencies in ISIMIP2a biome models: benchmarking for
impact assessment studies, Environ. Res. Lett., 12, 085001,
https://doi.org/10.1088/1748-9326/aa7a19, 2017.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary
productivity and evapotranspiration products derived from Breathing Earth
System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res., 116, G00J07,
https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P.,
Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly
global land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.
Kato, E., Kinoshita, T., Ito, A., Kawamiya, M., and Yamagata, T.: Evaluation
of spatially explicit emission scenario of land-use change and biomass
burning using a process based biogeochemical model, J. Land Use Sci., 8,
104–122, https://doi.org/10.1080/1747423X.2011.628705, 2013.
Keeling, R. F., Piper, S. C., Bollenbacher, A. F., and Walker, J. S.: Atmospheric carbon dioxide record from Mauna Loa, in, Carbon Dioxide Information Analysis Center, Oak Ridge, USA, 2009.
Kirkels, F. M. S. A., Cammeraat, L. H., and Kuhn, N. J.: The fate of soil
organic carbon upon erosion, transport and deposition in agricultural
landscapes – A review of different concepts, Geomorphol., 226, 94–105,
https://doi.org/10.1016/j.geomorph.2014.07.023, 2014.
Kirschbaum, M. U. F., Zeng, G., Ximenes, F., Giltrap, D. L., and Zeldis, J. R.: Towards a more complete quantification of the global carbon cycle, Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, 2019.
Knorr, W., Arneth, A., and Jiang, L.: Demograhic controls of future global
fire risk, Nat. Clim. Change, 6, 781–785,
https://doi.org/10.1038/NCLIMATE2999, 2016.
Kondo, M., Ichii, K., Takagi, H., and Sasakawa, M.: Comparison of the
data-driven top-down and bottom-up global terrestrial CO2 exchanges:
GOSAT CO2 inversion and empirical eddy flux upscaling, J. Geophys.
Res., 120, 1226–1245, https://doi.org/10.1002/2014JG002866, 2015.
Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29,
437–450, 2003.
Lal, R.: Accelerated soil erosion as a source of atmospheric CO2, Soil Till. Res., 188, 35–40,
https://doi.org/10.1016/j.still.2018.02.001, 2019.
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, https://doi.org/10.5194/acp-6-2129-2006, 2006.
Lehner, B. and Döll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004 (data available at: https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database, last access: 1 November 2019).
Li, W., Ciais, P., Wang, Y., Peng, S., Broquet, G., Ballantyne, A. P.,
Canadell, J. G., Cooper, L., Friedlingstein, P., Le Quéré, C.,
Myneni, R. B., Peters, G. P., Piao, S., and Pongratz, J.: Reducing
uncertainties in decadal variability of the global carbon budget with
multiple datasets, P. Natl. Acad. Sci. USA, 113, 13104–13108,
https://doi.org/10.1073/pnas.1603956113, 2016.
Lovett, G. M., Cole, J. J., and Pace, M. L.: Is net ecosystem production
equal to ecosystem carbon accumulation?, Ecosystems, 9, 152–155, 2006.
Luyssaert, S., Schulze, E.-D., Börner, A., Knohl, A., Hessenmöller,
D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global
carbon sinks, Nature, 455, 213–215, https://doi.org/10.1038/nature07276,
2008.
Maavara, T., Lauerwald, R., Regnier, P., and Van Cappellen, P.: Global
perturbation of organic carbon cycling by river damming, Nat. Commun., 8, 15347,
https://doi.org/10.1038/ncomms15347, 2017.
Manabe, S.: Climate and the ocean circulation I. the atmospheric circulation
and the hydrology of the earth's surface, Mon. Weather Rev., 97, 739–774,
1969.
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley,
J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A.,
Melillo, J. M., Moore, B. I., Williams, L. J., and Wittenberg, U.: Carbon
balance of the terrestrial biosphere in the twentieth century: analysis of
CO2, climate and land use effects with four process-based ecosystem
models, Global Biogeochem. Cy., 15, 183–206, 2001.
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P.,
Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes and
reservoirs, Nat. Commun., 8, 1694, https://doi.org/10.1038/s41467-017-01789-6,
2017.
Meybeck, M.: Riverine transport of atmospheric carbon: sources, global
typology and budget, Water Air Soil Poll., 70, 443–463, 1993.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma,
292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Nadeu, E., Gobin, A., Fiener, P., van Wesemael, B., and van Oost, K.:
Modelling the impact of agricultural management on soil carbon stocks at the
regional scale: the role of lateral fluxes, Glob. Change Biol., 21,
3181–3192, https://doi.org/10.1111/gcb.12889, 2015.
Naipal, V., Ciais, P., Wang, Y., Lauerwald, R., Guenet, B., and Van Oost, K.: Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005, Biogeosciences, 15, 4459–4480, https://doi.org/10.5194/bg-15-4459-2018, 2018.
Nelson, P. N., Baldock, J. A., and Oades, J. M.: Concentration and
composition of dissolved organic carbon in stream in relation to catchment
soil properties, Biogeochem., 19, 27–50, 1993.
Olson, J. S., Watts, J. A., and Allison, L. J.: Carbon in live vegetation of
major world ecosystems, Oak Ridge National Laboratory, USA, ORNL-5862, 1983.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's
forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609,
2011.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate–smart soils, Nature, 532, 49–57,
https://doi.org/10.1038/nature17174, 2016.
Peters, G. P., Davis, S. J., and Andrew, R.: A synthesis of carbon in international trade, Biogeosciences, 9, 3247–3276, https://doi.org/10.5194/bg-9-3247-2012, 2012.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.,
Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A.
I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P.
O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North
American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci.
USA, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.
Piao, S., Huang, M., Liu, Z., Wang, X., Ciais, P., Canadell, J. G., Wang,
K., Bastos, A., Friedlingstein, P., Houghton, R. A., Le Quéré, C.,
Liu, Y., Myneni, R. B., Peng, S., Pongratz, J., Sitch, S., Yan, T., Wang,
Y., Zhu, Z., Wu, D., and Wang, T.: Lower land-use emissions responsible for
increased net land carbon sink during the slow warming period, Nat. Geosci., 11, 739–743, https://doi.org/10.1038/s41561-018-0204-7, 2018.
Piao, S. L., Ito, A., Li, S. G., Huang, Y., Ciais, P., Wang, X. H., Peng, S. S., Nan, H. J., Zhao, C., Ahlström, A., Andres, R. J., Chevallier, F., Fang, J. Y., Hartmann, J., Huntingford, C., Jeong, S., Levis, S., Levy, P. E., Li, J. S., Lomas, M. R., Mao, J. F., Mayorga, E., Mohammat, A., Muraoka, H., Peng, C. H., Peylin, P., Poulter, B., Shen, Z. H., Shi, X., Sitch, S., Tao, S., Tian, H. Q., Wu, X. P., Xu, M., Yu, G. R., Viovy, N., Zaehle, S., Zeng, N., and Zhu, B.: The carbon budget of terrestrial ecosystems in East Asia over the last two decades, Biogeosciences, 9, 3571–3586, https://doi.org/10.5194/bg-9-3571-2012, 2012.
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B.: Remote sensing of
global wetland dynamics with multiple satellite data sets, Geophys. Res.
Lett., 28, 4631–4634, 2001.
Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd,
V., and Calle, L.: Role of forest regrowth in global carbon sink dynamics,
P. Natl. Acad. Sci. USA, 116, 4382–4387,
https://doi.org/10.1073/pnas.1810512116, 2019.
Ramankutty, N. and Foley, J. A.: Characterizing patterns of global land
use: An analysis of global croplands data, Global Biogeochem. Cy., 12,
667–685, 1998.
Randerson, J. T., Chapin, F. S. I., Harden, J. W., Neff, J. C., and Harmon,
M. E.: Net ecosystem production: a comprehensive measure of net carbon
accumulation by ecosystems, Ecol. Appl., 12, 937–947, 2002.
Randerson, J. T., van der Werf, G. R., Collatz, G. J., Giglio, L., Still, C.
J., Kasibhatla, P., Miller, J. B., White, J. W. C., DeFries, R. S., and
Kasischke, E. S.: Fire emissions from C3 and C4 vegetation and
their influence on interannual variability of atmospheric CO2 and
δ13CO2, Global Biogeochem. Cy., 19, GB2019,
https://doi.org/10.1029/2004GB002366, 2005.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F.
S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G.,
and Zender, C. S.: The impact of boreal forest fire on climate warming,
Science, 314, 1130–1132, 2006.
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton,
D. C.: Global burned area and biomass burning emissions from small fires, J.
Geophys. Res., 117, G04012, https://doi.org/10.1029/2012JG002128, 2012.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/NGEO1830, 2013.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne,
S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D.,
Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A.,
and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500,
287–295, https://doi.org/10.1038/nature12350, 2013.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D.
C.: Predicting Erosion by Water: A Guide to Conservation Planning with the
Revised Universal Soil Loss Equation (RUSLE). Handbook 703, US Department
of Agriculture, Washington, D.C., USA, 1997.
Reynolds, C. A., Jackson, T. J., and Rawls, W. J.: Estimated Available Water
Content from the FAO Soil Map of the World, Global Soil Profile Databases,
Pedo-transfer Functions, USDA Agricultural Research Service, Washington, D.C., USA, 1999.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108,
9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Santín, C., Doerr, S. H., Preston, C. M., and
González-Rodríguez, G.: Pyrogenic organic matter production from
wildfires: a missing sink in the global carbon cycle, Glob. Change Biol.,
21, 1621–1633, https://doi.org/10.1111/gcb.12800, 2015.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Melton, J. R., Morino, I., Naik, V., O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters, G. P., Pison, I., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Weiss, R., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.: Variability and quasi-decadal changes in the methane budget over the period 2000–2012, Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, 2017.
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S.,
Townsend, P., Miller, C., Frankenberg, C., Hibbard, K., and Cox, P.:
Observing terrestrial ecosystems and the carbon cycle from space, Glob. Change Biol., 21, 1762–1776, https://doi.org/10.1111/gcb.12822, 2015.
Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P.,
Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell,
J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein,
P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B. I.,
Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R.,
Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent
patterns and mechanisms of carbon exchange by terrestrial ecosystems,
Nature, 414, 169–172, 2001.
Schlesinger, W. H.: An evaluation of abiotic carbon sinks in deserts, Glob. Change Biol., 23, 25–27, https://doi.org/10.1111/gcb.13336, 2017.
Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R.,
Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., and Hare, W.:
Science and policy characteristics of the Paris Agreement temperature goal,
Nat. Clim. Change, 6, 827–835, https://doi.org/10.1038/NCLIMATE3096,
2016.
Schnitzer, S., Seitz, F., Eicker, A., Güntner, A., Wattenbach, M., and
Menzel, A.: Estimation of soil loss by water erosion in the Chinese Loess
Plateau using Universal Soil Loss Equation and GRACE, Geophys. J. Int.,
193, 1283–1290, https://doi.org/10.1093/gji/ggt023, 2013.
Schulze, E.-D., Wirth, C., and Heimann, M.: Managing forests after Kyoto,
Science, 289, 2058–2059, 2000.
Sellers, P. J., Schimel, D. S., Moore, B. I., Liu, J., and Eldering, A.:
Observing carbon cycle – climate feedbacks from space, P. Natl. Acad.
Sci. USA, 115, 7860–7868, https://doi.org/10.1073/pnas.1716613115, 2018.
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., and Wilby, R.
L.: Allowable CO2 emissions based on regional and impact-related
climate targets, Nature, 529, 477–483, https://doi.org/10.1038/nature16542,
2016.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Song, Z., Liu, H., Strömberg, C. A. E., Yang, X., and Zhang, X.:
Phytolith carbon sequestration in global terrestrial biomes, Sci. Total Environ., 603/604, 502–509, https://doi.org/10.1016/j.scitotenv.2017.06.107,
2017.
Takata, K., Patra, P. K., Kotani, A., Mori, J., Belikov, D., Ichii, K.,
Saeki, T., Ohta, T., Saito, K., Ueyama, M., Ito, A., Maksyutov, S.,
Miyazaki, S., Burke, E. J., Ganshin, A., Iijima, Y., Ise, T., Machiya, H.,
Maximov, T. C., Niwa, Y., O'ishi, R., Park, H., Sasai, T., Sato, H., Tei,
S., Zhuravlev, R., Machida, T., Sugimoto, A., and Aoki, S.: Reconstruction
of top-down and bottom-up CO2 fluxes in Siberian larch forest, Environ. Res. Lett., 12, 125012, https://doi.org/10.1088/1748-9326/aa926d, 2017.
Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire
disturbance for global vegetation dynamics: coupling fire into a Dynamic
Global Vegetation Model, Global Ecol. Biogeogr., 10, 661–677, 2001.
Thurner, M., Beer, C., Ciais, P., Friend, A. D., Ito, A., Kleidon, A.,
Lomas, M. R., Quegan, S., Rademacher, T. T., Schaphoff, S., Tum, M.,
Wiltshire, A., and Carvalhais, N.: Evaluation of climate-related carbon
turnover processes in global vegetation models for boreal and temperate
forests, Glob. Change Biol., 23, 3076–3091,
https://doi.org/10.1111/gcb.13660, 2017.
Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R.,
Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M.,
Ito, A., Jain, A., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S.,
Poulter, B., Ren, W., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang,
W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns and controls
of soil organic carbon dynamics as simulated by multiple terrestrial
biosphere models: current status and future directions, Global Biogeochem. Cy., 29, 775–792, https://doi.org/10.1002/2014GB005021, 2015.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
United States Geological Survey (USGS): Global 30 Arc-Second Elevation (GTOPO30), EROS Data Center, Sioux Fall, South Dakota, https://doi.org/10.5066/F7DF6PQS, 1996.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J.
W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J.
V., Marques da Silva, J. R., and Merckx, R.: The impact of agricultural soil
erosion on the global carbon cycle, Science, 318, 626–629,
https://doi.org/10.1126/science.1145724, 2007.
Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to
derive methane emissions from natural wetlands: application to five wetlands
sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765, 2000.
Webb, J. R., Santos, I. R., Maher, D. T., Macdonald, B., Robson, B., Isaac,
P., and McHugh, I.: Terrestrial versus aquatic carbon fluxes in a
subtropical agricultural floodplain over an annual cycle, Agr. Forest
Meteorol., 260/261, 262–272,
https://doi.org/10.1016/j.agrformet.2018.06.015, 2018.
Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper,
S. C., Yoshimura, K., Francey, R. J., Allison, C. E., and Wahlen, M.:
Interannual variability in the oxygen isotopes of atmospheric CO2
driven by El Niño, Nature, 477, 579–582,
https://doi.org/10.1038/nature10421, 2011.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Winjum, J. K., Brown, S., and Schlamadinger, B.: Forest harvests and wood
products: Sources and sinks of atmospheric carbon dioxide, Forest Sci., 44,
272–284, 1998.
Wolf, J., West, T. O., Le Page, Y., Kyle, G. P., Zhang, X., Collatz, G. J.,
and Imhoff, M. L.: Biogenic carbon fluxes from global agricultural
production and consumption, Global Biogeochem. Cy., 29, 1617–1639,
https://doi.org/10.1002/2015GB005119, 2015.
Xi, F., Davis, S. J., Ciais, P., Carwford-Brown, D., Guan, D., Pade, C.,
Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang,
K.-H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., and Liu, Z.:
Substantial global carbon uptake by cement carbonation, Nat. Geosci., 9,
880–883, https://doi.org/10.1038/NGEO2840, 2016.
Yang, D., Kanae, S., Oki, T., Koike, T., and Musiake, K.: Global potential
soil erosion with reference to land use and climate changes, Hydrol. Process.,
17, 2913–2928, 2003.
Yue, C., Ciais, P., Cadule, P., Thonicke, K., and van Leeuwen, T. T.: Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance, Geosci. Model Dev., 8, 1321–1338, https://doi.org/10.5194/gmd-8-1321-2015, 2015.
Zhang, H., Liu, S., Yuan, W., Dong, W., Ye, A., Xie, X., Chen, Y., Liu, D.,
Cia, W., and Mao, Y.: Inclusion of soil carbon lateral movement alters
terrestrial carbon budget in China, Sci. Rep., 4, 7247,
https://doi.org/10.1038/srep07247, 2014.
Zhao, M., Running, S. W., and Nemani, R. R.: Sensitivity of Moderate
resolution Imaging Spectrometer (MODIS) terrestrial primary production to
the accuracy of meteorological reanalysis, J. Geophys. Res., 111, G01002,
https://doi.org/10.1029/2004JG000004, 2006.
Zscheischler, J., Mahecha, M. D., Avitabile, V., Calle, L., Carvalhais, N., Ciais, P., Gans, F., Gruber, N., Hartmann, J., Herold, M., Ichii, K., Jung, M., Landschützer, P., Laruelle, G. G., Lauerwald, R., Papale, D., Peylin, P., Poulter, B., Ray, D., Regnier, P., Rödenbeck, C., Roman-Cuesta, R. M., Schwalm, C., Tramontana, G., Tyukavina, A., Valentini, R., van der Werf, G., West, T. O., Wolf, J. E., and Reichstein, M.: Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations, Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, 2017.
Short summary
Various minor carbon flows such as trace gas emissions, disturbance-induced emissions, and subsurface exports can affect the carbon budget of terrestrial ecosystems in complicated ways. This study assessed how much these minor flows influence the carbon budget using a process-based model. It was found that the minor flows, though small in magnitude, could significantly affect net carbon budget at as much strengths as major flows, implying their long-term importance in Earth's climate system.
Various minor carbon flows such as trace gas emissions, disturbance-induced emissions, and...
Altmetrics
Final-revised paper
Preprint