Articles | Volume 10, issue 4
https://doi.org/10.5194/esd-10-685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-10-685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced emissions and non-CO2 carbon export flows: a global model assessment
National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
Japan Agency for Marine-Earth Science and Technology, 3173-25
Showa-machi, Kanazawa-ku, Yokohama, 2360001, Japan
Related authors
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2460, https://doi.org/10.5194/egusphere-2024-2460, 2024
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the CMIP6-LUMIP project. We found that LUC-induced carbon emissions contribute to a BGC warming of 0.20 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasise the need for improved representations of LUC processes.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, and Irène Xueref-Remy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2457, https://doi.org/10.5194/egusphere-2024-2457, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas and its emissions reduction is urgently required to mitigate the global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
EGUsphere, https://doi.org/10.5194/egusphere-2024-1542, https://doi.org/10.5194/egusphere-2024-1542, 2024
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical process-based model developed to represent the global SIF observed by GOSAT. Our model simulation reproduced the global distribution and seasonal variations of GOSAT SIF. The model can be utilized to improve photosynthetic process through the combination of biogeochemical modeling and GOSAT SIF.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-188, https://doi.org/10.5194/egusphere-2024-188, 2024
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations. We successfully identified problems of global carbon budget in each model. We also found urgent issues that should be solved in the latest generation of models, land use change CO2 emissions.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Tomohiro Hajima, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, Akinori Ito, Dai Yamazaki, Hideki Okajima, Akihiko Ito, Kumiko Takata, Koji Ogochi, Shingo Watanabe, and Michio Kawamiya
Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, https://doi.org/10.5194/gmd-13-2197-2020, 2020
Short summary
Short summary
We developed a new Earth system model (ESM) named MIROC-ES2L. This model is based on a state-of-the-art climate model and includes carbon–nitrogen cycles for the land and multiple biogeochemical cycles for the ocean. The model's performances on reproducing historical climate and biogeochemical changes are confirmed to be reasonable, and the new model is likely to be an
optimisticmodel in projecting future climate change among ESMs in the Coupled Model Intercomparison Project Phase 6.
Binghao Jia, Xin Luo, Ximing Cai, Atul Jain, Deborah N. Huntzinger, Zhenghui Xie, Ning Zeng, Jiafu Mao, Xiaoying Shi, Akihiko Ito, Yaxing Wei, Hanqin Tian, Benjamin Poulter, Dan Hayes, and Kevin Schaefer
Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, https://doi.org/10.5194/esd-11-235-2020, 2020
Short summary
Short summary
We quantitatively examined the relative contributions of climate change, land
use and land cover change, and elevated CO2 to interannual variations and seasonal cycle amplitude of gross primary productivity (GPP) in China based on multi-model ensemble simulations. The contributions of major subregions to the temporal change in China's total GPP are also presented. This work may help us better understand GPP spatiotemporal patterns and their responses to regional changes and human activities.
R. Cong, M. Saito, R. Hirata, and A. Ito
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W16, 75–81, https://doi.org/10.5194/isprs-archives-XLII-2-W16-75-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W16-75-2019, 2019
R. Cong, M. Saito, R. Hirata, A. Ito, and S. Maksyutov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 115–119, https://doi.org/10.5194/isprs-archives-XLII-4-115-2018, https://doi.org/10.5194/isprs-archives-XLII-4-115-2018, 2018
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Yosuke Niwa, Yosuke Fujii, Yousuke Sawa, Yosuke Iida, Akihiko Ito, Masaki Satoh, Ryoichi Imasu, Kazuhiro Tsuboi, Hidekazu Matsueda, and Nobuko Saigusa
Geosci. Model Dev., 10, 2201–2219, https://doi.org/10.5194/gmd-10-2201-2017, https://doi.org/10.5194/gmd-10-2201-2017, 2017
Short summary
Short summary
A new 4D-Var inversion system based on the icosahedral grid model, NICAM, is introduced and tested. Adding to the offline forward and adjoint models, this study has introduced the optimization method of POpULar; it does not require difficult decomposition of a matrix that establishes the correlation among the prior flux errors. In identical twin experiments of atmospheric CO2 inversion, the system successfully reproduces the spatiotemporal variations of the surface fluxes.
Kazuya Nishina, Akihiko Ito, Naota Hanasaki, and Seiji Hayashi
Earth Syst. Sci. Data, 9, 149–162, https://doi.org/10.5194/essd-9-149-2017, https://doi.org/10.5194/essd-9-149-2017, 2017
Short summary
Short summary
Available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3− in the fertilizer application rates. In our products, by utilizing national fertilizer species consumption data in FAOSTAT database, we succeeded to estimate the ratio of NH4+ to NO3− in the N fertilizer map. The products could be widely utilized for global N cycling studies.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Fang Zhao, Ning Zeng, Ghassem Asrar, Pierre Friedlingstein, Akihiko Ito, Atul Jain, Eugenia Kalnay, Etsushi Kato, Charles D. Koven, Ben Poulter, Rashid Rafique, Stephen Sitch, Shijie Shu, Beni Stocker, Nicolas Viovy, Andy Wiltshire, and Sonke Zaehle
Biogeosciences, 13, 5121–5137, https://doi.org/10.5194/bg-13-5121-2016, https://doi.org/10.5194/bg-13-5121-2016, 2016
Short summary
Short summary
The increasing seasonality of atmospheric CO2 is strongly linked with enhanced land vegetation activities in the last 5 decades, for which the importance of increasing CO2, climate and land use/cover change was evaluated in single model studies (Zeng et al., 2014; Forkel et al., 2016). Here we examine the relative importance of these factors in multiple models. Our results highlight models can show similar results in some benchmarks with different underlying regional dynamics.
S. Miyazaki, K. Saito, J. Mori, T. Yamazaki, T. Ise, H. Arakida, T. Hajima, Y. Iijima, H. Machiya, T. Sueyoshi, H. Yabuki, E. J. Burke, M. Hosaka, K. Ichii, H. Ikawa, A. Ito, A. Kotani, Y. Matsuura, M. Niwano, T. Nitta, R. O'ishi, T. Ohta, H. Park, T. Sasai, A. Sato, H. Sato, A. Sugimoto, R. Suzuki, K. Tanaka, S. Yamaguchi, and K. Yoshimura
Geosci. Model Dev., 8, 2841–2856, https://doi.org/10.5194/gmd-8-2841-2015, https://doi.org/10.5194/gmd-8-2841-2015, 2015
Short summary
Short summary
The paper provides an overall outlook and the Stage 1 experiment (site simulations) protocol of GTMIP, an open model intercomparison project for terrestrial Arctic, conducted as an activity of the Japan-funded Arctic Climate Change Research Project (GRENE-TEA). Models are driven by 34-year data created with the GRENE-TEA observations at four sites in Finland, Siberia and Alaska, and evaluated for physico-ecological key processes: energy budgets, snow, permafrost, phenology, and carbon budget.
K. Nishina, A. Ito, P. Falloon, A. D. Friend, D. J. Beerling, P. Ciais, D. B. Clark, R. Kahana, E. Kato, W. Lucht, M. Lomas, R. Pavlick, S. Schaphoff, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 6, 435–445, https://doi.org/10.5194/esd-6-435-2015, https://doi.org/10.5194/esd-6-435-2015, 2015
Short summary
Short summary
Our study focused on uncertainties in terrestrial C cycling under newly developed scenarios with CMIP5. This study presents first results for examining relative uncertainties of projected terrestrial C cycling in multiple projection components. Only using our new model inter-comparison project data sets enables us to evaluate various uncertainty sources in projection periods. The information on relative uncertainties is useful for climate science and climate change impact evaluation.
A. Ghosh, P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krummel, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa
Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, https://doi.org/10.5194/acp-15-2595-2015, 2015
Short summary
Short summary
Atmospheric CH4 increased from 900ppb to 1800ppb during the period 1900–2010 at a rate unprecedented in any observational records. We use bottom-up emissions and a chemistry-transport model to simulate CH4. The optimized global total CH4 emission, estimated from the model–observation differences, increased at fastest rate during 1940–1990. Using δ13C of CH4 measurements we attribute this emission increase to biomass burning. Total CH4 lifetime is shortened by 4% over the simulation period.
R. Hirata, K. Takagi, A. Ito, T. Hirano, and N. Saigusa
Biogeosciences, 11, 5139–5154, https://doi.org/10.5194/bg-11-5139-2014, https://doi.org/10.5194/bg-11-5139-2014, 2014
M. Saito, A. Ito, and S. Maksyutov
Geosci. Model Dev., 7, 1829–1840, https://doi.org/10.5194/gmd-7-1829-2014, https://doi.org/10.5194/gmd-7-1829-2014, 2014
K. Nishina, A. Ito, D. J. Beerling, P. Cadule, P. Ciais, D. B. Clark, P. Falloon, A. D. Friend, R. Kahana, E. Kato, R. Keribin, W. Lucht, M. Lomas, T. T. Rademacher, R. Pavlick, S. Schaphoff, N. Vuichard, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 5, 197–209, https://doi.org/10.5194/esd-5-197-2014, https://doi.org/10.5194/esd-5-197-2014, 2014
D. N. Huntzinger, C. Schwalm, A. M. Michalak, K. Schaefer, A. W. King, Y. Wei, A. Jacobson, S. Liu, R. B. Cook, W. M. Post, G. Berthier, D. Hayes, M. Huang, A. Ito, H. Lei, C. Lu, J. Mao, C. H. Peng, S. Peng, B. Poulter, D. Riccuito, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao, and Q. Zhu
Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, https://doi.org/10.5194/gmd-6-2121-2013, 2013
J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. Wisser, D. B. Clark, A. Ito, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, Y. Wada, X. Liu, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Schaphoff, S. N. Gosling, W. Franssen, and N. Arnell
Earth Syst. Dynam., 4, 359–374, https://doi.org/10.5194/esd-4-359-2013, https://doi.org/10.5194/esd-4-359-2013, 2013
S. Maksyutov, H. Takagi, V. K. Valsala, M. Saito, T. Oda, T. Saeki, D. A. Belikov, R. Saito, A. Ito, Y. Yoshida, I. Morino, O. Uchino, R. J. Andres, and T. Yokota
Atmos. Chem. Phys., 13, 9351–9373, https://doi.org/10.5194/acp-13-9351-2013, https://doi.org/10.5194/acp-13-9351-2013, 2013
P. K. Patra, J. G. Canadell, R. A. Houghton, S. L. Piao, N.-H. Oh, P. Ciais, K. R. Manjunath, A. Chhabra, T. Wang, T. Bhattacharya, P. Bousquet, J. Hartman, A. Ito, E. Mayorga, Y. Niwa, P. A. Raymond, V. V. S. S. Sarma, and R. Lasco
Biogeosciences, 10, 513–527, https://doi.org/10.5194/bg-10-513-2013, https://doi.org/10.5194/bg-10-513-2013, 2013
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2460, https://doi.org/10.5194/egusphere-2024-2460, 2024
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the CMIP6-LUMIP project. We found that LUC-induced carbon emissions contribute to a BGC warming of 0.20 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasise the need for improved representations of LUC processes.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, and Irène Xueref-Remy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2457, https://doi.org/10.5194/egusphere-2024-2457, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas and its emissions reduction is urgently required to mitigate the global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
EGUsphere, https://doi.org/10.5194/egusphere-2024-1542, https://doi.org/10.5194/egusphere-2024-1542, 2024
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical process-based model developed to represent the global SIF observed by GOSAT. Our model simulation reproduced the global distribution and seasonal variations of GOSAT SIF. The model can be utilized to improve photosynthetic process through the combination of biogeochemical modeling and GOSAT SIF.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-188, https://doi.org/10.5194/egusphere-2024-188, 2024
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations. We successfully identified problems of global carbon budget in each model. We also found urgent issues that should be solved in the latest generation of models, land use change CO2 emissions.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Tomohiro Hajima, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, Akinori Ito, Dai Yamazaki, Hideki Okajima, Akihiko Ito, Kumiko Takata, Koji Ogochi, Shingo Watanabe, and Michio Kawamiya
Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, https://doi.org/10.5194/gmd-13-2197-2020, 2020
Short summary
Short summary
We developed a new Earth system model (ESM) named MIROC-ES2L. This model is based on a state-of-the-art climate model and includes carbon–nitrogen cycles for the land and multiple biogeochemical cycles for the ocean. The model's performances on reproducing historical climate and biogeochemical changes are confirmed to be reasonable, and the new model is likely to be an
optimisticmodel in projecting future climate change among ESMs in the Coupled Model Intercomparison Project Phase 6.
Binghao Jia, Xin Luo, Ximing Cai, Atul Jain, Deborah N. Huntzinger, Zhenghui Xie, Ning Zeng, Jiafu Mao, Xiaoying Shi, Akihiko Ito, Yaxing Wei, Hanqin Tian, Benjamin Poulter, Dan Hayes, and Kevin Schaefer
Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, https://doi.org/10.5194/esd-11-235-2020, 2020
Short summary
Short summary
We quantitatively examined the relative contributions of climate change, land
use and land cover change, and elevated CO2 to interannual variations and seasonal cycle amplitude of gross primary productivity (GPP) in China based on multi-model ensemble simulations. The contributions of major subregions to the temporal change in China's total GPP are also presented. This work may help us better understand GPP spatiotemporal patterns and their responses to regional changes and human activities.
R. Cong, M. Saito, R. Hirata, and A. Ito
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W16, 75–81, https://doi.org/10.5194/isprs-archives-XLII-2-W16-75-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W16-75-2019, 2019
R. Cong, M. Saito, R. Hirata, A. Ito, and S. Maksyutov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 115–119, https://doi.org/10.5194/isprs-archives-XLII-4-115-2018, https://doi.org/10.5194/isprs-archives-XLII-4-115-2018, 2018
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Yosuke Niwa, Yosuke Fujii, Yousuke Sawa, Yosuke Iida, Akihiko Ito, Masaki Satoh, Ryoichi Imasu, Kazuhiro Tsuboi, Hidekazu Matsueda, and Nobuko Saigusa
Geosci. Model Dev., 10, 2201–2219, https://doi.org/10.5194/gmd-10-2201-2017, https://doi.org/10.5194/gmd-10-2201-2017, 2017
Short summary
Short summary
A new 4D-Var inversion system based on the icosahedral grid model, NICAM, is introduced and tested. Adding to the offline forward and adjoint models, this study has introduced the optimization method of POpULar; it does not require difficult decomposition of a matrix that establishes the correlation among the prior flux errors. In identical twin experiments of atmospheric CO2 inversion, the system successfully reproduces the spatiotemporal variations of the surface fluxes.
Kazuya Nishina, Akihiko Ito, Naota Hanasaki, and Seiji Hayashi
Earth Syst. Sci. Data, 9, 149–162, https://doi.org/10.5194/essd-9-149-2017, https://doi.org/10.5194/essd-9-149-2017, 2017
Short summary
Short summary
Available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3− in the fertilizer application rates. In our products, by utilizing national fertilizer species consumption data in FAOSTAT database, we succeeded to estimate the ratio of NH4+ to NO3− in the N fertilizer map. The products could be widely utilized for global N cycling studies.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Fang Zhao, Ning Zeng, Ghassem Asrar, Pierre Friedlingstein, Akihiko Ito, Atul Jain, Eugenia Kalnay, Etsushi Kato, Charles D. Koven, Ben Poulter, Rashid Rafique, Stephen Sitch, Shijie Shu, Beni Stocker, Nicolas Viovy, Andy Wiltshire, and Sonke Zaehle
Biogeosciences, 13, 5121–5137, https://doi.org/10.5194/bg-13-5121-2016, https://doi.org/10.5194/bg-13-5121-2016, 2016
Short summary
Short summary
The increasing seasonality of atmospheric CO2 is strongly linked with enhanced land vegetation activities in the last 5 decades, for which the importance of increasing CO2, climate and land use/cover change was evaluated in single model studies (Zeng et al., 2014; Forkel et al., 2016). Here we examine the relative importance of these factors in multiple models. Our results highlight models can show similar results in some benchmarks with different underlying regional dynamics.
S. Miyazaki, K. Saito, J. Mori, T. Yamazaki, T. Ise, H. Arakida, T. Hajima, Y. Iijima, H. Machiya, T. Sueyoshi, H. Yabuki, E. J. Burke, M. Hosaka, K. Ichii, H. Ikawa, A. Ito, A. Kotani, Y. Matsuura, M. Niwano, T. Nitta, R. O'ishi, T. Ohta, H. Park, T. Sasai, A. Sato, H. Sato, A. Sugimoto, R. Suzuki, K. Tanaka, S. Yamaguchi, and K. Yoshimura
Geosci. Model Dev., 8, 2841–2856, https://doi.org/10.5194/gmd-8-2841-2015, https://doi.org/10.5194/gmd-8-2841-2015, 2015
Short summary
Short summary
The paper provides an overall outlook and the Stage 1 experiment (site simulations) protocol of GTMIP, an open model intercomparison project for terrestrial Arctic, conducted as an activity of the Japan-funded Arctic Climate Change Research Project (GRENE-TEA). Models are driven by 34-year data created with the GRENE-TEA observations at four sites in Finland, Siberia and Alaska, and evaluated for physico-ecological key processes: energy budgets, snow, permafrost, phenology, and carbon budget.
K. Nishina, A. Ito, P. Falloon, A. D. Friend, D. J. Beerling, P. Ciais, D. B. Clark, R. Kahana, E. Kato, W. Lucht, M. Lomas, R. Pavlick, S. Schaphoff, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 6, 435–445, https://doi.org/10.5194/esd-6-435-2015, https://doi.org/10.5194/esd-6-435-2015, 2015
Short summary
Short summary
Our study focused on uncertainties in terrestrial C cycling under newly developed scenarios with CMIP5. This study presents first results for examining relative uncertainties of projected terrestrial C cycling in multiple projection components. Only using our new model inter-comparison project data sets enables us to evaluate various uncertainty sources in projection periods. The information on relative uncertainties is useful for climate science and climate change impact evaluation.
A. Ghosh, P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krummel, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa
Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, https://doi.org/10.5194/acp-15-2595-2015, 2015
Short summary
Short summary
Atmospheric CH4 increased from 900ppb to 1800ppb during the period 1900–2010 at a rate unprecedented in any observational records. We use bottom-up emissions and a chemistry-transport model to simulate CH4. The optimized global total CH4 emission, estimated from the model–observation differences, increased at fastest rate during 1940–1990. Using δ13C of CH4 measurements we attribute this emission increase to biomass burning. Total CH4 lifetime is shortened by 4% over the simulation period.
R. Hirata, K. Takagi, A. Ito, T. Hirano, and N. Saigusa
Biogeosciences, 11, 5139–5154, https://doi.org/10.5194/bg-11-5139-2014, https://doi.org/10.5194/bg-11-5139-2014, 2014
M. Saito, A. Ito, and S. Maksyutov
Geosci. Model Dev., 7, 1829–1840, https://doi.org/10.5194/gmd-7-1829-2014, https://doi.org/10.5194/gmd-7-1829-2014, 2014
K. Nishina, A. Ito, D. J. Beerling, P. Cadule, P. Ciais, D. B. Clark, P. Falloon, A. D. Friend, R. Kahana, E. Kato, R. Keribin, W. Lucht, M. Lomas, T. T. Rademacher, R. Pavlick, S. Schaphoff, N. Vuichard, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 5, 197–209, https://doi.org/10.5194/esd-5-197-2014, https://doi.org/10.5194/esd-5-197-2014, 2014
D. N. Huntzinger, C. Schwalm, A. M. Michalak, K. Schaefer, A. W. King, Y. Wei, A. Jacobson, S. Liu, R. B. Cook, W. M. Post, G. Berthier, D. Hayes, M. Huang, A. Ito, H. Lei, C. Lu, J. Mao, C. H. Peng, S. Peng, B. Poulter, D. Riccuito, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao, and Q. Zhu
Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, https://doi.org/10.5194/gmd-6-2121-2013, 2013
J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. Wisser, D. B. Clark, A. Ito, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, Y. Wada, X. Liu, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Schaphoff, S. N. Gosling, W. Franssen, and N. Arnell
Earth Syst. Dynam., 4, 359–374, https://doi.org/10.5194/esd-4-359-2013, https://doi.org/10.5194/esd-4-359-2013, 2013
S. Maksyutov, H. Takagi, V. K. Valsala, M. Saito, T. Oda, T. Saeki, D. A. Belikov, R. Saito, A. Ito, Y. Yoshida, I. Morino, O. Uchino, R. J. Andres, and T. Yokota
Atmos. Chem. Phys., 13, 9351–9373, https://doi.org/10.5194/acp-13-9351-2013, https://doi.org/10.5194/acp-13-9351-2013, 2013
P. K. Patra, J. G. Canadell, R. A. Houghton, S. L. Piao, N.-H. Oh, P. Ciais, K. R. Manjunath, A. Chhabra, T. Wang, T. Bhattacharya, P. Bousquet, J. Hartman, A. Ito, E. Mayorga, Y. Niwa, P. A. Raymond, V. V. S. S. Sarma, and R. Lasco
Biogeosciences, 10, 513–527, https://doi.org/10.5194/bg-10-513-2013, https://doi.org/10.5194/bg-10-513-2013, 2013
Related subject area
Earth system interactions with the biosphere: biogeochemical cycles
How does the phytoplankton–light feedback affect the marine N2O inventory?
Time-varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale
Interannual global carbon cycle variations linked to atmospheric circulation variability
Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario
Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products
Indian Ocean marine biogeochemical variability and its feedback on simulated South Asia climate
Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
Biogeochemical functioning of the Baltic Sea
Process-based analysis of terrestrial carbon flux predictability
Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
Resolving ecological feedbacks on the ocean carbon sink in Earth system models
Ocean phosphorus inventory: large uncertainties in future projections on millennial timescales and their consequences for ocean deoxygenation
Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system
Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets
The biomass burning contribution to climate–carbon-cycle feedback
Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions
Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties
Nitrogen leaching from natural ecosystems under global change: a modelling study
Structure and functioning of the acid–base system in the Baltic Sea
The potential of using remote sensing data to estimate air–sea CO2 exchange in the Baltic Sea
Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea
Evapotranspiration seasonality across the Amazon Basin
Seasonal effects of irrigation on land–atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin
Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis
Effect of various climate databases on the results of dendroclimatic analysis
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
Comment on: "Recent revisions of phosphate rock reserves and resources: a critique" by Edixhoven et al. (2014) – clarifying comments and thoughts on key conceptions, conclusions and interpretation to allow for sustainable action
Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE
The ocean carbon sink – impacts, vulnerabilities and challenges
Recent revisions of phosphate rock reserves and resources: a critique
The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes
Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)
Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes
Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America
Thermodynamic dissipation theory for the origin of life
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023, https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Short summary
Phytoplankton absorbs the solar radiation entering the ocean surface and contributes to keeping the associated energy in surface waters. This natural effect is either not represented in the ocean component of climate models or its representation is simplified. An incomplete representation of this biophysical interaction affects the way climate models simulate ocean warming, which leads to uncertainties in projections of oceanic emissions of an important greenhouse gas (nitrous oxide).
Parsa Gooya, Neil C. Swart, and Roberta C. Hamme
Earth Syst. Dynam., 14, 383–398, https://doi.org/10.5194/esd-14-383-2023, https://doi.org/10.5194/esd-14-383-2023, 2023
Short summary
Short summary
We report on the ocean carbon sink and sources of uptake uncertainty from the latest version of the Coupled Model Intercomparison Project. We diagnose the highly active regions for the sink and show how knowledge about historical regions of uptake will provide information about future regions of uptake change and uncertainty. We evaluate the dependence of uncertainty on the location and integration scale. Our results help make useful suggestions for both modeling and observational communities.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Ruqi Yang, Jun Wang, Ning Zeng, Stephen Sitch, Wenhan Tang, Matthew Joseph McGrath, Qixiang Cai, Di Liu, Danica Lombardozzi, Hanqin Tian, Atul K. Jain, and Pengfei Han
Earth Syst. Dynam., 13, 833–849, https://doi.org/10.5194/esd-13-833-2022, https://doi.org/10.5194/esd-13-833-2022, 2022
Short summary
Short summary
We comprehensively investigate historical GPP trends based on five kinds of GPP datasets and analyze the causes for any discrepancies among them. Results show contrasting behaviors between modeled and satellite-based GPP trends, and their inconsistencies are likely caused by the contrasting performance between satellite-derived and modeled leaf area index (LAI). Thus, the uncertainty in satellite-based GPP induced by LAI undermines its role in assessing the performance of DGVM simulations.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
István Dunkl, Aaron Spring, Pierre Friedlingstein, and Victor Brovkin
Earth Syst. Dynam., 12, 1413–1426, https://doi.org/10.5194/esd-12-1413-2021, https://doi.org/10.5194/esd-12-1413-2021, 2021
Short summary
Short summary
The variability in atmospheric CO2 is largely controlled by terrestrial carbon fluxes. These land–atmosphere fluxes are predictable for around 2 years, but the mechanisms providing the predictability are not well understood. By decomposing the predictability of carbon fluxes into individual contributors we were able to explain the spatial and seasonal patterns and the interannual variability of CO2 flux predictability.
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
David I. Armstrong McKay, Sarah E. Cornell, Katherine Richardson, and Johan Rockström
Earth Syst. Dynam., 12, 797–818, https://doi.org/10.5194/esd-12-797-2021, https://doi.org/10.5194/esd-12-797-2021, 2021
Short summary
Short summary
We use an Earth system model with two new ocean ecosystem features (plankton size traits and temperature-sensitive nutrient recycling) to revaluate the effect of climate change on sinking organic carbon (the
biological pump) and the ocean carbon sink. These features lead to contrary pump responses to warming, with a combined effect of a smaller sink despite a more resilient pump. These results show the importance of including ecological dynamics in models for understanding climate feedbacks.
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
Efrén López-Blanco, Jean-François Exbrayat, Magnus Lund, Torben R. Christensen, Mikkel P. Tamstorf, Darren Slevin, Gustaf Hugelius, Anthony A. Bloom, and Mathew Williams
Earth Syst. Dynam., 10, 233–255, https://doi.org/10.5194/esd-10-233-2019, https://doi.org/10.5194/esd-10-233-2019, 2019
Short summary
Short summary
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon cycle and is particularly sensitive to the ongoing warming experienced in recent years. To improve our understanding of the atmosphere–biosphere interplay, we evaluated the state of the terrestrial pan-Arctic carbon cycling using a promising data assimilation system in the first 15 years of the 21st century. This is crucial when it comes to making predictions about the future state of the carbon cycle.
Gianna Battaglia and Fortunat Joos
Earth Syst. Dynam., 9, 797–816, https://doi.org/10.5194/esd-9-797-2018, https://doi.org/10.5194/esd-9-797-2018, 2018
Short summary
Short summary
Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40 % over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.
Sandy P. Harrison, Patrick J. Bartlein, Victor Brovkin, Sander Houweling, Silvia Kloster, and I. Colin Prentice
Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, https://doi.org/10.5194/esd-9-663-2018, 2018
Short summary
Short summary
Temperature affects fire occurrence and severity. Warming will increase fire-related carbon emissions and thus atmospheric CO2. The size of this feedback is not known. We use charcoal records to estimate pre-industrial fire emissions and a simple land–biosphere model to quantify the feedback. We infer a feedback strength of 5.6 3.2 ppm CO2 per degree of warming and a gain of 0.09 ± 0.05 for a climate sensitivity of 2.8 K. Thus, fire feedback is a large part of the climate–carbon-cycle feedback.
Markus Adloff, Christian H. Reick, and Martin Claussen
Earth Syst. Dynam., 9, 413–425, https://doi.org/10.5194/esd-9-413-2018, https://doi.org/10.5194/esd-9-413-2018, 2018
Short summary
Short summary
Computer simulations show that during an ice age a strong atmospheric CO2 increase would have resulted in stronger carbon uptake of the continents than today. Causes are the larger potential of glacial vegetation to increase its photosynthetic efficiency under increasing CO2 and the smaller amount of carbon in extratropical soils during an ice age that can be released under greenhouse warming. Hence, for different climates the Earth system is differently sensitive to carbon cycle perturbations.
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
Karol Kuliński, Bernd Schneider, Beata Szymczycha, and Marcin Stokowski
Earth Syst. Dynam., 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, https://doi.org/10.5194/esd-8-1107-2017, 2017
Short summary
Short summary
This review describes the general knowledge of the marine acid–base system as well as the peculiarities identified and reported for the Baltic Sea specifically. We discuss issues such as dissociation constants in the brackish water, the structure of the total alkalinity in the Baltic Sea, long-term changes in total alkalinity, and the acid–base effects of biomass production and mineralization. We identify research gaps and specify bottlenecks concerning the Baltic Sea acid–base system.
Gaëlle Parard, Anna Rutgersson, Sindu Raj Parampil, and Anastase Alexandre Charantonis
Earth Syst. Dynam., 8, 1093–1106, https://doi.org/10.5194/esd-8-1093-2017, https://doi.org/10.5194/esd-8-1093-2017, 2017
Short summary
Short summary
Coastal environments and shelf sea represent 7.6 % of the total oceanic surface area. They are, however, biogeochemically more dynamic and probably more vulnerable to climate change than the open ocean. Whatever the responses of the open ocean to climate change, they will propagate to the coastal ocean. We used the self-organizing multiple linear output (SOMLO) method to estimate the ocean surface pCO2 in the Baltic Sea from remotely sensed measurements and we estimated the air–sea CO2 flux.
Jukka-Pekka Myllykangas, Tom Jilbert, Gunnar Jakobs, Gregor Rehder, Jan Werner, and Susanna Hietanen
Earth Syst. Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, https://doi.org/10.5194/esd-8-817-2017, 2017
Short summary
Short summary
The deep waters of the Baltic Sea host an expanding
dead zone, where low-oxygen conditions favour the natural production of two strong greenhouse gases, methane and nitrous oxide. Oxygen is introduced into the deeps only during rare
salt pulses. We studied the effects of a recent salt pulse on Baltic greenhouse gas production. We found that where oxygen was introduced, methane was largely removed, while nitrous oxide production increased, indicating strong effects on greenhouse gas dynamics.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
Yujin Zeng, Zhenghui Xie, and Shuang Liu
Earth Syst. Dynam., 8, 113–127, https://doi.org/10.5194/esd-8-113-2017, https://doi.org/10.5194/esd-8-113-2017, 2017
Short summary
Short summary
Irrigation constitutes 70 % of human water consumption. In this study, using the improved CLM4.5 with an active crop model, two 1 km simulations investigating the effects of irrigation on latent heat, sensible heat, and carbon fluxes in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The results revealed the key role of irrigation in the control of land–atmosphere water, energy, and carbon fluxes in semiarid basin.
Rashid Rafique, Jianyang Xia, Oleksandra Hararuk, Ghassem R. Asrar, Guoyong Leng, Yingping Wang, and Yiqi Luo
Earth Syst. Dynam., 7, 649–658, https://doi.org/10.5194/esd-7-649-2016, https://doi.org/10.5194/esd-7-649-2016, 2016
Short summary
Short summary
Traceability analysis was used to diagnose the causes of differences in simulating ecosystem carbon storage capacity between two land models: CLMA-CASA and CABLE. Results showed that the simulated ecosystem carbon storage capacity is largely influenced by the photosynthesis parameterization, residence time and organic matter decomposition.
Roman Sitko, Jaroslav Vido, Jaroslav Škvarenina, Viliam Pichler, Ĺubomír Scheer, Jana Škvareninová, and Paulína Nalevanková
Earth Syst. Dynam., 7, 385–395, https://doi.org/10.5194/esd-7-385-2016, https://doi.org/10.5194/esd-7-385-2016, 2016
A. Kessler and J. Tjiputra
Earth Syst. Dynam., 7, 295–312, https://doi.org/10.5194/esd-7-295-2016, https://doi.org/10.5194/esd-7-295-2016, 2016
Short summary
Short summary
The uncertainty of ocean carbon uptake in ESMs is projected to grow 2-fold by the end of the 21st century. We found that models that take up anomalously low (high) CO2 in the Southern Ocean (SO) today project low (high) cumulative CO2 uptake in the 21st century; thus the SO can be used to constrain future global uptake uncertainty. Inter-model spread in the SO carbon sink arises from variations in the pCO2 seasonality, specifically bias in the simulated timing and amplitude of NPP and SST.
R. W. Scholz and F.-W. Wellmer
Earth Syst. Dynam., 7, 103–117, https://doi.org/10.5194/esd-7-103-2016, https://doi.org/10.5194/esd-7-103-2016, 2016
Short summary
Short summary
The 2014 USGS data could decrease from 67 Gt phosphate rock (PR) reserves to 58.5 Gt marketable PR (PR-M) if data on PR-ore are transferred to PR-M. The 50 Gt PR-M estimate for Moroccan reserves is reasonable. Geoeconomics suggests that large parts of resources and geopotential become future reserves. As phosphate is essential for food production and reserve data alone are unsufficient for assessing long-run supply security, an international standing committee may assess future PR accessibility.
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt, N. Chang, C. Le Quéré, and D. C. E. Bakker
Earth Syst. Dynam., 6, 327–358, https://doi.org/10.5194/esd-6-327-2015, https://doi.org/10.5194/esd-6-327-2015, 2015
Short summary
Short summary
Rapidly rising atmospheric CO2 concentrations caused by human actions over the past 250 years have raised cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20,000 years. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems. Major future ocean carbon research challenges are discussed.
J. D. Edixhoven, J. Gupta, and H. H. G. Savenije
Earth Syst. Dynam., 5, 491–507, https://doi.org/10.5194/esd-5-491-2014, https://doi.org/10.5194/esd-5-491-2014, 2014
Short summary
Short summary
Phosphate rock is a finite resource required for fertilizer production. Following a debate over the PR depletion timeline, global PR reserves were recently increased 4-fold based mainly on a restatement of Moroccan reserves. We review whether this restatement is methodologically compatible with resource terminology used in major resource classifications, whether resource classification nomenclature is sufficiently understood in the literature, and whether the recent restatements are reliable.
B. Foereid, D. S. Ward, N. Mahowald, E. Paterson, and J. Lehmann
Earth Syst. Dynam., 5, 211–221, https://doi.org/10.5194/esd-5-211-2014, https://doi.org/10.5194/esd-5-211-2014, 2014
M. Heimann
Earth Syst. Dynam., 5, 41–42, https://doi.org/10.5194/esd-5-41-2014, https://doi.org/10.5194/esd-5-41-2014, 2014
R. Séférian, L. Bopp, D. Swingedouw, and J. Servonnat
Earth Syst. Dynam., 4, 109–127, https://doi.org/10.5194/esd-4-109-2013, https://doi.org/10.5194/esd-4-109-2013, 2013
D. Wisser, S. Marchenko, J. Talbot, C. Treat, and S. Frolking
Earth Syst. Dynam., 2, 121–138, https://doi.org/10.5194/esd-2-121-2011, https://doi.org/10.5194/esd-2-121-2011, 2011
K. Michaelian
Earth Syst. Dynam., 2, 37–51, https://doi.org/10.5194/esd-2-37-2011, https://doi.org/10.5194/esd-2-37-2011, 2011
Cited articles
Adachi, M., Ito, A., Ishida, A., Kadir, W. R., Ladpala, P., and Yamagata, Y.: Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements, Biogeosciences, 8, 2635–2647, https://doi.org/10.5194/bg-8-2635-2011, 2011.
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C.,
Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S.,
Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatio-temporal patterns
of terrestrial gross primary production: A review, Rev. Geophys., 53, 785–818,
https://doi.org/10.1002/2015RG000483, 2015.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B.,
Bayer, A. D., Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M.,
Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S.,
Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and Zaehle, S.:
Historical carbon dioxide emissions caused by land-use changes are possibly
larger than assumed, Nat. Geosci., 10, 79–84,
https://doi.org/10.1038/NGEO2882, 2017.
Baccini, A., Walker, W., Carvalho, I., Farina, M., Sulla-Menashe, D., and
Houghton, R. A.: Tropical forests are a net carbon source based on
aboveground measurements of gain and loss, Science, 358, 230–234,
https://doi.org/10.1126/science.aam5962, 2017.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., Pau U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: a new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434,
2001.
Baldocchi, D., Sturtevant, C., and Fluxnet-contributors: Does day and night
sampling reduce spurious correlation between canopy photosynthesis and
ecosystem respiration?, Agr. Forest Meteorol., 207, 117–126,
https://doi.org/10.1016/j.agrformet.2015.03.010, 2015.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon
sink, Science, 331, p. 50, https://doi.org/10.1126/science.1196808, 2011.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter,
A., and Tranvik, L. J.: The boudless carbon cycle, Nat. Geosci., 2,
598–600, 2009.
Berhe, A. A., Barnes, R. T., Six, J., and Marín-Spiotta, E.: Role of
soil erosion in biogeochemical cycling of essential elements: carbon,
nitrogen, and phosphorus, Annu. Rev. Earth Pl. Sc., 46, 521–548,
https://doi.org/10.1146/annurev-earth-082517-010018, 2018.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial
carbon balamce, Glob. Change Biol., 13, 679–706,
https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T.,
Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J.,
Rivera-Monroy, V. H., Smith, T. J. I., and Twilley, R. R.: Mangrove
production and carbon sinks: A revision of global budget estimates, Global
Biogeochem. Cy., 22, GB2013, https://doi.org/10.1029/2007GB003052, 2008.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D.: Overview
of a simple model describing variation of dissolved organic carbon in an
upland catchment, Ecol. Model., 86, 183–188, 1996.
Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., De Paula, M. D.,
Pütz, S., Sexton, J. O., Song, D., and Huth, A.: High resolution
analysis of tropical forest fragmentation and its impact on the global
carbon cycle, Nat. Commun., 8, 14855, https://doi.org/10.1038/ncomms14855, 2017.
Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A.,
Launois, T., Belviso, S., Bopp, L., and Laine, M.: Large historical growth
in global terrestrial gross primary production, Nature, 544, 84–87,
https://doi.org/10.1038/nature22030, 2017.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B.,
Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.: Global
covariation of carbon turnover times with climate in terrestrial ecosystems,
Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Chapin, F. S. III, Woodwell, G. M., Randerson, J. T., Rastetter, E. B.,
Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D.
S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L.,
Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D.,
Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L.,
Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze,
E.-D.: Reconciling carbon-cycle concepts, terminology, and methods,
Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Chappell, A., Baldock, J., and Sanderman, J.: The global significance of
omitting soil erosion from soil organic carbon cycling schemes, Nat. Clim.
Change, 6, 187–191, https://doi.org/10.1038/NCLIMATE2829, 2016.
Chen, M., Rafique, R., Asrar, G. R., Bond-Lamberty, B., Ciais, P., Zhao, F.,
Reyer, C. P. O., Ostberg, S., Chang, J., Ito, A., Yang, J., Zeng, N.,
Kalnay, E., West, T., Leng, G., Francois, L., Munhoven, G., Henrot, A.,
Tian, H., Pan, S., Nishida, K., Viovy, N., Morfopoulos, C., Betts, R.,
Schaphoff, S., Steinkamp, J., and Hickler, T.: Regional contribution to
variability and trends of global gross primary productivity, Environ. Res.
Lett., 12, 105005, https://doi.org/10.1088/1748-9326/aa8978, 2017.
Chu, H., Gottgens, J. F., Chen, J., Sun, G., Deai, A. R., Ouyang, Z., Shao,
C., and Czajkowski, K.: Climatic variability, hydrologic anomaly, and
methane emission can turn productive freshwater marshes into net carbon
sources, Glob. Change Biol., 21, 1165–1181,
https://doi.org/10.1111/gcb.12760, 2015.
Ciais, P., Bousquet, P., Freibauer, A., and Naegler, T.: Horizontal
displacement of carbon associated with agriculture and its impact on
atmospheric CO2, Global Biogeochem. Cy., 21, GB2014,
https://doi.org/10.1029/2006GB002741, 2007.
Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.
Climate Research Unit (CRU): CRU TS3.25: Climatic Research Unit (CRU) Time-Series (TS) Version 3.25 of High-Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901–Dec. 2016), University of East Anglia, available at: https://crudata.uea.ac.uk/cru/data/hrg/, last access: 1 November 2019.
Curry, C. L.: Modeling the soil consumption of atmospheric methane at the
global scale, Global Biogeochem. Cy., 21, GB4012,
https://doi.org/10.1029/2006GB002818, 2007.
Dai, M., Yin, Z., Meng, F., Liu, Q., and Cai, W.-J.: Spatial distribution of
riverine DOC inputs to the ocean: an updated global synthesis, Curr.
Opin. Env. Sust., 4, 170–178,
https://doi.org/10.1016/j.cosust.2012.03.003, 2012.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and
Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14,
https://doi.org/10.1007/s13593-017-0421-2, 2017.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon
inputs to inland waters: A current synthesis of estimates and uncertainty,
Limnol. Oceanogr. Lett., 3, 132–142, https://doi.org/10.1002/lol2.10055,
2018.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae,
M. O., and Pöschl, U.: Contribution of cryptogamic covers to the global
cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462,
https://doi.org/10.1038/NGEO1486, 2012.
Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N.,
Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M.,
Pongratz, J., Thurner, M., and Luyssaert, S.: Unexpectedly large impact of
forest management and grazing on global vegetation biomass, Nature, 553, 73–76,
https://doi.org/10.1038/nature25138, 2018.
Fang, Y., Michalak, A. M., Schwalm, C. R., Huntzinger, D. N., Berry, J. A.,
Ciais, P., Piao, S., Poulter, B., Fisher, J. B., Cook, R. B., Hayes, D.,
Huang, M., Ito, A., Jain, A., Lei, H., Lu, C., Mao, J., Parazoo, N. C.,
Peng, S., Ricciuto, D. M., Shi, X., Tao, B., Tian, H., Wang, W., Wei, Y.,
and Yang, J.: Global land carbon sink response to temperature and
precipitation varies with ENSO phase, Environ. Res. Lett., 12, 064007,
https://doi.org/10.1088/1748-9326/aa6e8e, 2017.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate projections
due to carbon cycle feedbacks, J. Climate, 27, 511–526, 2014.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R. M., Betts, R.,
Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P., Ito, A.,
Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick,
R., Peylin, P., Schaphoff, S., Vuichard, N., Warszwski, L., Wiltshire, A.,
and Woodward, F. I.: Carbon residence time dominates uncertainty in
terrestrial vegetation responses to future climate and atmospheric CO2,
P. Natl. Acad. Sci. USA, 111, 3280–3285,
https://doi.org/10.1073/pnas.1222477110, 2014.
Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., and Niu, S.:
Recovery time and state change of terrestrial carbon cycle after
disturbance, Environ. Res. Lett., 12, 104004, https://doi.org/10.1088/1748-9326/aa8a5c,
2017.
Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W., and Eberle, J.:
Gross changes in reconstructions of historic land cover/use for Europe
between 1900 and 2010, Glob. Change Biol., 21, 299–313,
https://doi.org/10.1111/gcb.12714, 2015.
Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P.,
and Fraser, P. J.: Three-dimensional model synthesis of the global methane
cycle, J. Geophys. Res., 96, 13033–13065, 1991.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export
from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Geron, C. D., Daly, R. W., Arnts, R. R., Guenther, A. B., and Mowry, F. L.:
Canopy level emissions of 2-methyl-3-buten-2-ol, monoterpenes, and
sesquiterpenes from an experimental Pinus taeda plantation, Sci. Total Environ.,
565, 730–741, https://doi.org/10.1016/j.scitotenv.2016.05.034, 2016.
Gower, S. T.: Patterns and mechanisms of the forest carbon cycle, Annu. Rev.
Env. Resour., 28, 169–204,
https://doi.org/10.1146/annurev.energy.28.050302.105515, 2003.
Grieve, I. C.: A model of dissolved organic carbon concentrations in soil
and stream waters, Hydrol. Process., 5, 301–307, 1991.
Guenther, A.: Seasonal and spatial variations in natural volatile organic
compound emissions, Ecol. Appl., 7, 34–45, 1997.
Guenther, A., Baugh, W., Davis, K., Hampton, G., Harley, P., Klinger, L.,
Vierling, L., Zimmerman, P., Allwine, E., Dilts, S., Lamb, B., Westberg, H.,
Baldocchi, D., Geron, C., and Pierce, T.: Isoprene fluxes measured by
enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer
gradient, and mixed layer mass balance techniques, J. Geophys. Res., 101,
18555–18567, 1996.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.:
Global CO2-consumption by chemical weathering: What is the contribution
of highly active weathering regions?, Global Planet. Change, 69, 185–194,
https://doi.org/10.1016/j.gloplacha.2009.07.007, 2009.
Hirata, R., Takagi, K., Ito, A., Hirano, T., and Saigusa, N.: The impact of climate variation and disturbances on the carbon balance of forests in Hokkaido, Japan, Biogeosciences, 11, 5139–5154, https://doi.org/10.5194/bg-11-5139-2014, 2014.
Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon,
M.: Global Wildland Fire Emission Model (GWEM): Evaluating the use of global
area burnt satellite data, J. Geophys. Res., 109, D14S04,
https://doi.org/10.1029/2003JD003666, 2004.
Houghton, R. A.: Revised estimates of the annual net flux of carbon to the
atmosphere from changes in land use and land management 1850–2000, Tellus,
55B, 378–390, 2003.
Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon
from land use and land cover change 1850–2015, Global Biogeochem. Cy.,
31, 456–472, https://doi.org/10.1002/2016GB005546, 2017.
Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J.,
Shaver, G. R., and Woodwell, G. M.: Changes in the carbon content of
terrestrial biota and soils between 1860 and 1980: a net release of CO2
to the atmosphere, Ecol. Monogr., 53, 235–262, 1983.
Houghton, R. A., Davidson, E. A., and Woodwell, G. M.: Missing sinks,
feedbacks, and understanding the role of terrestrial ecosystems in the
global carbon balance, Global Biogeochem. Cy., 12, 25–34, 1998.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J.,
Parrington, M., Inness, A., Murdiyarso, D., Main, B., and van Weele, M.:
Fire carbon emissions over maritime southeast Asia in 2015 largest since
1997, Sci. Rep., 6, 26886, https://doi.org/10.1038/srep26886, 2016.
Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W.,
Fang, Y., Schaefer, K., Wei, Y., Cook, R. B., Fisher, J. B., Hayes, D.,
Huang, M., Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J.,
Parazoo, N., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tian, H., Wang,
W., Zeng, N., and Zhao, F.: Uncertainty in the response of terrestrial
carbon sink to environmental drivers undermines carbon-climate feedback
predictions, Sci. Rep., 7, 4765, https://doi.org/10.1038/s41598-017-03818-2,
2017.
Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E.,
Malyshev, S., Pacala, S. W., and Houghton, R. A.: The underpinnings of
land-use history: three centuries of global gridded land-use transitions,
wood-harvest activity, and resulting secondary lands, Glob. Change Biol.,
12, 1–22, https://doi.org/10.1111/j.1365-2486.2006.01150.x, 2006 (data available at: http://luh.umd.edu/data.shtml, last access: 1 November 2019).
Ichii, K., Kondo, M., Lee, Y.-H., Wang, S.-Q., Kim, J., Ueyama, M., Lim,
H.-J., Shi, H., Suzuki, T., Ito, A., Ju, W., Huang, M., Sasai, T., Asanuma,
J., Han, S., Hirano, T., Hirata, R., Kato, T., Kwon, H., Li, S.-G., Li,
Y.-N., Maeda, T., Miyata, A., Matsuura, Y., Murayama, S., Nakai, Y., Ohta,
T., Saitoh, T. M., Saigusa, N., Takagi, K., Tang, Y.-H., Wang, H.-M., Yu,
G.-R., Zhang, Y.-P., and Zaho, F.-H.: Site-level model-data synthesis of
terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation
network: Toward future modeling efforts, J. Forest Res., 18, 13–20,
https://doi.org/10.1007/s10310-012-0367-9, 2013.
Inatomi, M., Ito, A., Ishijima, K., and Murayama, S.: Greenhouse gas budget
of a cool temperate deciduous broadleaved forest in Japan estimated using a
process-based model, Ecosystems, 13, 472–483,
https://doi.org/10.1007/s10021-010-9332-7, 2010.
Ito, A.: Simulated impacts of climate and land-cover change on soil erosion
and implication for the carbon cycle, 1901 to 2100, Geophys. Res. Lett., 34, L09403,
https://doi.org/10.1029/2007GL029342, 2007.
Ito, A.: Changing ecophysiological processes and carbon budget in East Asian
ecosystems under near-future changes in climate: Implications for long-term
monitoring from a process-based model, J. Plant Res., 123, 577–588,
https://doi.org/10.1007/s10265-009-0305-x, 2010.
Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, https://doi.org/10.5194/bg-9-759-2012, 2012.
Ito, A. and Oikawa, T.: A simulation model of the carbon cycle in land
ecosystems (Sim-CYCLE): A description based on dry-matter production theory
and plot-scale validation, Ecol. Model., 151, 147–179, 2002.
Ito, A., Inatomi, M., Huntzinger, D. N., Schwalm, C., Michalak, A. M., Cook,
R., King, A. W., Mao, J., Wei, Y., Post, W. M., Wang, W., Arain, M. A.,
Huang, M., Lei, H., Tian, H., Lu, C., Yang, J., Tao, B., Jain, A., Poulter,
B., Peng, S., Ciais, P., Fisher, J. B., Parazoo, N., Schaefer, K., Peng, C.,
Zeng, N., and Zhao, F.: Decadal trends in the seasonal-cycle amplitude of
terrestrial CO2 exchange resulting from the ensemble of terrestrial
biosphere models, Tellus B, 68, 28968, https://doi.org/10.3402/tellusb.v68.28968,
2016.
Ito, A., Nishina, K., Reyer, C. P. O., François, L., Henrot, A.-J.,
Munhoven, G., Jacquemin, I., Tian, H., Yang, J., Pan, S., Morfopoulos, C.,
Betts, R., Hickler, T., Steinkamp, J., Ostberg, S., Schaphoff, S., Ciais,
P., Chang, J., Rafique, R., Zeng, F., and Zhao, F.: Photosynthetic
productivity and its efficiencies in ISIMIP2a biome models: benchmarking for
impact assessment studies, Environ. Res. Lett., 12, 085001,
https://doi.org/10.1088/1748-9326/aa7a19, 2017.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary
productivity and evapotranspiration products derived from Breathing Earth
System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res., 116, G00J07,
https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P.,
Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly
global land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.
Kato, E., Kinoshita, T., Ito, A., Kawamiya, M., and Yamagata, T.: Evaluation
of spatially explicit emission scenario of land-use change and biomass
burning using a process based biogeochemical model, J. Land Use Sci., 8,
104–122, https://doi.org/10.1080/1747423X.2011.628705, 2013.
Keeling, R. F., Piper, S. C., Bollenbacher, A. F., and Walker, J. S.: Atmospheric carbon dioxide record from Mauna Loa, in, Carbon Dioxide Information Analysis Center, Oak Ridge, USA, 2009.
Kirkels, F. M. S. A., Cammeraat, L. H., and Kuhn, N. J.: The fate of soil
organic carbon upon erosion, transport and deposition in agricultural
landscapes – A review of different concepts, Geomorphol., 226, 94–105,
https://doi.org/10.1016/j.geomorph.2014.07.023, 2014.
Kirschbaum, M. U. F., Zeng, G., Ximenes, F., Giltrap, D. L., and Zeldis, J. R.: Towards a more complete quantification of the global carbon cycle, Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, 2019.
Knorr, W., Arneth, A., and Jiang, L.: Demograhic controls of future global
fire risk, Nat. Clim. Change, 6, 781–785,
https://doi.org/10.1038/NCLIMATE2999, 2016.
Kondo, M., Ichii, K., Takagi, H., and Sasakawa, M.: Comparison of the
data-driven top-down and bottom-up global terrestrial CO2 exchanges:
GOSAT CO2 inversion and empirical eddy flux upscaling, J. Geophys.
Res., 120, 1226–1245, https://doi.org/10.1002/2014JG002866, 2015.
Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29,
437–450, 2003.
Lal, R.: Accelerated soil erosion as a source of atmospheric CO2, Soil Till. Res., 188, 35–40,
https://doi.org/10.1016/j.still.2018.02.001, 2019.
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, https://doi.org/10.5194/acp-6-2129-2006, 2006.
Lehner, B. and Döll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004 (data available at: https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database, last access: 1 November 2019).
Li, W., Ciais, P., Wang, Y., Peng, S., Broquet, G., Ballantyne, A. P.,
Canadell, J. G., Cooper, L., Friedlingstein, P., Le Quéré, C.,
Myneni, R. B., Peters, G. P., Piao, S., and Pongratz, J.: Reducing
uncertainties in decadal variability of the global carbon budget with
multiple datasets, P. Natl. Acad. Sci. USA, 113, 13104–13108,
https://doi.org/10.1073/pnas.1603956113, 2016.
Lovett, G. M., Cole, J. J., and Pace, M. L.: Is net ecosystem production
equal to ecosystem carbon accumulation?, Ecosystems, 9, 152–155, 2006.
Luyssaert, S., Schulze, E.-D., Börner, A., Knohl, A., Hessenmöller,
D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global
carbon sinks, Nature, 455, 213–215, https://doi.org/10.1038/nature07276,
2008.
Maavara, T., Lauerwald, R., Regnier, P., and Van Cappellen, P.: Global
perturbation of organic carbon cycling by river damming, Nat. Commun., 8, 15347,
https://doi.org/10.1038/ncomms15347, 2017.
Manabe, S.: Climate and the ocean circulation I. the atmospheric circulation
and the hydrology of the earth's surface, Mon. Weather Rev., 97, 739–774,
1969.
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley,
J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A.,
Melillo, J. M., Moore, B. I., Williams, L. J., and Wittenberg, U.: Carbon
balance of the terrestrial biosphere in the twentieth century: analysis of
CO2, climate and land use effects with four process-based ecosystem
models, Global Biogeochem. Cy., 15, 183–206, 2001.
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P.,
Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes and
reservoirs, Nat. Commun., 8, 1694, https://doi.org/10.1038/s41467-017-01789-6,
2017.
Meybeck, M.: Riverine transport of atmospheric carbon: sources, global
typology and budget, Water Air Soil Poll., 70, 443–463, 1993.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma,
292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Nadeu, E., Gobin, A., Fiener, P., van Wesemael, B., and van Oost, K.:
Modelling the impact of agricultural management on soil carbon stocks at the
regional scale: the role of lateral fluxes, Glob. Change Biol., 21,
3181–3192, https://doi.org/10.1111/gcb.12889, 2015.
Naipal, V., Ciais, P., Wang, Y., Lauerwald, R., Guenet, B., and Van Oost, K.: Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005, Biogeosciences, 15, 4459–4480, https://doi.org/10.5194/bg-15-4459-2018, 2018.
Nelson, P. N., Baldock, J. A., and Oades, J. M.: Concentration and
composition of dissolved organic carbon in stream in relation to catchment
soil properties, Biogeochem., 19, 27–50, 1993.
Olson, J. S., Watts, J. A., and Allison, L. J.: Carbon in live vegetation of
major world ecosystems, Oak Ridge National Laboratory, USA, ORNL-5862, 1983.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's
forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609,
2011.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate–smart soils, Nature, 532, 49–57,
https://doi.org/10.1038/nature17174, 2016.
Peters, G. P., Davis, S. J., and Andrew, R.: A synthesis of carbon in international trade, Biogeosciences, 9, 3247–3276, https://doi.org/10.5194/bg-9-3247-2012, 2012.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.,
Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A.
I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P.
O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North
American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci.
USA, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.
Piao, S., Huang, M., Liu, Z., Wang, X., Ciais, P., Canadell, J. G., Wang,
K., Bastos, A., Friedlingstein, P., Houghton, R. A., Le Quéré, C.,
Liu, Y., Myneni, R. B., Peng, S., Pongratz, J., Sitch, S., Yan, T., Wang,
Y., Zhu, Z., Wu, D., and Wang, T.: Lower land-use emissions responsible for
increased net land carbon sink during the slow warming period, Nat. Geosci., 11, 739–743, https://doi.org/10.1038/s41561-018-0204-7, 2018.
Piao, S. L., Ito, A., Li, S. G., Huang, Y., Ciais, P., Wang, X. H., Peng, S. S., Nan, H. J., Zhao, C., Ahlström, A., Andres, R. J., Chevallier, F., Fang, J. Y., Hartmann, J., Huntingford, C., Jeong, S., Levis, S., Levy, P. E., Li, J. S., Lomas, M. R., Mao, J. F., Mayorga, E., Mohammat, A., Muraoka, H., Peng, C. H., Peylin, P., Poulter, B., Shen, Z. H., Shi, X., Sitch, S., Tao, S., Tian, H. Q., Wu, X. P., Xu, M., Yu, G. R., Viovy, N., Zaehle, S., Zeng, N., and Zhu, B.: The carbon budget of terrestrial ecosystems in East Asia over the last two decades, Biogeosciences, 9, 3571–3586, https://doi.org/10.5194/bg-9-3571-2012, 2012.
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B.: Remote sensing of
global wetland dynamics with multiple satellite data sets, Geophys. Res.
Lett., 28, 4631–4634, 2001.
Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd,
V., and Calle, L.: Role of forest regrowth in global carbon sink dynamics,
P. Natl. Acad. Sci. USA, 116, 4382–4387,
https://doi.org/10.1073/pnas.1810512116, 2019.
Ramankutty, N. and Foley, J. A.: Characterizing patterns of global land
use: An analysis of global croplands data, Global Biogeochem. Cy., 12,
667–685, 1998.
Randerson, J. T., Chapin, F. S. I., Harden, J. W., Neff, J. C., and Harmon,
M. E.: Net ecosystem production: a comprehensive measure of net carbon
accumulation by ecosystems, Ecol. Appl., 12, 937–947, 2002.
Randerson, J. T., van der Werf, G. R., Collatz, G. J., Giglio, L., Still, C.
J., Kasibhatla, P., Miller, J. B., White, J. W. C., DeFries, R. S., and
Kasischke, E. S.: Fire emissions from C3 and C4 vegetation and
their influence on interannual variability of atmospheric CO2 and
δ13CO2, Global Biogeochem. Cy., 19, GB2019,
https://doi.org/10.1029/2004GB002366, 2005.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F.
S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G.,
and Zender, C. S.: The impact of boreal forest fire on climate warming,
Science, 314, 1130–1132, 2006.
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton,
D. C.: Global burned area and biomass burning emissions from small fires, J.
Geophys. Res., 117, G04012, https://doi.org/10.1029/2012JG002128, 2012.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/NGEO1830, 2013.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne,
S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D.,
Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A.,
and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500,
287–295, https://doi.org/10.1038/nature12350, 2013.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D.
C.: Predicting Erosion by Water: A Guide to Conservation Planning with the
Revised Universal Soil Loss Equation (RUSLE). Handbook 703, US Department
of Agriculture, Washington, D.C., USA, 1997.
Reynolds, C. A., Jackson, T. J., and Rawls, W. J.: Estimated Available Water
Content from the FAO Soil Map of the World, Global Soil Profile Databases,
Pedo-transfer Functions, USDA Agricultural Research Service, Washington, D.C., USA, 1999.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108,
9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Santín, C., Doerr, S. H., Preston, C. M., and
González-Rodríguez, G.: Pyrogenic organic matter production from
wildfires: a missing sink in the global carbon cycle, Glob. Change Biol.,
21, 1621–1633, https://doi.org/10.1111/gcb.12800, 2015.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Melton, J. R., Morino, I., Naik, V., O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters, G. P., Pison, I., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Weiss, R., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.: Variability and quasi-decadal changes in the methane budget over the period 2000–2012, Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, 2017.
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S.,
Townsend, P., Miller, C., Frankenberg, C., Hibbard, K., and Cox, P.:
Observing terrestrial ecosystems and the carbon cycle from space, Glob. Change Biol., 21, 1762–1776, https://doi.org/10.1111/gcb.12822, 2015.
Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P.,
Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell,
J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein,
P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B. I.,
Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R.,
Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent
patterns and mechanisms of carbon exchange by terrestrial ecosystems,
Nature, 414, 169–172, 2001.
Schlesinger, W. H.: An evaluation of abiotic carbon sinks in deserts, Glob. Change Biol., 23, 25–27, https://doi.org/10.1111/gcb.13336, 2017.
Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R.,
Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., and Hare, W.:
Science and policy characteristics of the Paris Agreement temperature goal,
Nat. Clim. Change, 6, 827–835, https://doi.org/10.1038/NCLIMATE3096,
2016.
Schnitzer, S., Seitz, F., Eicker, A., Güntner, A., Wattenbach, M., and
Menzel, A.: Estimation of soil loss by water erosion in the Chinese Loess
Plateau using Universal Soil Loss Equation and GRACE, Geophys. J. Int.,
193, 1283–1290, https://doi.org/10.1093/gji/ggt023, 2013.
Schulze, E.-D., Wirth, C., and Heimann, M.: Managing forests after Kyoto,
Science, 289, 2058–2059, 2000.
Sellers, P. J., Schimel, D. S., Moore, B. I., Liu, J., and Eldering, A.:
Observing carbon cycle – climate feedbacks from space, P. Natl. Acad.
Sci. USA, 115, 7860–7868, https://doi.org/10.1073/pnas.1716613115, 2018.
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., and Wilby, R.
L.: Allowable CO2 emissions based on regional and impact-related
climate targets, Nature, 529, 477–483, https://doi.org/10.1038/nature16542,
2016.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Song, Z., Liu, H., Strömberg, C. A. E., Yang, X., and Zhang, X.:
Phytolith carbon sequestration in global terrestrial biomes, Sci. Total Environ., 603/604, 502–509, https://doi.org/10.1016/j.scitotenv.2017.06.107,
2017.
Takata, K., Patra, P. K., Kotani, A., Mori, J., Belikov, D., Ichii, K.,
Saeki, T., Ohta, T., Saito, K., Ueyama, M., Ito, A., Maksyutov, S.,
Miyazaki, S., Burke, E. J., Ganshin, A., Iijima, Y., Ise, T., Machiya, H.,
Maximov, T. C., Niwa, Y., O'ishi, R., Park, H., Sasai, T., Sato, H., Tei,
S., Zhuravlev, R., Machida, T., Sugimoto, A., and Aoki, S.: Reconstruction
of top-down and bottom-up CO2 fluxes in Siberian larch forest, Environ. Res. Lett., 12, 125012, https://doi.org/10.1088/1748-9326/aa926d, 2017.
Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire
disturbance for global vegetation dynamics: coupling fire into a Dynamic
Global Vegetation Model, Global Ecol. Biogeogr., 10, 661–677, 2001.
Thurner, M., Beer, C., Ciais, P., Friend, A. D., Ito, A., Kleidon, A.,
Lomas, M. R., Quegan, S., Rademacher, T. T., Schaphoff, S., Tum, M.,
Wiltshire, A., and Carvalhais, N.: Evaluation of climate-related carbon
turnover processes in global vegetation models for boreal and temperate
forests, Glob. Change Biol., 23, 3076–3091,
https://doi.org/10.1111/gcb.13660, 2017.
Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R.,
Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M.,
Ito, A., Jain, A., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S.,
Poulter, B., Ren, W., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang,
W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns and controls
of soil organic carbon dynamics as simulated by multiple terrestrial
biosphere models: current status and future directions, Global Biogeochem. Cy., 29, 775–792, https://doi.org/10.1002/2014GB005021, 2015.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
United States Geological Survey (USGS): Global 30 Arc-Second Elevation (GTOPO30), EROS Data Center, Sioux Fall, South Dakota, https://doi.org/10.5066/F7DF6PQS, 1996.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J.
W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J.
V., Marques da Silva, J. R., and Merckx, R.: The impact of agricultural soil
erosion on the global carbon cycle, Science, 318, 626–629,
https://doi.org/10.1126/science.1145724, 2007.
Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to
derive methane emissions from natural wetlands: application to five wetlands
sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765, 2000.
Webb, J. R., Santos, I. R., Maher, D. T., Macdonald, B., Robson, B., Isaac,
P., and McHugh, I.: Terrestrial versus aquatic carbon fluxes in a
subtropical agricultural floodplain over an annual cycle, Agr. Forest
Meteorol., 260/261, 262–272,
https://doi.org/10.1016/j.agrformet.2018.06.015, 2018.
Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper,
S. C., Yoshimura, K., Francey, R. J., Allison, C. E., and Wahlen, M.:
Interannual variability in the oxygen isotopes of atmospheric CO2
driven by El Niño, Nature, 477, 579–582,
https://doi.org/10.1038/nature10421, 2011.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Winjum, J. K., Brown, S., and Schlamadinger, B.: Forest harvests and wood
products: Sources and sinks of atmospheric carbon dioxide, Forest Sci., 44,
272–284, 1998.
Wolf, J., West, T. O., Le Page, Y., Kyle, G. P., Zhang, X., Collatz, G. J.,
and Imhoff, M. L.: Biogenic carbon fluxes from global agricultural
production and consumption, Global Biogeochem. Cy., 29, 1617–1639,
https://doi.org/10.1002/2015GB005119, 2015.
Xi, F., Davis, S. J., Ciais, P., Carwford-Brown, D., Guan, D., Pade, C.,
Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang,
K.-H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., and Liu, Z.:
Substantial global carbon uptake by cement carbonation, Nat. Geosci., 9,
880–883, https://doi.org/10.1038/NGEO2840, 2016.
Yang, D., Kanae, S., Oki, T., Koike, T., and Musiake, K.: Global potential
soil erosion with reference to land use and climate changes, Hydrol. Process.,
17, 2913–2928, 2003.
Yue, C., Ciais, P., Cadule, P., Thonicke, K., and van Leeuwen, T. T.: Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance, Geosci. Model Dev., 8, 1321–1338, https://doi.org/10.5194/gmd-8-1321-2015, 2015.
Zhang, H., Liu, S., Yuan, W., Dong, W., Ye, A., Xie, X., Chen, Y., Liu, D.,
Cia, W., and Mao, Y.: Inclusion of soil carbon lateral movement alters
terrestrial carbon budget in China, Sci. Rep., 4, 7247,
https://doi.org/10.1038/srep07247, 2014.
Zhao, M., Running, S. W., and Nemani, R. R.: Sensitivity of Moderate
resolution Imaging Spectrometer (MODIS) terrestrial primary production to
the accuracy of meteorological reanalysis, J. Geophys. Res., 111, G01002,
https://doi.org/10.1029/2004JG000004, 2006.
Zscheischler, J., Mahecha, M. D., Avitabile, V., Calle, L., Carvalhais, N., Ciais, P., Gans, F., Gruber, N., Hartmann, J., Herold, M., Ichii, K., Jung, M., Landschützer, P., Laruelle, G. G., Lauerwald, R., Papale, D., Peylin, P., Poulter, B., Ray, D., Regnier, P., Rödenbeck, C., Roman-Cuesta, R. M., Schwalm, C., Tramontana, G., Tyukavina, A., Valentini, R., van der Werf, G., West, T. O., Wolf, J. E., and Reichstein, M.: Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations, Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, 2017.
Short summary
Various minor carbon flows such as trace gas emissions, disturbance-induced emissions, and subsurface exports can affect the carbon budget of terrestrial ecosystems in complicated ways. This study assessed how much these minor flows influence the carbon budget using a process-based model. It was found that the minor flows, though small in magnitude, could significantly affect net carbon budget at as much strengths as major flows, implying their long-term importance in Earth's climate system.
Various minor carbon flows such as trace gas emissions, disturbance-induced emissions, and...
Altmetrics
Final-revised paper
Preprint