Articles | Volume 8, issue 1
https://doi.org/10.5194/esd-8-1-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-8-1-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate engineering by mimicking natural dust climate control: the iron salt aerosol method
Franz Dietrich Oeste
CORRESPONDING AUTHOR
gM-Ingenieurbüro, Tannenweg 2, 35274 Kirchhain, Germany
Renaud de Richter
Institut Charles Gerhardt Montpellier – UMR5253 CNRS-UM2 – ENSCM-UM1 – Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier CEDEX 5, France
Tingzhen Ming
School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
Sylvain Caillol
Institut Charles Gerhardt Montpellier – UMR5253 CNRS-UM2 – ENSCM-UM1 – Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier CEDEX 5, France
Related subject area
Management of the Earth system: engineering responses to climate change
The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty
Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
Exploration of a novel geoengineering solution: lighting up tropical forests at night
How large is the design space for stratospheric aerosol geoengineering?
The response of terrestrial ecosystem carbon cycling under different aerosol-based radiation management geoengineering
Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs
Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: a direct comparison of carbon capture and sulfur injection
Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare
Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways
Geoengineering as a design problem
Delaying future sea-level rise by storing water in Antarctica
Climate response to imposed solar radiation reductions in high latitudes
Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models
Susanne Baur, Alexander Nauels, Zebedee Nicholls, Benjamin M. Sanderson, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 14, 367–381, https://doi.org/10.5194/esd-14-367-2023, https://doi.org/10.5194/esd-14-367-2023, 2023
Short summary
Short summary
Solar radiation modification (SRM) artificially cools global temperature without acting on the cause of climate change. This study looks at how long SRM would have to be deployed to limit warming to 1.5 °C and how this timeframe is affected by different levels of mitigation, negative emissions and climate uncertainty. None of the three factors alone can guarantee short SRM deployment. Due to their uncertainty at the time of SRM initialization, any deployment risks may be several centuries long.
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79, https://doi.org/10.5194/esd-14-55-2023, https://doi.org/10.5194/esd-14-55-2023, 2023
Short summary
Short summary
Solar geoengineering has been proposed as a way of counteracting the warming effects of increasing greenhouse gases by reflecting solar radiation. This work shows that solar geoengineering can slow down the northern-high-latitude permafrost degradation but cannot preserve the permafrost ecosystem as that under a climate of the same warming level without solar geoengineering.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Yan Zhang, Douglas G. MacMartin, Daniele Visioni, and Ben Kravitz
Earth Syst. Dynam., 13, 201–217, https://doi.org/10.5194/esd-13-201-2022, https://doi.org/10.5194/esd-13-201-2022, 2022
Short summary
Short summary
Adding SO2 to the stratosphere could temporarily cool the planet by reflecting more sunlight back to space. However, adding SO2 at different latitude(s) and season(s) leads to significant differences in regional surface climate. This study shows that, to cool the planet by 1–1.5 °C, there are likely six to eight choices of injection latitude(s) and season(s) that lead to meaningfully different distributions of climate impacts.
Hanna Lee, Helene Muri, Altug Ekici, Jerry Tjiputra, and Jörg Schwinger
Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021, https://doi.org/10.5194/esd-12-313-2021, 2021
Short summary
Short summary
We assess how three different geoengineering methods using aerosol affect land ecosystem carbon storage. Changes in temperature and precipitation play a large role in vegetation carbon uptake and storage, but our results show that increased levels of CO2 also play a considerable role. We show that there are unforeseen regional consequences under geoengineering applications, and these consequences should be taken into account in future climate policies before implementing them.
Walker Lee, Douglas MacMartin, Daniele Visioni, and Ben Kravitz
Earth Syst. Dynam., 11, 1051–1072, https://doi.org/10.5194/esd-11-1051-2020, https://doi.org/10.5194/esd-11-1051-2020, 2020
Short summary
Short summary
The injection of aerosols into the stratosphere to reflect sunlight could reduce global warming, but this type of
geoengineeringwould also impact other variables like precipitation and sea ice. In this study, we model various climate impacts of geoengineering on a 3-D graph to show how trying to meet one climate goal will affect other variables. We also present two computer simulations which validate our model and show that geoengineering could regulate precipitation as well as temperature.
Yangyang Xu, Lei Lin, Simone Tilmes, Katherine Dagon, Lili Xia, Chenrui Diao, Wei Cheng, Zhili Wang, Isla Simpson, and Lorna Burnell
Earth Syst. Dynam., 11, 673–695, https://doi.org/10.5194/esd-11-673-2020, https://doi.org/10.5194/esd-11-673-2020, 2020
Short summary
Short summary
Two geoengineering schemes to mitigate global warming, (a) capturing atmospheric CO2 and (b) injecting stratospheric sulfur gas, are compared. Based on two sets of large-ensemble model experiments, we show that sulfur injection will effectively mitigate projected terrestrial drying over the Americas, and the mitigation benefit will emerge more quickly than with carbon capture. Innovative means of sulfur injection should continue to be explored as one potential low-cost climate solution.
Koen G. Helwegen, Claudia E. Wieners, Jason E. Frank, and Henk A. Dijkstra
Earth Syst. Dynam., 10, 453–472, https://doi.org/10.5194/esd-10-453-2019, https://doi.org/10.5194/esd-10-453-2019, 2019
Short summary
Short summary
We use the climate-economy model DICE to perform a cost–benefit analysis of sulfate geoengineering, i.e. producing a thin artificial sulfate haze in the higher atmosphere to reflect some sunlight and cool the Earth.
We find that geoengineering can increase future welfare by reducing global warming, and should be taken seriously as a policy option, but it can only complement, not replace, carbon emission reduction. The best policy is to combine CO2 emission reduction with modest geoengineering.
Andrew Lenton, Richard J. Matear, David P. Keller, Vivian Scott, and Naomi E. Vaughan
Earth Syst. Dynam., 9, 339–357, https://doi.org/10.5194/esd-9-339-2018, https://doi.org/10.5194/esd-9-339-2018, 2018
Short summary
Short summary
Artificial ocean alkalinization (AOA) is capable of reducing atmospheric carbon dioxide concentrations and surface warming while also addressing ocean acidification. We simulate the Earth system response to a fixed addition of AOA under low and high emissions. We explore the regional and global response to AOA. A key finding is that AOA is much more effective at reducing warming and ocean acidification under low emissions, despite lower carbon uptake.
Ben Kravitz, Douglas G. MacMartin, Hailong Wang, and Philip J. Rasch
Earth Syst. Dynam., 7, 469–497, https://doi.org/10.5194/esd-7-469-2016, https://doi.org/10.5194/esd-7-469-2016, 2016
Short summary
Short summary
Most simulations of solar geoengineering prescribe a particular strategy and evaluate its modeled effects. Here we first choose example climate objectives and then design a strategy to meet those objectives in climate models. We show that certain objectives can be met simultaneously even in the presence of uncertainty, and the strategy for meeting those objectives can be ported to other models. This is part of a broader illustration of how uncertainties in solar geoengineering can be managed.
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
M. C. MacCracken, H.-J. Shin, K. Caldeira, and G. A. Ban-Weiss
Earth Syst. Dynam., 4, 301–315, https://doi.org/10.5194/esd-4-301-2013, https://doi.org/10.5194/esd-4-301-2013, 2013
H. Schmidt, K. Alterskjær, D. Bou Karam, O. Boucher, A. Jones, J. E. Kristjánsson, U. Niemeier, M. Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck
Earth Syst. Dynam., 3, 63–78, https://doi.org/10.5194/esd-3-63-2012, https://doi.org/10.5194/esd-3-63-2012, 2012
Cited articles
Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., and López-Millán, A. F.: Towards a knowledge-based correction of iron chlorosis, Plant Physiol. Biochem., 49, 471–482, 2011.
Abbaspour, N., Hurrell, R., and Kelishadi, R.: Review on iron and its importance for human health, J. Res. Med. Sci., 19, 164–174, 2004.
Al-Abadleh, H. A.: Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances, RSC Advances, 5, 45785–45811, 2015.
Albani, S., Mahowald, N., Murphy, L., Raiswell, R., Moore, J., Anderson, R., McGee, D., Bradtmiller, L., Delmonte, B., and Hesse, P.: Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean, Geophys. Res. Lett., 43, 3944–3954, 2016.
Ali, M. A., Lee, C. H., and Kim, P. J.: Effect of silicate fertilizer on reducing methane emission during rice cultivation, Biol. Fert. Soils, 44, 597–604, 2008.
Allan, W., Struthers, H., and Lowe, D.: Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. J. Geophys. Res.-Atmos., 112, D04306, https://doi.org/10.1029/2006JD007369, 2007.
Allen, C. C., Westall, F., and Schelble, R. T.: Importance of a martian hematite site for astrobiology, Astrobiology, 1, 111–123, 2001.
Allen, L. H.: Guidelines on food fortification with micronutrients, World Health Organization, Dept. of Nutrition for Health and Development, WHO, FAO, Geneva, http://www.who.int/nutrition/publications/guide_food_fortification_micronutrients.pdf (last access: 8 January 2017), 2006.
Alt, J. C. and Shanks, W. C.: Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling, Geochim. Cosmochim. Ac., 67, 641–653, 2003.
Alterskjær, K. and Kristjánsson, J.: The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount, Geophys. Res. Lett., 40, 210–215, 2013.
Amos, R., Bekins, B., Cozzarelli, I., Voytek, M., Kirshtein, J., Jones, E., and Blowes, D.: Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer, Geobiology, 10, 506–517, 2012.
Anderson, K.: Duality in climate science, Nat. Geosci., 8, 898–900, 2016.
Anderson, R. F., Barker, S., Fleisher, M., Gersonde, R., Goldstein, S. L., Kuhn, G., Mortyn, P. G., Pahnke, K., and Sachs, J. P.: Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean, Philos. T. Roy. Soc. Lond. A, 372, 20130054, https://doi.org/10.1098/rsta.2013.0054, 2014.
Anderson, W. B.: Diagnosis and correction of iron deficiency in field crops – an overview, J. Plant Nutr., 5, 785–795, 1982.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Anenberg, S. C., Schwartz, J., Shindell, D. T., Amann, M., Faluvegi, G. S., Klimont, Z., Janssens-Maenhout, G., Pozzoli, L., Dingenen, R. V., and Vignati, E.: Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls, Environ. Health Persp., 120, 831–839, https://doi.org/10.1289/ehp.1104301, 2012.
Annett, A. L., Skiba, M., Henley, S. F., Venables, H. J., Meredith, M. P., Statham, P. J., and Ganeshram, R. S.: Comparative roles of upwelling and glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula, Mar. Chem., 176, 21–33, 2015.
Archer, D. and Johnson, K.: A model of the iron cycle in the ocean, Global Biogeochem. Cy., 14, 269–279, 2000.
Ardon-Dryer, K., Huang, Y.-W., and Cziczo, D. J.: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis, Atmos. Chem. Phys., 15, 9159–9171, https://doi.org/10.5194/acp-15-9159-2015, 2015.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006.
Avni, T., Leibovici, L., and Gafter-Gvili, A.: Iron supplementation for the treatment of chronic heart failure and iron deficiency: systematic review and meta-analysis, Eur. J. Heart Fail., 14, 423–429, 2012.
Ayris, P. M., Delmelle, P., Cimarelli, C., Maters, E. C., Suzuki, Y. J., and Dingwell, D. B.: HCl uptake by volcanic ash in the high temperature eruption plume: Mechanistic insights, Geochim. Cosmochim. Ac., 144, 188–201, 2014.
Bai, H., Jiang, W., Kotchey, G. P., Saidi, W. A., Bythell, B. J., Jarvis, J. M., Marshall, A. G., Robinson, R. A., and Star, A.: Insight into the mechanism of graphene oxide degradation via the photo-Fenton reaction, J. Phys. Chem. C, 118, 10519–10529, 2014.
Baker, A. K., Rauthe-Schöch, A., Schuck, T. J., Brenninkmeijer, C. A., van Velthoven, P. F., Wisher, A., and Oram, D. E.: Investigation of chlorine radical chemistry in the Eyjafjallajökull volcanic plume using observed depletions in non-methane hydrocarbons, Geophys. Res. Lett., 38, L13801, https://doi.org/10.1029/2011GL047571, 2011.
Baker, A. K., Sauvage, C., Thorenz, U. R., Brenninkmeijer, C. A., Oram, D. E., van Velthoven, P., Zahn, A., and Williams, J.: Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea, EGU General Assembly 2015, Abstract 1710370B, 12–17 April 2015, Vienna, Austria, 2015.
Bakun, A., Black, B., Bograd, S. J., Garcia-Reyes, M., Miller, A., Rykaczewski, R., and Sydeman, W.: Anticipated effects of climate change on coastal upwelling ecosystems, Curr. Clim. Change Rep., 1, 85–93, 2015.
Barbusiński, K.: Fenton reaction-controversy concerning the chemistry, Ecol. Chem. Eng., 16, 347–358, 2009.
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T. F., Thomas, J. L., Thomson, E. S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S. G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M., and Sodeau, J. R.: A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow, Atmos. Chem. Phys., 14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014, 2014.
Basar, H., Gürel, S., Ataç, T., and Çelik, H.: Effect of foliar iron applications on contents of iron forms and mineral composition of sweet cherry (Prunus avium L.), Indo-Am. J. Agr. Vet. Sci., 2, 1–11, 2014.
Basen, M., Krüger, M., Milucka, J., Kuever, J., Kahnt, J., Grundmann, O., Meyerdierks, A., Widdel, F., and Shima, S.: Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane, Environ. Microbiol., 13, 1370–1379, 2011.
Bauer, S. E. and Menon, S.: Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions, J. Geophys. Res.-Atmos., 117, D01206, https://doi.org/10.1029/2011JD016816, 2012.
Bayrakci, G., Minshull, T., Sawyer, D., Reston, T. J., Klaeschen, D., Papenberg, C., Ranero, C., Bull, J., Davy, R., and Shillington, D.: Fault-controlled hydration of the upper mantle during continental rifting, Nat. Geosci., 9, 384–388, 2016.
Becker, M. and Asch, F.: Iron toxicity in rice – conditions and management concepts, J. Plant Nutr. Soil Sci., 168, 558–573, 2005.
Beckett, A. C., Piazuelo, M. B., Noto, J. M., Peek, R. M., Washington, M. K., Algood, H. M. S., and Cover, T. L.: Dietary composition influences incidence of Helicobacter pylori-induced iron deficiency anemia and gastric ulceration, Infect. Immun., 84, 3338–3349, 2016.
Belton, D. J., Deschaume, O., Patwardhan, S. V., and Perry, C. C.: A solution study of silica condensation and speciation with relevance to in vitro investigations of biosilicification, J. Phys. Chem. B, 114, 9947–9955, 2010.
Benz, M., Schink, B., and Brune, A.: Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria, Appl. Environ. Microbiol., 64, 4507–4512, 1998.
Bernardello, R., Marinov, I., Palter, J. B., Galbraith, E. D., and Sarmiento, J. L.: Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model, Geophys. Res. Lett., 41, 7262–7269, 2014a.
Bernardello, R., Marinov, I., Palter, J. B., Sarmiento, J. L., Galbraith, E. D., and Slater, R. D.: Response of the ocean natural carbon storage to projected twenty-first-century climate change, J. Climate, 27, 2033–2053, 2014b.
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V., Dumke, I., Dünnbier, K., Ferré, B., Graves, C., Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Liesner, K., Schauer, J., and Steinle, L.: Methane hydrates and global warming: Dissolution of hydrates off Svalbard caused by natural processes, Pressemitteilung des GEOMAR Helmholz-Zentrum für Ozeanforschung Kiel, Kiel, 2014.
Berner, R. A., Scott, M. R., and Thomlinson, C.: Carbonate alkalinity in the pore waters of anoxic sediments, Limnol. Oceanogr., 15, 544–549, 1970.
Betz, G., Brachatzeck, N., Cacean, S., Güssow, K., Heintzenberg, J., Hiller, S., Hoose, C., Klepper, G., Leisner, T., Oschlies, A., Platt, U., Proelß, A., Renn, O., Rickels, W., Schäfer, S., and Zürn, M.: Gezielte Eingriffe in das Klima? Eine Bestandsaufnahme der Debatte zu Climate Engineering, Kiel Earth Institute, Kiel, 2011.
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.: Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean, Nat. Geosci., 6, 274–278, 2013.
Bintanja, R., Van Oldenborgh, G., Drijfhout, S., Wouters, B., and Katsman, C.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nat. Geosci., 6, 376–379, 2013.
Biskos, G., Malinowski, A., Russell, L., Buseck, P., and Martin, S.: Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles, Aerosol Sci. Tech., 40, 97–106, 2006.
Bjorlykke, K.: Petroleum geoscience: From sedimentary environments to rock physics, Springer Science & Business Media, Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-02332-3, 2010.
Blasing, T.: Recent greenhouse gas concentrations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, http://cdiac.ornl.gov/pns/current_ghg.html (last access: 8 January 2017), 2010.
Blasing, T.: Recent Greenhouse Gas Concentrations, Carbon Dioxide Information Analysis Center CDIAC, DOE, Oak Ridge, https://doi.org/10.3334/CDIAC/atg.032, 2016.
Blechschmidt, A.-M., Richter, A., Burrows, J. P., Kaleschke, L., Strong, K., Theys, N., Weber, M., Zhao, X., and Zien, A.: An exemplary case of a bromine explosion event linked to cyclone development in the Arctic, Atmos. Chem. Phys., 16, 1773–1788, https://doi.org/10.5194/acp-16-1773-2016, 2016.
Bleicher, S., Buxmann, J. C., Sander, R., Riedel, T. P., Thornton, J. A., Platt, U., and Zetzsch, C.: The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol, Atmos. Chem. Phys. Discuss., 14, 10135–10166, https://doi.org/10.5194/acpd-14-10135-2014, 2014.
Bloss, W. J., Evans, M. J., Lee, J. D., Sommariva, R., Heard, D. E., and Pilling, M. J.: The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model, Faraday Discuss., 130, 425–436, 2005.
Bond, D. R. and Lovley, D. R.: Reduction of Fe (III) oxide by methanogens in the presence and absence of extracellular quinones, Environ. Microbiol., 4, 115–124, 2002.
Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B., and Koch, D.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, 2013.
Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., Voegelin, A., and Campbell, K.: Biogeochemical redox processes and their impact on contaminant dynamics, Environ. Sci. Technol., 44, 15–23, 2009.
Boucher, O.: Biogeochemical Effects and Climate Feedbacks of Aerosols, in: Atmospheric Aerosols, Springer Netherlands, 247–269, https://doi.org/10.1007/978-94-017-9649-1_11, 2015.
Boyd, P. W.: Development of geopolitically-relevant ranking criteria for geoengineering methods, Earth's Future, 4, 523–531, https://doi.org/10.1002/2016EF000447, 2016.
Boyd, P. W. and Bressac, M.: Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry, Philos. T. Roy. Soc. A, 374, 20150299, https://doi.org/10.1098/rsta.2015.0299, 2016.
Boyd, P. W. and Ellwood, M.: The biogeochemical cycle of iron in the ocean, Nat. Geosci., 3, 675–682, 2010.
Boyd, P. W., Jickells, T., Law, C., Blain, S., Boyle, E., Buesseler, K., Coale, K., Cullen, J., De Baar, H., and Follows, M.: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions, Science, 315, 612–617, 2007.
Branch, T. A., DeJoseph, B. M., Ray, L. J., and Wagner, C. A.: Impacts of ocean acidification on marine seafood, Trends Ecol. Evol., 28, 178–186, 2013.
Breitbarth, E., Achterberg, E. P., Ardelan, M. V., Baker, A. R., Bucciarelli, E., Chever, F., Croot, P. L., Duggen, S., Gledhill, M., Hassellöv, M., Hassler, C., Hoffmann, L. J., Hunter, K. A., Hutchins, D. A., Ingri, J., Jickells, T., Lohan, M. C., Nielsdóttir, M. C., Sarthou, G., Schoemann, V., Trapp, J. M., Turner, D. R., and Ye, Y.: Iron biogeochemistry across marine systems – progress from the past decade, Biogeosciences, 7, 1075–1097, https://doi.org/10.5194/bg-7-1075-2010, 2010.
Bruland, K.: A review of the chemistries of redox sensitive elements within suboxic zones of oxygen minimum regions, Gayana (Concepc.), 70, 6–13, 2006.
Buyukhatipoglu, K. and Clyne, A. M.: Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading, J. Nanopart. Res., 12, 1495–1508, 2010.
Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C., Ovsyannikov, S., Liermann, H.-P., Kupenko, I., Chumakov, A., and Rüffer, R.: Structural complexity of simple Fe2O3 at high pressures and temperatures, Nat. Commun., 7, 10661, https://doi.org/10.1038/ncomms10661, 2016.
Capone, D. G. and Hutchins, D. A.: Microbial biogeochemistry of coastal upwelling regimes in a changing ocean, Nat. Geosci., 6, 711–717, 2013.
Carpenter, L. J., Archer, S. D., and Beale, R.: Ocean-atmosphere trace gas exchange, Chem. Soc. Rev., 41, 6473–6506, 2012.
Cartapanis, O., Bianchi, D., Jaccard, S. L., and Galbraith, E. D.: Global pulses of organic carbon burial in deep-sea sediments during glacial maxima, Nat. Commun., 7, 10796, https://doi.org/10.1038/ncomms10796, 2016.
Cassar, N., Laws, E. A., Bidigare, R. R., and Popp, B. N.: Bicarbonate uptake by Southern Ocean phytoplankton, Global Biogeochem. Cy., 18, GB2003, https://doi.org/10.1029/2003GB002116, 2004.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.
Charpentier, D., Buatier, M., Jacquot, E., Gaudin, A., and Wheat, C.: Conditions and mechanism for the formation of iron-rich Montmorillonite in deep sea sediments (Costa Rica margin): Coupling high resolution mineralogical characterization and geochemical modeling, Geochim. Cosmochim. Ac., 75, 1397–1410, 2011.
Chemizmu, K. and Fentona, R.: Fenton reaction-controversy concerning the chemistry, Ecol. Chem. Eng., 16, 347–358, 2009.
Chen, C.-T. A., Lin, C.-M., Huang, B.-T., and Chang, L.-F.: Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas, Mar. Chem., 54, 179–190, 1996.
Chisholm, S. W., Falkowski, P. G., and Cullen, J. J.: Response to the letter of Johnson, K. S. and Karl, D. M., Science, 296, 467–468, 2002.
Claeys, M., Vermeylen, R., Yasmeen, F., Gómez-González, Y., Chi, X., Maenhaut, W., Mészáros, T., and Salma, I.: Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry, Environ. Chem., 9, 273–284, 2012.
Coates, J. D., Ellis, D. J., Blunt-Harris, E. L., Gaw, C. V., Roden, E. E., and Lovley, D. R.: Recovery of humic-reducing bacteria from a diversity of environments, Appl. Environ. Microbiol., 64, 1504–1509, 1998.
Coggon, R. M., Teagle, D., Harris, M., John, C., Smith-Duque, C., and Alt, J.: Why Does Calcium Carbonate Precipitate in the Ocean Crust?, AGU Fall Meeting, vol. 1, abstract #B33D-0545, 3–7 December 2012, San Francisco, Calif., p. 545, 2012.
Cohen-Solal, A., Leclercq, C., Deray, G., Lasocki, S., Zambrowski, J.-J., Mebazaa, A., de Groote, P., Damy, T., and Galinier, M.: Iron deficiency: an emerging therapeutic target in heart failure, Heart, 100, 1414–1420, https://doi.org/10.1136/heartjnl-2014-305669, 2014.
Conrad, R.: Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments, FEMS Microbiol. Ecol., 28, 193–202, 1999.
Conway, T., Wolff, E., Röthlisberger, R., Mulvaney, R., and Elderfield, H.: Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum, Nat. Commun., 6, 7850, https://doi.org/10.1038/ncomms8850, 2015.
Coogan, L. A. and Gillis, K. M.: Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation, Geochem. Geophy. Geosy., 14, 1771–1786, 2013.
Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I., Gilge, S., Horowitz, L., Jensen, N., and Lamarque, J.-F.: Global distribution and trends of tropospheric ozone: An observation-based review, Elementa, 2, 000029, https://doi.org/10.12952/journal.elementa.000029, 2014.
Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., and Ruiz, A.: Plastic debris in the open ocean, P. Natl. Acad. Sci. USA, 111, 10239–10244, 2014.
Crutzen, P. J.: Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?, Climatic Change, 77, 211–220, 2006.
Crutzen, P. J. and Oppenheimer, M.: Learning about ozone depletion, Climatic Change, 89, 143–154, 2008.
Cunningham, K. M., Goldberg, M. C., and Weiner, E. R.: Mechanisms for aqueous photolysis of adsorbed benzoate, oxalate, and succinate on iron oxyhydroxide (goethite) surfaces, Environ. Sci. Technol., 22, 1090–1097, 1988.
Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., and Bulaev, A.: Complete nitrification by Nitrospira bacteria, Nature, 528, 504–509, 2015.
Davidson, P.: Up and away!, TCE, 28–32, http://www.thechemicalengineer.com/~/media/Documents/TCE/Articles/2012/851/851geoengineering.pdf (last access: 8 January 2017), 2012.
Davidson, P., Burgoyne, C., Hunt, H., and Causier, M.: Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems, Philos. T. Roy. Soc. Lond. A, 370, 4263–4300, 2012.
Death, R., Wadham, J. L., Monteiro, F., Le Brocq, A. M., Tranter, M., Ridgwell, A., Dutkiewicz, S., and Raiswell, R.: Antarctic ice sheet fertilises the Southern Ocean, Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, 2014.
De Laat, J., Le, G. T., and Legube, B.: A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe (II)/H2O2 and Fe (III)/H2O2, Chemosphere, 55, 715–723, 2004.
de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., and Marinov, I.: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change, Nat. Clim. Change, 4, 278–282, 2014.
de Richter, R. and Caillol, S.: Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change, J. Photochem. Photobiol. C, 12, 1–19, 2011.
de Richter, R., Ming, T., Caillol, S., and Liu, W.: Fighting global warming by GHG removal: Destroying CFCs and HCFCs in solar-wind power plant hybrids producing renewable energy with no-intermittency, Int. J. Greenhouse Gas Control, 49, 449–472, 2016a.
de Richter, R., Ming, T., Shen, S., and Caillol, S.: Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies, Environ. Sci. Poll. Res., 23, 6119–6138, 2016b.
de Richter, R., Ming, T., Davies, P., Liu, W., and Caillol, S.: Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis, Prog. Energy Combust. Sci., submitted, 2017.
Demadis, K. D., Mavredaki, E., and Somara, M.: Additive-Driven Dissolution Enhancement of Colloidal Silica. 2. Environmentally Friendly Additives and Natural Products, Indust. Eng. Chem. Res., 50, 13866–13876, 2011.
Dewangan, P., Basavaiah, N., Badesab, F., Usapkar, A., Mazumdar, A., Joshi, R., and Ramprasad, T.: Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna–Godavari basin, Bay of Bengal, Mar. Geol., 340, 57–70, 2013.
Dick, G. J., Anantharaman, K., Baker, B. J., Li, M., Reed, D. C., and Sheik, C. S.: The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats, Front. Microbiol., 4, 1–16, https://doi.org/10.3389/fmicb.2013.00124, 2013.
Dimitrova, K., Sarkisyan, A., and Koleva, V.: Vertical mussel reef farming: Exploring climate change solutions with economic and ecologic significance, Climate Engineering Research Symposium, Berlin, 2015.
Dorfman, J., Stoner, J., Finkenbinder, M., Abbott, M., Xuan, C., and St-Onge, G.: A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska, Quaternary Sci. Rev., 128, 81–97, 2015.
Dorn, R. I.: The Rock Varnish Revolution: New Insights from Microlaminations and the Contributions of Tanzhuo Liu, Geogr. Compass, 3, 1804–1823, 2009.
Dörr, M., Käßbohrer, J., Grunert, R., Kreisel, G., Brand, W. A., Werner, R. A., Geilmann, H., Apfel, C., Robl, C., and Weigand, W.: A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces, Angew. Chem. Int. Edn., 42, 1540–1543, 2003.
Drobner, E., Huber, H., Wächtershäuser, G., Rose, D., and Stetter, K. O.: Pyrite formation linked with hydrogen evolution under anaerobic conditions, Nature, 346, 742–744, 1990.
Drozd, G., Woo, J., Häkkinen, S. A. K., Nenes, A., and McNeill, V. F.: Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility, Atmos. Chem. Phys., 14, 5205–5215, https://doi.org/10.5194/acp-14-5205-2014, 2014.
Drushel, H. V. and Hallum, J. V.: The Organic Nature of Carbon Black Surfaces. II. Quinones and Hydroquinones by Coulometry at Controlled Potential, J. Phys. Chem., 62, 1502–1505, 1958.
Duggen, S., Croot, P., Schacht, U., and Hoffmann, L.: Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data, Geophys. Res. Lett., 34, L01612, https://doi.org/10.1029/2006GL027522, 2007.
Duprat, L. P., Bigg, G. R., and Wilton, D. J.: Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs, Nat. Geosci., 9, 219–221, https://doi.org/10.1038/ngeo2633, 2016.
Eckert, S., Brumsack, H.-J., Severmann, S., Schnetger, B., März, C., and Fröllje, H.: Establishment of euxinic conditions in the Holocene Black Sea, Geology, 41, 431–434, 2013.
Eder, J. M.: Über die Zersetzung des Eisenchlorides und einiger organischer Ferridsalze im Lichte, Chem. Month., 1, 755–762, 1882.
Eder, J. M.: Ausführliches Handbuch der Photographie, Erster Band, 2. Teil: Photochemie (die chemischen Wirkungen des Lichtes), Wilhelm Knapp, Halle, Germany, 1906.
El-Jendoubi, H., Vázquez, S., Calatayud, Á., Vavpetič, P., Vogel-Mikuš, K., Pelicon, P., Abadía, J., Abadía, A., and Morales, F.: The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics, Front. Plant Sci., 5, 1–16, https://doi.org/10.3389/fpls.2014.00002, 2014.
Elrod, V. A., Berelson, W. M., Coale, K. H., and Johnson, K. S.: The flux of iron from continental shelf sediments: A missing source for global budgets, Geophys. Res. Lett., 31, L12307, https://doi.org/10.1029/2004GL020216, 2004.
Elvert, M., Suess, E., Greinert, J., and Whiticar, M. J.: Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone, Org. Geochem., 31, 1175–1187, 2000.
Enami, S., Sakamoto, Y., and Colussi, A. J.: Fenton chemistry at aqueous interfaces, P. Natl. Acad. Sci. USA, 111, 623–628, 2014.
Ertel, J. R., Hedges, J. I., Devol, A. H., Richey, J. E., and Ribeiro, M. D. N. G.: Dissolved humic substances of the Amazon River system, Limnol. Oceanogr., 31, 739–754, 1986.
Evans, B. W.: Control of the products of serpentinization by the Fe2 + Mg − 1 exchange potential of olivine and orthopyroxene, J. Petrol., 49, 1873–1887, 2008.
Fenton, H.: LXXIII. – Oxidation of tartaric acid in presence of iron, T. J. Chem. Soc., 65, 899–910, 1894.
Fernández, V., Sotiropoulos, T., and Brown, P. H.: Foliar Fertilization: Scientific Principles and Field Pratices, International fertilizer industry association, Paris, France, 2013.
Fischer, D., Mogollón, J. M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spiess, V., and Kasten, S.: Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage, Nat. Geosci., 6, 647–651, 2013.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res.-Atmos., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Forieri, I. and Hell, R.: Micronutrient use efficiency–cell biology of iron and its metabolic interactions in plants, in: Nutrient use efficiency in plants, Springer International Publishing Switzerland, 133–152, https://doi.org/10.1007/978-3-319-10635-9, 2014.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., and Myhre, G.: Changes in atmospheric constituents and in radiative forcing, in: chap. 2, Climate Change 2007, The Physical Science Basis, http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf (last access: 8 January 2017), 2007.
Friedrich, O., Erbacher, J., Moriya, K., Wilson, P. A., and Kuhnert, H.: Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean, Nat. Geosci., 1, 453–457, 2008.
Früh-Green, G. L., Connolly, J. A., Plas, A., Kelley, D. S., and Grobéty, B.: Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity, in: The subseafloor biosphere at mid-ocean ridges, Geophys. Monogr. Ser., vol. 144, AGU, Washington, D.C., 399 pp., 2004.
Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkler, P. M., Lawler, M. J., Brown, S. S., Edwards, P. M., and Cohen, R. C.: Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 48, 11944–11953, 2014.
Fujita, T.: Concentration of major chemical elements in marine plankton, Geochem. J., 4, 143–156, 1971.
Galvez, M. E., Beyssac, O., Martinez, I., Benzerara, K., Chaduteau, C., Malvoisin, B., and Malavieille, J.: Graphite formation by carbonate reduction during subduction, Nat. Geosci., 6, 473–477, 2013.
Gammons, C., Parker, S., and Nimick, D.: Diel iron cycling in acidic rivers of southwestern Spain, Goechimica et Cosmochimica Acta, Pergamon – Elsevier Science Ltd, Oxford, England, A305–A305, 2007.
Gauci, V., Dise, N., and Fowler, D.: Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition, Global Biogeochem. Cy., 16, 1004, https://doi.org/10.1029/2000GB001370, 2002.
Gauci, V., Dise, N., and Blake, S.: Long-term suppression of wetland methane flux following a pulse of simulated acid rain, Geophys. Res. Lett., 32, L12804, https://doi.org/10.1029/2005GL022544, 2005.
Gauci, V., Matthews, E., Dise, N., Walter, B., Koch, D., Granberg, G., and Vile, M.: Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries, P. Natl. Acad. Sci. USA, 101, 12583–12587, 2004.
Gaudin, A., Buatier, M., Beaufort, D., Petit, S., Grauby, O., and Decarreau, A.: Characterization and origin of Fe3+-montmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica margin), Clays Clay Miner., 53, 452–465, 2005.
Ghio, A. J., Soukup, J. M., Dailey, L. A., Tong, H., Kesic, M. J., Budinger, G. S., and Mutlu, G. K. M.: Wood smoke particle sequesters cell iron to impact a biological effect, Chem. Res. Toxicol., 28, 2104–2111, 2015.
Gläser, G., Wernli, H., Kerkweg, A., and Teubler, F.: The transatlantic dust transport from North Africa to the Americas – Its characteristics and source regions, J. Geophys. Res.-Atmos., 120, 11231–11252, https://doi.org/10.1002/2015JD023792, 2015.
Goos, R. J. and Johnson, B. E.: A comparison of three methods for reducing iron-deficiency chlorosis in soybean, Agron. J., 92, 1135–1139, 2000.
Gopakumar, G., Belanzoni, P., and Baerends, E. J.: Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent FeIVO (H2O) 52+, Inorgan. Chem., 51, 63–75, 2011.
Graedel, T. E. and Keene, W.: The budget and cycle of Earth's natural chlorine, Pure Appl. Chem., 68, 1689–1697, 1996.
Gupta, D., Kim, H., Park, G., Li, X., Eom, H.-J., and Ro, C.-U.: Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates, Atmos. Chem. Phys., 15, 3379–3393, https://doi.org/10.5194/acp-15-3379-2015, 2015.
Haas, S., Weber, N., Berry, A., and Erich, E.: Limestone powder carbon dioxide scrubber as the technology for Carbon Capture and Usage, Cement Int., 3, 34–45, 2014.
Hadley, O. L. and Kirchstetter, T. W.: Black-carbon reduction of snow albedo, Nat. Clim. Change, 2, 437–440, 2012.
Hammer, U. T.: Saline lake ecosystems of the world, Springer Science & Business Media, Dordrecht, the Netherlands, 1986.
Hammond, C., Forde, M. M., Rahim, A., Hasbi, M., Thetford, A., He, Q., Jenkins, R. L., Dimitratos, N., Lopez-Sanchez, J. A., and Dummer, N. F.: Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5, Angew. Chem. Int. Edn., 51, 5129–5133, 2012.
Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Tormey, B., Donovan, B., Kandiano, E., von Schuckmann, K., Kharecha, P., Legrande, A. N., Bauer, M., and Lo, K.-W.: Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous, Atmos. Chem. Phys., 16, 3761–3812, https://doi.org/10.5194/acp-16-3761-2016, 2016.
Harrison, D. P.: A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean, Int. J. Global Warm., 5, 231–254, 2013.
Hauck, J., Köhler, P., Wolf-Gladrow, D., and Völker, C.: Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment, Environ. Res. Lett., 11, 024007, https://doi.org/10.1088/1748-9326/11/2/024007, 2016.
Hawkes, J. A., Connelly, D., Gledhill, M., and Achterberg, E. P.: The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems, Earth Planet. Sc. Lett., 375, 280–290, 2013.
Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A., Nienow, P., Lee, K.,and Telling, J.: Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans, Nat. Commun., 5, 3929, https://doi.org/10.1038/ncomms4929, 2014.
Herzog, H. J.: Scaling up carbon dioxide capture and storage: From megatons to gigatons, Energy Econ., 33, 597–604, 2011.
Hochmuth, G.: Iron (Fe) nutrition in Plants, IFAS Document SL353, US Department of Agriculture, Extension Service, University of Florida, available at: http://edis.ifas.ufl.edu/pdffiles/SS/SS55500.pdf (last access: 8 January 2017), 2011.
Hoffer, A., Kiss, G., Blazso, M., and Gelencsér, A.: Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water, Geophys. Res. Lett., 31, L06115, https://doi.org/10.1029/2003GL018962, 2004.
Holm, N. G. and Neubeck, A.: Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis, Geochem. Trans., 10, 1–11, https://doi.org/10.1186/1467-4866-10-9, 2009.
Holm, N. G., Oze, C., Mousis, O., Waite, J., and Guilbert-Lepoutre, A.: Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets), Astrobiology, 15, 587–600, 2015.
Hoshyaripour, G. A., Hort, M., and Langmann, B.: Ash iron mobilization through physicochemical processing in volcanic eruption plumes: a numerical modeling approach, Atmos. Chem. Phys., 15, 9361–9379, https://doi.org/10.5194/acp-15-9361-2015, 2015.
Hossaini, R., Chipperfield, M. P., Saiz-Lopez, A., Fernandez, R., Monks, S., Brauer, P., and Glasow, R.: A global model of tropospheric chlorine chemistry: organic versus inorganic sources and impact on methane oxidation, J. Geophys. Res.-Atmos., 121, 14271–14297, https://doi.org/10.1002/2016JD025756, 2016.
Hovland, M., Kuznetsova, T., Rueslåtten, H., Kvamme, B., Johnsen, H. K., Fladmark, G. E., and Hebach, A.: Sub-surface precipitation of salts in supercritical seawater, Basin Res., 18, 221–230, 2006a.
Hovland, M., Rueslåtten, H., Johnsen, H., Kvamme, B., and Kuznetsova, T.: Salt formation associated with sub-surface boiling and supercritical water, Mar. Petrol. Geol., 23, 855–869, 2006b.
Hovland, M., Rueslåtten, H., and Johnsen, H. K.: Buried Hydrothermal Systems: The Potential Role of Supercritical Water,
ScriW, in Various Geological Processes and Occurrences in the Sub-Surface, Am. J. Anal. Chem., 5, 128–139, https://doi.org/10.4236/ajac.2014.52016, 2014.
Hu, L., Yvon-Lewis, S. A., Butler, J. H., Lobert, J. M., and King, D. B.: An improved oceanic budget for methyl chloride, J. Geophys. Res.-Oceans, 118, 715–725, 2013.
Hungate, B., Danin, A., Pellerin, N., Stemmler, J., Kjellander, P., Adams, J., and Staley, J.: Characterization of manganese-oxidizing (MnII? MnIV) bacteria from Negev Desert rock varnish: implications in desert varnish formation, Can. J. Microbiol., 33, 939–943, 1987.
Insua, T. L., Spivack, A. J., Graham, D., D'Hondt, S., and Moran, K.: Reconstruction of Pacific Ocean bottom water salinity during the Last Glacial Maximum, Geophys. Res. Lett., 41, 2914–2920, 2014.
Ito, A.: Atmospheric processing of combustion aerosols as a source of bioavailable iron, Environ. Sci. Technol. Lett., 2, 70–75, 2015.
Ito, A. and Shi, Z.: Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean, Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, 2016.
Ito, T., Nenes, A., Johnson, M., Meskhidze, N., and Deutsch, C.: Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants, Nat. Geosci., 9, 443–447, https://doi.org/10.1038/ngeo2717, 2016.
Ivarsson, M., Bengtson, S., and Neubeck, A.: The igneous oceanic crust – Earth's largest fungal habitat?, Fungal Ecol., 20, 249–255, 2016.
Jaccard, S. L., Galbraith, E. D., Martínez-García, A., and Anderson, R. F.: Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age, Nature, 530, 207–210, 2016.
Jacobson, M. Z.: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res.-Atmos., 107, ACH 16-11–ACH 16-22, 2002.
Jaenicke, R.: Atmospheric aerosols and global climate, J. Aerosol Sci., 11, 577–588, 1980.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., and Law, K. L.: Plastic waste inputs from land into the ocean, Science, 347, 768–771, 2015.
Janecky, D. and Seyfried, W.: Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry, Geochim. Cosmochim. Ac., 50, 1357–1378, 1986.
Jeong, D., Kim, K., and Choi, W.: Accelerated dissolution of iron oxides in ice, Atmos. Chem. Phys., 12, 11125–11133, https://doi.org/10.5194/acp-12-11125-2012, 2012.
Jeong, J. and Guerinot, M. L.: Biofortified and bioavailable: the gold standard for plant-based diets, P. Natl. Acad. Sci. USA, 105, 1777–1778, 2008.
Jin, L., Zhang, P., Shao, T., and Zhao, S.: Ferric ion mediated photodecomposition of aqueous perfluorooctane sulfonate (PFOS) under UV irradiation and its mechanism, J. Hazard. Mater., 271, 9–15, 2014.
Johnson, K. S. and Karl, D. M.: Is ocean fertilization credible and creditable?, Science, 296, 467–468, 2002.
Johnson, K. S., Chavez, F. P., and Friederich, G. E.: Continental-shelf sediment as a primary source of iron for coastal phytoplankton, Nature, 398, 697–700, 1999.
Johnson, K. S., Moore, J. K., and Smith, W. O.: A report on the US JGOFS workshop on iron dynamics in the carbon cycle, Tech. rep., Moss Landing, California, http://jgofswww.whoi.edu/mzweb/iron/iron_rpt.pdf (last access: 8 January 2017), 2002a.
Johnson, K. S., Moore, J. K., and Smith, W. O.: Workshop highlights iron dynamics in ocean carbon cycle, Eos, Transactions American Geophysical Union, 83, 2002b.
Johnson, L. and Eggleston, C.: The photocatalytic actions of desert varnish, University of Wyoming, Wyoming, 2013.
Johnson, M. S. and Meskhidze, N.: Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy, Geosci. Model Dev., 6, 1137–1155, https://doi.org/10.5194/gmd-6-1137-2013, 2013.
Jones, A. C., Haywood, J. M., and Jones, A.: Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection, Atmos. Chem. Phys., 16, 2843–2862, https://doi.org/10.5194/acp-16-2843-2016, 2016.
Jorgensen, S. S.: Dissolution kinetics of silicate minerals in aqueous catechol solutions, J. Soil Sci., 27, 183–195, 1976.
Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735–738, 2014.
Kahan, T. F., Wren, S. N., and Donaldson, D. J.: A Pinch of Salt Is All It Takes: Chemistry at the Frozen Water Surface, Accounts Chem. Res., 47, 1587–1594, 2014.
Kaiho, K., Saito, R., Ito, K., Miyaji, T., Biswas, R., Tian, L., Sano, H., Shi, Z., Takahashi, S., and Tong, J.: Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis, Heliyon, 2, e00137, https://doi.org/10.1016/j.heliyon.2016.e00137, 2016.
Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher, C. R., Oschlies, A., Paulmier, A., Stramma, L., and Kuypers, M. M.: Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone, Nat. Geosci., 6, 228–234, 2013.
Kammler, H. K., Mädler, L., and Pratsinis, S. E.: Flame synthesis of nanoparticles, Chem. Eng. Technol., 24, 583–596, 2001.
Kappler, A., Benz, M., Schink, B., and Brune, A.: Electron shuttling via humic acids in microbial iron (III) reduction in a freshwater sediment, FEMS Microbiol. Ecol., 47, 85–92, 2004.
Karydis, V., Kumar, P., Barahona, D., Sokolik, I., and Nenes, A.: Assessing the Impact of Mineral Dust and Adsorption Activation on Cloud Droplet Formation, in: Advances in Meteorology, Climatology and Atmospheric Physics, Springer-Verlag, Berlin, Heidelberg, 515–520, https://doi.org/10.1007/978-3-642-29172-2, 2013.
Kasper, M., Sattler, K., Siegmann, K., and Matter, U.: The effect of ferrocene addition on particle formation and burnout in combustion processes, J. Aerosol Sci., 29, S617–S618, 1998.
Kastner, M.: Oceanic minerals: Their origin, nature of their environment, and significance, P. Natl. Acad. Sci. USA, Science, 96, 3380–3387, 1999.
Kawagucci, S., Chiba, H., Ishibashi, J.-i., Yamanaka, T., Toki, T., Muramatsu, Y., Ueno, Y., Makabe, A., Inoue, K., and Yoshida, N.: Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems, Geochem. J., 45, 109–124, 2011.
Kawamura, K., Umemoto, N., Mochida, M., Bertram, T., Howell, S., and Huebert, B.: Water-soluble dicarboxylic acids in the tropospheric aerosols collected over east Asia and western North Pacific by ACE-Asia C-130 aircraft, J. Geophys. Res.-Atmos., 108, 8639, https://doi.org/10.1029/2002JD003256, 2003.
Keeling, R. F. and Shertz, S. R.: Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle, Nature, 358, 723–727, 1992.
Keene, W., Khalil, M. A. K., Erickson, D., McCulloch, A., Graedel, T. E., Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., and Kleiman, G.: Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory, J. Geophys. Res.-Atmos., 104, 8429–8440, 1999.
Kelemen, P. B. and Manning, C. E.: Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up, P. Natl. Acad. Sci. USA, 112, E3997–E4006, 2015.
Kelemen, P. B. and Matter, J.: In situ carbonation of peridotite for CO2 storage, P. Natl. Acad. Sci. USA, 105, 17295–17300, 2008.
Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J.: Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage, Annu. Rev. Earth Planet. Sci., 39, 545–576, 2011.
Kelley, D. S., Karson, J. A., Früh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., and Proskurowski, G.: A serpentinite-hosted ecosystem: the Lost City hydrothermal field, Science, 307, 1428–1434, 2005.
Khalil, M. and Rasmussen, R.: Atmospheric methyl chloride, Atmos. Environ., 33, 1305–1321, 1999.
Khalil, M., Moore, R., Harper, D., Lobert, J., Erickson, V. K., and Keene, W.: Natural emissions of chlorine-containing gases: Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104, 8333–8346, https://doi.org/10.1029/1998JD100079, 1999.
Kiesgen de Richter, R., Ming, T., and Caillol, S.: Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors, Renew. Sustain. Energy Rev., 19, 82–106, 2013.
Kim, D., Song, K., and Kaushik, R: Fuel Additives for Particulate Matter/Dust Reduction, Asian J. Chem., 20, 5797–5817, 2008.
Kim, J. R., Santiano, B., Kim, H., and Kan, E.: Heterogeneous oxidation of methylene blue with surface-modified iron-amended activated carbon, Am. J. Anal. Chem., 4, 34470, https://doi.org/10.4236/ajac.2013.47A016, 2013.
Kim, J.-S. and Park, K.: Atmospheric aging of Asian dust particles during long range transport, Aerosol Sci. Tech., 46, 913–924, 2012.
Kim, K., Choi, W., Hoffmann, M. R., Yoon, H.-I., and Park, B.-K.: Photoreductive dissolution of iron oxides trapped in ice and its environmental implications, Environ. Sci. Technol., 44, 4142–4148, 2010.
Klotz, M. G. and Stein, L. Y.: Nitrifier genomics and evolution of the nitrogen cycle, FEMS Microbiol. Lett., 278, 146–156, 2008.
Klüpfel, L., Keiluweit, M., Kleber, M., and Sander, M.: Redox properties of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 48, 5601–5611, 2014.
Koch, D. and Del Genio, A. D.: Black carbon semi-direct effects on cloud cover: review and synthesis, Atmos. Chem. Phys., 10, 7685–7696, https://doi.org/10.5194/acp-10-7685-2010, 2010.
Köhler, L., Tobón, C., Frumau, K. A., and Bruijnzeel, L. S.: Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica, Plant Ecol., 193, 171–184, 2007.
Köhler, P., Hartmann, J., and Wolf-Gladrow, D. A.: Geoengineering potential of artificially enhanced silicate weathering of olivine, P. Natl. Acad. Sci. USA, 107, 20228–20233, 2010.
Köhler, P., Abrams, J. F., Völker, C., Hauck, J., and Wolf-Gladrow, D. A.: Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology, Environ. Res. Lett., 8, 014009, https://doi.org/10.1088/1748-9326/8/1/014009, 2013.
Köhler, P., Hauck, J., Völker, C., and Wolf-Gladrow, D.: The role of iron during the open ocean dissolution of olivine in a simulated CO2 removal experiment – enhanced weathering, ocean alkalinization, ocean fertilization, Climate Engineering Research Symposium 2015, 7–10 July 2015, Berlin, Germany, 2015.
Konhauser, K. O. and Urrutia, M. M.: Bacterial clay authigenesis: a common biogeochemical process, Chem. Geol., 161, 399–413, 1999.
Kostka, J. E., Stucki, L. J. W., Nealson, K. H., and Wu, J.: Reduction of structural Fe (III) in smectite by a pure culture of the Fe-reducing bacterium Shewanella putrifaciens strain MR-1, Clays Clay Miner., 44, 522–529, 1996.
Kraemer, S. M.: Iron oxide dissolution and solubility in the presence of siderophores, Aquat. Sci., 66, 3–18, 2004.
Krastel, S., Bialas, J., and Villwock, A.: Im fragilen Gleichgewicht: Deutsch-Neuseeländisches Forscherteam entdeckt bisher unbekanntes Methanvorkommen bei der Untersuchung von instabilen untermeerischen Hängen, Pressemitteilung 2 Juni 2014 des GEOMAR Helmholz-Zentrum für Ozeanforschung Kiel und Institut für Geowissenschaften der Christian-Albrechts-Universität zu Kiel vom 12 Mai 2014, Kiel, 2014.
Krause, S., Liebetrau, V., Gorb, S., Sánchez-Román, M., McKenzie, J. A., and Treude, T.: Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma, Geology, 40, 587–590, 2012.
Krishnamurthy, A., Moore, J. K., Mahowald, N., Luo, C., Doney, S. C., Lindsay, K., and Zender, C. S.: Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry, Global Biogeochem. Cy., 23, GB3016, https://doi.org/10.1029/2008GB003440, 2009.
Kumar, P., Robins, A., Vardoulakis, S., and Britter, R.: A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls, Atmos. Environ., 44, 5035–5052, 2010.
Kuo, K. A., Watson, I., and Hunt, H. E.: The SPICE project: an example of geoengineering research, Water and Climate: Policy Implementation Challenges, Proceedings of the 2nd Practical Responses to Climate Change Conference, Engineers Australia, 1–3 May 2012, Canberra, Australia, 479–485, 2012.
Lackner, M.: Geoengineering for Climate Stabilization, Springer, New York, 2015.
Lam, P. J. and Bishop, J. K.: The continental margin is a key source of iron to the HNLC North Pacific Ocean, Geophys. Res. Lett., 35, L07608, https://doi.org/10.1029/2008GL033294, 2008.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G., Ullermann, J., Martínez-Garcia, A., Lambert, F., and Kilian, R.: Increased dust deposition in the Pacific Southern Ocean during glacial periods, Science, 343, 403–407, 2014.
Lana, A., Bell, T., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A., Dachs, J., Bopp, L., Saltzman, E., and Stefels, J.: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean, Global Biogeochem. Cy., 25, GB1004, https://doi.org/10.1029/2010GB003850, 2011.
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang, B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids, J. Geophys. Res.-Atmos., 117, D15302, https://doi.org/10.1029/2012JD017743, 2012.
Latham, J., Bower, K., Choularton, T., Coe, H., Connolly, P., Cooper, G., Craft, T., Foster, J., Gadian, A., Galbraith, L.: Marine cloud brightening, Philos. T. Roy. Soc. Lond. A, 370, 4217–4262, 2012a.
Latham, J., Parkes, B., Gadian, A., and Salter, S.: Weakening of hurricanes via marine cloud brightening (MCB), Atmos. Sci. Lett., 13, 231–237, 2012b.
Law, K. L., Moreìt-Ferguson, S. E., Goodwin, D. S., Zettler, E. R., DeForce, E., Kukulka, T., and Proskurowski, G.: Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set, Environ. Sci. Technol., 48, 4732–4738, 2014.
Lawler, M., Finley, B., Keene, W., Pszenny, A., Read, K., Von Glasow, R., and Saltzman, E.: Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer, Geophys. Res. Lett., 36, L08810, https://doi.org/10.1029/2008GL036666, 2009.
Le Bras, G. and Platt, U.: A possible mechanism for combined chlorine and bromine catalyzed destruction of tropospheric ozone in the Arctic, Geophys. Res. Lett., 22, 599–602, 1995.
Lenton, A. and Sen Gupta, A.: Carbon credits for oyster farming: fact or fiction?, Fish, 18, 1–30, 2010.
Levin, Z., Teller, A., Ganor, E., and Yin, Y.: On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign, J. Geophys. Res.-Atmos., 110, D20202, https://doi.org/10.1029/2005JD005810, 2005.
Levine, J. G., Wolff, E. W., Jones, A. E., and Sime, L. C.: The role of atomic chlorine in glacial-interglacial changes in the carbon-13 content of atmospheric methane, Geophys. Res. Lett., 38, L04801, https://doi.org/10.1029/2010GL046122, 2011.
Li, Q., Sun, H., and Wang, J.: Hydrochemical response of Epikarst Spring to rainfall: implications of nutrition element loss and groundwater pollution, Polish J. Environ. Stud., 19, 441–448, 2010.
Liao, J., Huey, L. G., Liu, Z., Tanner, D. J., Cantrell, C. A., Orlando, J. J., Flocke, F. M., Shepson, P. B., Weinheimer, A. J., and Hall, S. R.: High levels of molecular chlorine in the Arctic atmosphere, Nat. Geosci., 7, 91–94, 2014.
Lim, M., Chiang, K., and Amal, R.: Photochemical synthesis of chlorine gas from iron (III) and chloride solution, J. Photochem. Photobiol. A, 183, 126–132, 2006.
Lima, S. B., Borges, S. M. S., Rangel, M. D. C., and Marchetti, S. G.: Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass, J. Brazil. Chem. Soc., 24, 344–354, 2013.
Lin, Y. C., Chen, J. P., Ho, T. Y., and Tsai, I.: Atmospheric iron deposition in the northwestern Pacific Ocean and its adjacent marginal seas: the importance of coal burning, Global Biogeochem. Cy., 29, 138–159, 2015.
Lindsay, W. and Schwab, A.: The chemistry of iron in soils and its availability to plants, J. Plant Nutr., 5, 821–840, 1982.
Lipson, D., Miller, K., and Lai, C.: Methane Suppression: The Impacts of Fe (III) and Humic Acids on Net Methane Flux from Arctic Tundra Wetlands in Alaska and Finland, AGU Fall Meeting, abstract #B32C-02, 9–13 December 2013, San Francisco, California, 2013.
Lipson, D. A., Jha, M., Raab, T. K., and Oechel, W. C.: Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil, J. Geophys. Res.-Biogeo., 115, G00I06, https://doi.org/10.1029/2009JG001147, 2010.
Liu, D., Dong, H., Agrawal, A., Singh, R., Zhang, J., and Wang, H.: Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus, Appl. Clay Sci., 126, 25–32, 2016.
Liu, S., Zhang, L., Liu, Q., and Zou, J.: Fe (III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China, Environ. Poll., 164, 73–80, 2012.
Liu, T. and Dorn, R. I.: Understanding the spatial variability of environmental change in drylands with rock varnish microlaminations, Ann. Assoc. Am. Geogr., 86, 187–212, 1996.
Lobert, J. M., Keene, W. C., Logan, J. A., and Yevich, R.: Global chlorine emissions from biomass burning: Reactive chlorine emissions inventory, J. Geophys. Res.-Atmos., 104, 8373–8389, 1999.
Lopes, C., Kucera, M., and Mix, A. C.: Climate change decouples oceanic primary and export productivity and organic carbon burial, P. Natl. Acad. Sci. USA, 112, 332–335, 2015.
Lovley, D. R. and Blunt-Harris, E. L.: Role of humic-bound iron as an electron transfer agent in dissimilatory Fe (III) reduction, App. Environ. Microbiol., 65, 4252–4254, 1999.
Lovley, D. R., Fraga, J. L., Coates, J. D., and Blunt-Harris, E. L.: Humics as an electron donor for anaerobic respiration, Environ. Microbiol., 1, 89–98, 1999.
Luff, R. and Wallmann, K.: Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances, Geochim. Cosmochim. Ac., 67, 3403–3421, 2003.
Lukowski, A. F., Koss, M., Burden, M. J., Jonides, J., Nelson, C. A., Kaciroti, N., Jimenez, E., and Lozoff, B.: Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory, Nutr. Neurosci., 13, 54–70, https://doi.org/10.1179/147683010X12611460763689, 2013.
Luna, A., Nascimento, C., and Chiavone-Filho, O.: Photodecomposition of hydrogen peroxide in highly saline aqueous medium, Brazil. J. Chem. Eng., 23, 341–349, 2006.
Luo, C., Mahowald, N., Bond, T., Chuang, P., Artaxo, P., Siefert, R., Chen, Y., and Schauer, J.: Combustion iron distribution and deposition, Global Biogeochem. Cy., 22, GB1012, https://doi.org/10.1029/2007GB002964, 2008.
Lyubetskaya, T. and Korenaga, J.: Chemical composition of Earth's primitive mantle and its variance: 1. Method and results, J. Geophys. Res.-Solid Ea., 112, B03211, https://doi.org/10.1029/2005JB004223, 2007.
Machulek Jr., A., Moraes, J. E. F., Okano, L. T., Silvério, C. A., and Quina, F. H.: Photolysis of ferric ions in the presence of sulfate or chloride ions: implications for the photo-Fenton process, Photochem. Photobiol. Sci., 8, 985–991, 2009.
Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U., and Brownlee, C.: Molecular mechanisms underlying calcification in coccolithophores, Geomicrobiol. J., 27, 585–595, 2010.
Madhu, S., Nagaraju, J., and Sridhar, P.: Evaluation of four stroke diesel engine performance with ferrocene as fuel additive, Int. J. Mag. Eng. Technol. Manage. Res., 2, 2199–2204, 2015.
Maekawa, T., Itoh, S., Sakata, S., Igari, S.-I., and Imai, N.: Pressure and temperature conditions for methane hydrate dissociation in sodium chloride solutions, Geochem. J., 29, 325–329, 1995.
Maher, B. A. and Dennis, P.: Evidence against dust-mediated control of glacial–interglacial changes in atmospheric CO2, Nature, 411, 176–180, 2001.
Maher, B. A., Prospero, J., Mackie, D., Gaiero, D., Hesse, P., and Balkanski, Y.: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth-Sci. Rev., 99, 61–97, 2010.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy., 19, GB4025, https://doi.org/10.1029/2004GB002402, 2005.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., and Cohen, D. D.: Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations, Annu. Rev. Mar. Sci., 1, 245–278, 2009.
Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J., Flanner, M. G., Hoffman, F. M., Lawrence, D. M., Lindsay, K., Mayewski, P. A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P. E., and Zender, C. S.: Observed 20th century desert dust variability: impact on climate and biogeochemistry, Atmos. Chem. Phys., 10, 10875–10893, https://doi.org/10.5194/acp-10-10875-2010, 2010.
Malvoisin, B., Chopin, C., Brunet, F., and Galvez, M. E.: Low-temperature wollastonite formed by carbonate reduction: a marker of serpentinite redox conditions, J. Petrol., 53, 159–176, 2012.
Manning, A. C. and Keeling, R. F.: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network, Tellus B, 58, 95–116, 2006.
Martin, J. H.: Glacial-interglacial CO2 change: the Iron hypothesis, Paleoceanography, 5, 1–13, 1990.
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S. J., Hunter, C. N., Elrod, V. A., Nowicki, J. L., Coley, T. L., Barber, R. T., Lindley, S., Watson, A. J., Van Scoy, K., Law, C. S., Liddicoat, M. I., Ling, R., Stanton, T., Stockel, J., Collins, C., Anderson, A., Bidigare, R., Ondrusek, M., Latasa, M., Millero, F. J., Lee, K., Yao, W., Zhang, J. Z., Friederich, G., Sakamoto, C., Chavez, F., Buck, K., Kolber, Z., Greene, R., Falkowski, P., Chisholm, S. W., Hoge, F., Swift, R., Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P., and Tindale, N. W.: Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123–129, 1994.
Martin, P., Loeff, M. R., Cassar, N., Vandromme, P., d'Ovidio, F., Stemmann, L., Rengarajan, R., Soares, M., González, H. E., and Ebersbach, F.: Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX, Global Biogeochem. Cy., 27, 871–881, 2013.
Martin, R., Wheeler, J., Ilyinskaya, E., Braban, C., and Oppenheimer, C.: The uptake of halogen (HF, HCl, HBr and HI) and nitric (HNO3) acids into acidic sulphate particles in quiescent volcanic plumes, Chem. Geol., 296, 19–25, 2012.
Martin, W. and Russell, M. J.: On the origin of biochemistry at an alkaline hydrothermal vent, Philos. T. Roy. Soc. Lond. B, 362, 1887–1926, 2007.
Martínez-Garcia, A., Rosell-Melé, A., Jaccard, S. L., Geibert, W., Sigman, D. M., and Haug, G. H.: Southern Ocean dust-climate coupling over the past four million years, Nature, 476, 312–315, 2011.
Martínez-García, A., Sigman, D .M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron fertilization of the Subantarctic Ocean during the last ice age, Science, 343, 1347–1350, 2014.
Matrai, P. and Keller, M.: Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: intracellular variations, Mar. Biol., 119, 61–68, 1994.
Matsunaga, K., Ohyama, T., Kuma, K., Kudo, I., and Suzuki, Y.: Photoreduction of manganese dioxide in seawater by organic substances under ultraviolet or sunlight, Water Res., 29, 757–759, 1995.
Mayhew, L., Ellison, E., McCollom, T., Trainor, T., and Templeton, A.: Hydrogen generation from low-temperature water-rock reactions, Nat. Geosci., 6, 478–484, 2013.
McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G., Midgley, P. M., and Li, Y. F.: Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive Chlorine Emissions Inventory, J. Geophys. Res.-Atmos., 104, 8391–8403, 1999.
Medeiros, D. M.: Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review, Exp. Biol. Med., 241, 1316–1322, https://doi.org/10.1177/1535370216648805, 2016.
Meister, P., Gutjahr, M., Frank, M., Bernasconi, S. M., Vasconcelos, C., and McKenzie, J. A.: Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism, Geology, 39, 563–566, 2011.
Mengel, K. and Geurtzen, G.: Iron chlorosis on calcareous soils. Alkaline nutritional condition as the cause for the chlorosis, J. Plant Nutr., 9, 161–173, 1986.
Merinero, R., Lunar, R., Martínez-Frías, J., Somoza, L., and Díaz-del-Río, V.: Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula), Mar. Petrol. Geol., 25, 706–713, 2008.
Meyer, J. and Riebesell, U.: Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, 2015.
Meyer-Oeste, F.-D.: Method for Cooling the Troposphere, Int. Patent CA 2748680 A1, 2010
Meyers, P. A.: Why are the δ13Corg values in Phanerozoic black shales more negative than in modern marine organic matter?, Geochem. Geophy. Geosy., 15, 3085–3106, 2014.
Michaud, L. and Renno, N.: The sky's the limit, Mech. Eng., 133, 42–43, 2011.
Miller, K. E., Lai, C.-T., Friedman, E. S., Angenent, L. T., and Lipson, D. A.: Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain, Soil Biol. Biochem., 83, 176–183, 2015.
Ming, T.: Solar Chimney Power Plant Generating Technology, Academic Press, Hangzhou, China, p. 246, 2016.
Ming, T., de Richter, R., Liu, W., and Caillol, S.: Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?, Renew. Sustain. Energy Rev., 31, 792–834, 2014.
Misumi, K., Lindsay, K., Moore, J. K., Doney, S. C., Bryan, F. O., Tsumune, D., and Yoshida, Y.: The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1, Biogeosciences, 11, 33–55, https://doi.org/10.5194/bg-11-33-2014, 2014.
Mitchell, D. L. and Finnegan, W.: Modification of cirrus clouds to reduce global warming, Environ. Res. Lett., 4, 045102, https://doi.org/10.1088/1748-9326/4/4/045102, 2009.
Monico, L., Janssens, K., Hendriks, E., Vanmeert, F., Van der Snickt, G., Cotte, M., Falkenberg, G., Brunetti, B. G., and Miliani, C.: Evidence for Degradation of the Chrome Yellows in Van Gogh's Sunflowers: A Study Using Noninvasive In Situ Methods and Synchrotron-Radiation-Based X-ray Techniques, Angew. Chem., 127, 14129–14133, 2015.
Monnin, C., Chavagnac, V., Boulart, C., Ménez, B., Gérard, M., Gérard, E., Pisapia, C., Quéméneur, M., Erauso, G., Postec, A., Guentas-Dombrowski, L., Payri, C., and Pelletier, B.: Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia), Biogeosciences, 11, 5687–5706, https://doi.org/10.5194/bg-11-5687-2014, 2014.
Moore, J. K. and Braucher, O.: Sedimentary and mineral dust sources of dissolved iron to the world ocean, Biogeosciences, 5, 631–656, https://doi.org/10.5194/bg-5-631-2008, 2008.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004.
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios, J. Climate, 26, 9291–9312, 2013.
Moreno-Castilla, C., Lopez-Ramon, M., and Carrasco-Marín, F.: Changes in surface chemistry of activated carbons by wet oxidation, Carbon 38, 1995–2001, 2000.
Morrissey, J. and Guerinot, M. L.: Iron uptake and transport in plants: the good, the bad, and the ionome, Chem. Rev., 109, 4553–4567, 2009.
Müller, M. N., Barcelos e Ramos, J., Schulz, K. G., Riebesell, U., Kazmierczak, J., Gallo, F., Mackinder, L., Li, Y., Nesterenko, P. N., Trull, T. W., and Hallegraeff, G. M.: Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning, Biogeosciences, 12, 6493–6501, https://doi.org/10.5194/bg-12-6493-2015, 2015.
Müntener, O.: Serpentine and serpentinization: A link between planet formation and life, Geology, 38, 959–960, 2010.
Muscolo, A., Sidari, M., Pizzeghello, D., and Nardi, S.: Effects of humic substances isolated from earthworm faeces, Dyna. Soil Dynam. Plant, 2, 45–52, 2009.
Myriokefalitakis, S., Mihalopoulos, N., Baker, A., and Kanakidou, M.: The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling, EGU General Assembly Conference Abstracts, 27 April–2 May 2014, Vienna, Austria, p. 8310, 2014.
Myriokefalitakis, S., Daskalakis, N., Mihalopoulos, N., Baker, A. R., Nenes, A., and Kanakidou, M.: Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study, Biogeosciences, 12, 3973–3992, https://doi.org/10.5194/bg-12-3973-2015, 2015.
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH4 and N2O, Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010.
Nayak, B., Das, S. K., and Bhattacharyya, K. K.: Detrital and authigenic (?) baddeleyite (ZrO2) in ferromanganese nodules of Central Indian Ocean Basin, Geosci. Front., 2, 571–576, https://doi.org/10.1016/j.gsf.2011.08.001, 2011.
Nedwell, D. B. and Watson, A.: CH4 production, oxidation and emission in a UK ombrotrophic peat bog: influence of SO42− from acid rain, Soil Biol. Biochem., 27, 893–903, 1995.
Neubeck, A., Duc, N. T., Hellevang, H., Oze, C., Bastviken, D., Bacsik, Z., and Holm, N. G.: Olivine alteration and H 2 production in carbonate-rich, low temperature aqueous environments, Planet. Space Sci., 96, 51–61, 2014.
Nguyen, T. H. and Ball, W. P.: Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane soot, Environ. Sci. Technol., 40, 2958–2964, 2006.
Nie, W., Ding, A., Wang, T., Kerminen, V.-M., George, C., Xue, L., Wang, W., Zhang, Q., Petäjä, T., and Qi, X.: Polluted dust promotes new particle formation and growth, Scient. Rep., 4, 6634, https://doi.org/10.1038/srep06634, 2014.
Nielsen, S. G., Rehkämper, M., Teagle, D. A., Butterfield, D. A., Alt, J. C., and Halliday, A. N.: Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust, Earth Planet. Sc. Lett., 251, 120–133, 2006.
Oelkers, E. H., Gislason, S. R., and Matter, J.: Mineral carbonation of CO2, Elements, 4, 333–337, 2008.
Oeste, F. D.: Die H2S-Oxidation an aktiver Kohle – ein elektrochemischer Prozess?, Carbon, 15, 225–228, 1977.
Oeste, F. D.: Climate cooling by interaction of artificial loess haze with seasalt haze induced by iron- or titanium-doped ship- and aircraft-fuel, Gemeinschaftstagung DGG und GGW, Schriftenreihe der Deutschen Geologischen Gesellschaft, Geo Leipzig, Leipzig, p. 344, 2004.
Oeste, F. D.: Controlling concentration of active materials necessary for life; air pollution control, US Patents 08/534535, 2009.
Oeste, F. D.: The ISA method (IM), Climate Engineering Research Symposium 2015, Current State and Future Perspectives, Berlin, 2015.
Oeste, F. D. and Ries, E.: IOA, the CO2- and methane-carbon capturing process: Effective and secure carbon sequestration from troposphere into ocean sediment by flue gas conditioning of coal power plants, 2nd ICEPE 2011 International Conference on Energy Process Engineering, Frankfurt am Main, Book of Extended Abstracts: Efficient carbon capture for coal power plants DECHEMA Gesellschaft für Chemische Techni & Biotechnologie e.V., Frankfurt am Main, Frankfurt, 207–209, 2011.
Ofner, J., Krüger, H.-U., Grothe, H., Schmitt-Kopplin, P., Whitmore, K., and Zetzsch, C.: Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS, Atmos. Chem. Phys., 11, 1–15, https://doi.org/10.5194/acp-11-1-2011, 2011.
Oh, S.-Y. and Chiu, P. C.: Graphite-and soot-mediated reduction of 2, 4-dinitrotoluene and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, Environ. Sci. Technol., 43, 6983–6988, 2009.
Ohman, L.-O., Nordin, A., Sedeh, I. F., and Sjoberg, S.: Equilibrium and Structural Studies of Silicon (IV) and Aluminium (lll) in Aqueous Solution. 28. Formation of Soluble Silicic Acid-Ligand Complexes as Studied by Potentiometrie and Solubility Measurements, Acta Chem. Scand., 45, 335–341, 1991.
Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T., Hirano, D., Herraiz-Borreguero, L., and Field, I.: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya, Nat. Geosci., 6, 235–240, 2013.
Okin, G. S., Baker, A. R., Tegen, I., Mahowald, N. M., Dentener, F. J., Duce, R. A., Galloway, J. N., Hunter, K., Kanakidou, M., and Kubilay, N.: Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron, Global Biogeochem. Cy., 25, GB2022, https://doi.org/10.1029/2010GB003858, 2011.
Ola, O. and Maroto-Valer, M. M.: Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction, Appl. Catalys. A, 502, 114–121, 2015.
Orcutt, B. N., Sylvan, J. B., Knab, N. J., and Edwards, K. J.: Microbial ecology of the dark ocean above, at, and below the seafloor, Microbiol. Molec. Biol. Rev., 75, 361–422, 2011.
Oster, G. K. and Oster, G.: Photoreduction of Metal Ions by Visible Light, J. Am. Chem. Soc., 81, 5543–5545, 1959.
Osthoff, H. D., Roberts, J. M., Ravishankara, A., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., and Dibb, J. E.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328, 2008.
Otto-Bliesner, B. L., Brady, E. C., and Shields, C.: Late Cretaceous ocean: coupled simulations with the national center for atmospheric research climate system model, J. Geophys. Res.-Atmos., 107, 4019, https://doi.org/10.1029/2001JD00821, 2002.
Parekh, P., Follows, M. J., and Boyle, E.: Modeling the global ocean iron cycle, Global Biogeochem. Cy., 18, GB1002, https://doi.org/10.1029/2003GB002061, 2004.
Paull, C. K., Ussler, W., Dallimore, S. R., Blasco, S. M., Lorenson, T. D., Melling, H., Medioli, B. E., Nixon, F. M., and McLaughlin, F. A.: Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates, Geophys. Res. Lett., 34, L01603, https://doi.org/10.1029/2006GL027977, 2007.
Pechtl, S. and von Glasow, R.: Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study, Geophys. Res. Lett., 34, L11813, https://doi.org/10.1029/2007GL029761, 2007.
Pena, A. L., Segura, E. R., Chan, M. A., and Hoggard, E. P.: Photodegradation of dichloromethane catalyzed by iron (III) chloride on silica gel, Curr. Catalys., 3, 35–38, 2014.
Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., and Nganga, J.: Aerosols, their direct and indirect effects, in: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 289–348, 2001.
Pérez-Guzmán, L., Bogner, K., and Lower, B.: Earth's Ferrous Wheel, Nat. Educ. Knowl., 3, 32, 2010.
Pérez-Sanz, A. and Lucena, J.: Synthetic iron oxides as sources of Fe in a hydrophonic culture of sunflower, Iron nutrition in soils and plants, Springer Netherlands, 241–246, https://doi.org/10.1007/978-94-011-0503-3_3, 1995.
Perry, R. S., Kolb, V. M., Lynne, B. Y., Sephton, M. A., Mcloughlin, N., Engel, M. H., Olendzenski, L., Brasier, M., and Staley Jr., J. T.: How desert varnish forms?, Proc. SPIE 5906, Astrobiology and Planetary Missions, 59060, https://doi.org/10.1117/12.626547, 2005.
Philpott, C. C.: Iron uptake in fungi: a system for every source, Biochim. Biophys. Ac., 1763, 636–645, 2006.
Phrampus, B. J., Hornbach, M. J., Ruppel, C. D., and Hart, P. E.: Widespread gas hydrate instability on the upper US Beaufort margin, J. Geophys. Res.-Solid Ea., 119, 8594–8609, 2014.
Piepenbrock, A., Behrens, S., and Kappler, A.: Comparison of humic substance – and Fe (III)-reducing microbial communities in anoxic aquifers, Geomicrobiol. J., 31, 917–928, 2014.
Pignatello, J. J., Oliveros, E., and MacKay, A.: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36, 1–84, 2006.
Pillar, E. A., Camm, R. C., and Guzman, M. I.: Catechol oxidation by ozone and hydroxyl radicals at the air–water interface, Environ. Sci. Technol., 48, 14352–14360, 2014.
Pinto, I. S., Pacheco, P. H., Coelho, J. V., Lorençon, E., Ardisson, J. D., Fabris, J. D., de Souza, P. P., Krambrock, K. W., Oliveira, L. C., and Pereira, M. C.: Nanostructured δ-FeOOH: an efficient Fenton-like catalyst for the oxidation of organics in water, Appl. Catalys. B, 119, 175–182, 2012.
Platt, U., Allan, W., and Lowe, D.: Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane, Atmos. Chem. Phys., 4, 2393–2399, https://doi.org/10.5194/acp-4-2393-2004, 2004.
Polgári, M., Hein, J., Németh, T., Pál-Molnár, E., and Vigh, T.: Celadonite and smectite formation in the Úrkút Mn-carbonate ore deposit (Hungary), Sediment. Geol., 294, 157–163, 2013.
Pope, F., Braesicke, P., Grainger, R., Kalberer, M., Watson, I., Davidson, P., and Cox, R.: Stratospheric aerosol particles and solar-radiation management, Nat. Clim. Change, 2, 713–719, 2012.
Postec, A., Quéméneur, M., Méline Bes, N. M., Benaïssa, F., Payri, C., Pelletier, B., Monnin, C., Guentas-Dombrowsky, L., Ollivier, B., and Gérard, E.: Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period, Front. Microbiol., 6, 857, https://doi.org/10.3389/fmicb.2015.00857, 2015.
Praetorius, S., Mix, A., Walczak, M., Wolhowe, M., Addison, J., and Prahl, F.: North Pacific deglacial hypoxic events linked to abrupt ocean warming, Nature, 527, 362–366, 2015.
Pratt, K. A., Custard, K. D., Shepson, P. B., Douglas, T. A., Pöhler, D., General, S., Zielcke, J., Simpson, W. R., Platt, U., and Tanner, D. J.: Photochemical production of molecular bromine in Arctic surface snowpacks, Nat. Geosci., 6, 351–356, 2013.
Pufahl, P. and Hiatt, E.: Oxygenation of the Earth's atmosphere–ocean system: a review of physical and chemical sedimentologic responses, Mar. Petrol. Geol., 32, 1–20, 2012.
Raeisi, E. and Karami, G.: Hydrochemographs of Berghan karst spring as indicators of aquifer characteristics, J. Cave Karst Stud., 59, 112–118, 1997.
Rahmstorf, S.: Thermohaline Ocean Circulation. Encyclopedia of Quaternary Sciences, Postdam Institute for Climate Impact Research, Potsdam, p. 5, Elsevier, Amsterdam, http://www.pik-potsdam.de/~stefan/Publications/Book_chapters/rahmstorf_eqs_2006.pdf (last access: 8 January 2017), 2006.
Raiswell, R. and Canfield, D. E.: The iron biogeochemical cycle past and present, Geochem. Perspect., 1, 1–2, 2012.
Raiswell, R. and Fisher, Q.: Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: implications for the formation of concretions, Chem. Geol., 211, 71–85, 2004.
Raiswell, R., Hawkings, J. R., Benning, L. G., Baker, A. R., Death, R., Albani, S., Mahowald, N., Krom, M. D., Poulton, S. W., Wadham, J., and Tranter, M.: Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans, Biogeosciences, 13, 3887–3900, https://doi.org/10.5194/bg-13-3887-2016, 2016.
Raiswell, R., Benning, L. G., Tranter, M., and Tulaczyk, S.: Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt, Geochem. Trans., 9, 9, https://doi.org/10.1186/1467-4866-9-7, 2008.
Rahmstorf, S., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change, 5, 475–480, 2015.
Ramana, M., Ramanathan, V., Feng, Y., Yoon, S., Kim, S., Carmichael, G., and Schauer, J.: Warming influenced by the ratio of black carbon to sulphate and the black-carbon source, Nat. Geosci., 3, 542–545, 2010.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, 2008.
Ramanathan, V., Li, F., Ramana, M., Praveen, P., and Kim, D.: Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing, J. Geophys. Res., 112, D22S21, https://doi.org/10.1029/2006JD008124, 2007.
Rast, W., Calcagno, A., and Williams, W. D.: The Watershed: Water from the Mountains into the Sea, in: Streams And Rivers: Water Flowing Over the Land Surface, Lakes and Reservoirs, vol. 2, edited by: Programme, United Nations Environment Programme, p. 36, http://www.unep.or.jp/ietc/publications/short_series/lakereservoirs-2/3.asp (last access: 8 January 2017), 2001.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., and Lewis, A. C.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453, 1232–1235, 2008.
Reck, M., Tomasch, J., Deng, Z., Jarek, M., Husemann, P., and Wagner-Döbler, I.: Stool metatranscriptomics: A technical guideline for mRNA stabilisation and isolation, BMC Genomics, 16, 494, https://doi.org/10.1186/s12864-015-1694-y,, 2015.
Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J. W., Sohst, B. M., and Tagliabue, A.: Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean, Nature, 523, 200–203, 2015.
Rickard, D. and Luther, G. W.: Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 C: The mechanism, Geochim. Cosmochim. Ac., 61, 135–147, 1997.
Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Vlasenko, A., Li, S.-M., Williams, E. J., Lerner, B. M., Veres, P. R., Roberts, J. M., Holloway, J. S., Lefer, B., Brown, S. S., and Thornton, J. A.: An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow, Atmos. Chem. Phys., 14, 3789–3800, https://doi.org/10.5194/acp-14-3789-2014, 2014.
Righi-Cavallaro, K. O., Roche, K. F., Froehlich, O., and Cavallaro, M. R.: Structure of macroinvertebrate communities in riffles of a Neotropical karst stream in the wet and dry seasons, Acta Limnol. Brasil., 22, 306–316, 2010.
Rizzolo, J. A., Barbosa, C. G. G., Borillo, G. C., Godoi, A. F. L., Souza, R. A. F., Andreoli, R. V., Manzi, A. O., Sá, M. O., Alves, E. G., Pöhlker, C., Angelis, I. H., Ditas, F., Saturno, J., Moran-Zuloaga, D., Rizzo, L. V., Rosário, N. E., Pauliquevis, T., Yamamoto, C. I., Andreae, M. O., Taylor, P. E., and Godoi, R. H. M.: Mineral nutrients in Saharan dust and their potential impact on Amazon rainforest ecology, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-557, in review, 2016.
Roberts, J. A., Bennett, P. C., González, L. A., Macpherson, G., and Milliken, K. L.: Microbial precipitation of dolomite in methanogenic groundwater, Geology, 32, 277–280, 2004.
Roden, E. E. and Edmonds, J.: Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe (III) oxide reduction versus iron-sulfide formation, Arch. Hydrobiol., 139, 347–378, 1997.
Roden, E. E. and Wetzel, R. G.: Organic carbon oxidation and suppression of methane production by microbial Fe (III) oxide reduction in vegetated and unvegetated freshwater wetland sediments, Limnol. Oceanogr., 41, 1733–1748, 1996.
Rombolà, A. D. and Tagliavini, M.: Iron nutrition of fruit tree crops, in: Iron nutrition in plants and rhizospheric microorganisms, Springer Netherlands, 61–83, 2006.
Römer, M., Torres, M., Kasten, S., Kuhn, G., Graham, A. G., Mau, S., Little, C. T., Linse, K., Pape, T., and Geprägs, P.: First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia, Earth Planet. Sc. Lett., 403, 166–177, 2014.
Roscoe, H., Kreher, K., and Friess, U.: Ozone loss episodes in the free Antarctic troposphere, suggesting a possible climate feedback, Geophys. Res. Lett., 28, 2911–2914, 2001.
Rose, W. I., Millard, G. A., Mather, T. A., Hunton, D. E., Anderson, B., Oppenheimer, C., Thornton, B. F., Gerlach, T. M., Viggiano, A. A., and Kondo, Y.: Atmospheric chemistry of a 33–34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling, J. Geophys. Res.-Atmos., 111, D20206, https://doi.org/10.1029/2005JD006872, 2006.
Rosenfeld, D. and Freud, E.: Number of activated CCN as a key property in cloud aerosol interactions or, more on simplicity in complex systems, WCRP First Open Science Conference, Denver, USA, 2011.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309–1313, 2008.
Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., and Kulmala, M.: Global observations of aerosol-cloud-precipitation-climate interactions, Rev. Geophys., 52, 750–808, 2014.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: responses to environmental changes, Coccolithophores, Springer, Berlin, Heidelberg, 99–125, https://doi.org/10.1007/978-3-662-06278-4_5, 2004.
Rubasinghege, G., Lentz, R. W., Scherer, M. M., and Grassian, V. H.: Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution, P. Natl. Acad. Sci. USA, 107, 6628–6633, 2010.
Rumble, D.: Hydrothermal graphitic carbon, Elements, 10, 427–433, 2014.
Rustad, D. and Gregory, N.: Photoreduction of gaseous iron (III) chloride with sunlight and other light sources, Inorgan. Nucl. Chem. Lett., 16, 521–524, 1980.
Sadanaga, Y., Hirokawa, J., and Akimoto, H.: Formation of molecular chlorine in dark condition: Heterogeneous reaction of ozone with sea salt in the presence of ferric ion, Geophys. Res. Lett., 28, 4433–4436, 2001.
Saini, R. K., Nile, S. H., and Keum, Y.-S.: Food science and technology for management of iron deficiency in humans: A review, Trends Food Sci. Technol., 53, 13–22, 2016.
Salgado, P., Melin, V., Contreras, D., Moreno, Y., and Mansilla, H. D.: Fenton reaction driven by iron ligands, J. Chil. Chem. Soc., 58, 2096–2101, 2013.
Salter, I., Schiebel, R., Ziveri, P., Movellan, A., Lampitt, R., and Wolff, G. A.: Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone, Nat. Geosci., 7, 885–889, https://doi.org/10.1038/ngeo2285, 2014.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sander, R., Burrows, J., and Kaleschke, L.: Carbonate precipitation in brine – a potential trigger for tropospheric ozone depletion events, Atmos. Chem. Phys., 6, 4653–4658, https://doi.org/10.5194/acp-6-4653-2006, 2006.
Sanhueza, E.: Hydrochloric acid from chlorocarbons: a significant global source of background rain acidity, Tellus B, 53, 122–132, https://doi.org/10.1034/j.1600-0889.2001.d01-11.x,, 2001.
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., and Maroto-Valer, M.: A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43, 8049–8080, 2014.
Santachiara, G., Prodi, F., and Belosi, F.: A review of thermo-and diffusio-phoresis in the atmospheric aerosol scavenging process. Part 1: Drop Scavenging, Atmos. Clim. Sci., 2, 148–158, 2012.
Schmidt, C., Vuillemin, R., Le Gall, C., Gaill, F., and Le Bris, N.: Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps, Mar. Chem., 108, 18–31, 2008.
Schmidt, K., Schlosser, C., Atkinson, A., Fielding, S., Venables, H. J., Waluda, C. M., and Achterberg, E. P.: Zooplankton gut passage mobilizes lithogenic iron for ocean productivity, Curr. Biol., 26, 2667–2673, 2016.
Schrag, D. P., Higgins, J. A., Macdonald, F. A., and Johnston, D. T.: Authigenic carbonate and the history of the global carbon cycle, Science, 339, 540–543, 2013.
Schrenk, M. O., Brazelton, W. J., and Lang, S. Q.: Serpentinization, carbon, and deep life, Rev. Mineral. Geochem., 75, 575–606, 2013.
Sedwick, P. N., Sholkovitz, E. R., and Church, T. M.: Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea, Geochem. Geophy. Geosy., 8, Q10Q06, https://doi.org/10.1029/2007GC001586, 2007.
Serov, P., Portnov, A., Mienert, J., Semenov, P., and Ilatovskaya, P.: Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost, J. Geophys. Res.-Ea. Surf., 120, 1515–1529, 2015.
Shaked, Y. and Lis, H.: Disassembling iron availability to phytoplankton, Front. Microbiol., 3, 123, https://doi.org/10.3389/fmicb.2012.00123, 2012.
Shakhova, N., Semiletov, I., and Panteleev, G.: The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle, Geophys. Res. Lett., 32, L09601, https://doi.org/10.1029/2005GL022751, 2005.
Shakhova, N., Semiletov, I., Salyuk, A., and Kosmach, D.: Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates, Geophys. Res. Abstr., 10, A01526, 2008.
Sherwen, T., Evans, M. J., Carpenter, L. J., Schmidt, J. A., and Mickely, L. J.: Halogen chemistry reduces tropospheric O3 radiative forcing, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-688, in review, 2016.
Shindell, D., Kuylenstierna, J. C., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., and Raes, F.: Simultaneously mitigating near-term climate change and improving human health and food security, Science, 335, 183–189, 2012.
Simon, J. and Klotz, M. G.: Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations, Biochim. Biophys. Ac., 1827, 114–135, 2013.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Sissmann, O., Brunet, F., Martinez, I., Guyot, F.o., Verlaguet, A., Pinquier, Y., and Daval, D.: Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration, Environ. Sci. Technol., 48, 5512–5519, 2014.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., and Eckert, W.: Geochemical evidence for iron-mediated anaerobic oxidation of methane, Limnol. Oceanogr., 56, 1536–1544, 2011.
Sivan, O., Antler, G., Turchyn, A. V., Marlow, J. J., and Orphan, V. J.: Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps, P. Natl. Acad. Sci. USA, 111, E4139–E4147, 2014.
Sivan, O., Shusta, S., and Valentine, D.: Methanogens rapidly transition from methane production to iron reduction, Geobiology, 14, 190–203, 2016.
Six, K. D., Kloster, S., Ilyina, T., Archer, S. D., Zhang, K., and Maier-Reimer, E.: Global warming amplified by reduced sulphur fluxes as a result of ocean acidification, Nat. Clim. Change, 3, 975–978, 2013.
Skinner, L.: Facing future climate change: is the past relevant?, Philos. T. Roy. Soc. Lond. A, 366, 4627–4645, 2008.
Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., Gustafsson, B. G., and Wolthers, M.: Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane, PLOS ONE, 8, e62386, https://doi.org/10.1371/journal.pone.0062386, 2013.
Smetacek, V. and Naqvi, S.: The next generation of iron fertilization experiments in the Southern Ocean, Philos. T. Roy. Soc. Lond. A, 366, 3947–3967, 2008.
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski, B., Savoye, N., Webb, A., d'Ovidio, F., and Arrieta, J. M.: Deep carbon export from a Southern Ocean iron-fertilized diatom bloom, Nature, 487, 313–319, 2012.
Sokolik, I. N. and Toon, O. B.: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res., 104, 9423–9444, 1999.
Solomon, E. A., Spivack, A. J., Kastner, M., Torres, M. E., and Robertson, G.: Gas hydrate distribution and carbon sequestration through coupled microbial methanogenesis and silicate weathering in the Krishna–Godavari basin, offshore India, Mar. Petrol. Geol., 58, 233–253, 2014.
Sommariva, R. and von Glasow, R.: Multiphase halogen chemistry in the tropical Atlantic Ocean, Environ. Sci. Technol., 46, 10429–10437, 2012.
Song, P., Wang, Y., Pan, J., Xu, W., and Zhuang, L.: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction, J. Power Sour., 300, 279–284, 2015.
Soreghan, G. S., Sur, S., Owens, J. D., Raiswell, R., Heavens, N. G., Natalie, M., and Lyons, T. W.: The potential biological impact of eolian delivery of reactive iron to late Paleozoic icehouse seas, 2014 GSA Annual Meeting in Vancouver, British Columbia, 2014.
Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A., Allen, J. F., Lane, N., and Martin, W. F.: Early bioenergetic evolution, Philos. T. Roy. Soc. Lond. B, 368, 20130088, https://doi.org/10.1098/rstb.2013.0088, 2013.
Southworth, B. A. and Voelker, B. M.: Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid, Environ. Sci. Technol., 37, 1130–1136, 2003.
Spolaor, A., Vallelonga, P., Cozzi, G., Gabrieli, J., Varin, C., Kehrwald, N., Zennaro, P., Boutron, C., and Barbante, C.: Iron speciation in aerosol dust influences iron bioavailability over glacial-interglacial timescales, Geophys. Res. Lett., 40, 1618–1623, 2013.
Storelvmo, T., Kristjansson, J., Muri, H., Pfeffer, M., Barahona, D., and Nenes, A.: Cirrus cloud seeding has potential to cool climate, Geophys. Res. Lett., 40, 178–182, 2013.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, 2010.
Straub, K. L., Kappler, A., and Schink, B.: Enrichment and isolation of ferric-iron-and humic-acid-reducing bacteria, Meth. Enzymol., 397, 58–77, 2005.
Studebaker, M. L., Huffman, E., Wolfe, A., and Nabors, L.: Oxygen-containing groups on the surface of carbon black, Indust. Eng. Chem., 48, 162–166, 1956.
Suess, E., Torres, M., Bohrmann, G., Collier, R., Greinert, J., Linke, P., Rehder, G., Trehu, A., Wallmann, K., and Winckler, G.: Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin, Earth Planet. Sc. Lett., 170, 1–15, 1999.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., Tang, Y., Carmichael, G. R., and Prather, K. A.: Mineral dust is a sink for chlorine in the marine boundary layer, Atmos. Environ., 41, 7166–7179, 2007.
Sun, X. and Turchyn, A. V.: Significant contribution of authigenic carbonate to marine carbon burial, Nat. Geosci., 7, 201–204, 2014.
Sur, S., Owens, J. D., Soreghan, G. S., Lyons, T. W., Raiswell, R., Heavens, N. G., and Mahowald, N. M.: Extreme eolian delivery of reactive iron to late Paleozoic icehouse seas, Geology, 43, 1099–1102, 2015.
Swanson, K. A.: The effect of dissolved catechol on the dissolution of amorphous silica in seawater, Pennsylvania State University, Pennsylvania, 1988.
Sylvan, J. B., Toner, B. M., and Edwards, K. J.: Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides, mBio, 3, e00279-11, https://doi.org/10.1128/mBio.00279-11, 2012.
Tagliabue, A. and Dutkiewicz, S.: Iron Model Intercomparison Project (FeMIP), Working Group proposal submitted to SCOR April 2016, available at: http://www.scor-int.org/Annual Meetings/2016GM/FeMIP.pdf (last access: 8 January 2017), 2016.
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., and Sherman, E.: How well do global ocean biogeochemistry models simulate dissolved iron distributions?, Global Biogeochem. Cy., 30, 149–174, https://doi.org/10.1002/2015GB005289, 2015.
Takashima, R., Nishi, H., Huber, B. T., and Leckie, E. M.: Greenhouse world and the Mesozoic Ocean, Oceanogr. Soc., 19, 82–92, 2006.
Taylor, L. L., Quirk, J., Thorley, R. M., Kharecha, P. A., Hansen, J., Ridgwell, A., Lomas, M. R., Banwart, S. A., and Beerling, D. J.: Enhanced weathering strategies for stabilizing climate and averting ocean acidification, Nat. Clim. Change, 6, 402–406, https://doi.org/10.1038/nclimate288, 2016.
Teh, Y. A., Dubinsky, E. A., Silver, W. L., and Carlson, C. M.: Suppression of methanogenesis by dissimilatory Fe (III)-reducing bacteria in tropical rain forest soils: Implications for ecosystem methane flux, Global Change Biol., 14, 413–422, 2008.
Teixeira, A. P. C., Tristão, J. C., Araujo, M. H., Oliveira, L. C., Moura, F. C., Ardisson, J. D., Amorim, C. C., and Lago, R. M.: Iron: a versatile element to produce materials for environmental applications, J. Brazil. Chem. Soc., 23, 1579–1593, 2012.
Thakur, R. S., Chaudhary, R., and Singh, C.: Influence of pH on photocatalytic reduction, adsorption, and deposition of metal ions: speciation modeling, Desalinat. Water Treat., 56, 1335–1363, 2015.
Tréguer, P. and Pondaven, P.: Global change: silica control of carbon dioxide, Nature, 406, 358–359, 2000.
Tribovillard, N., Du Châtelet, E. A., Gay, A., Barbecot, F., Sansjofre, P., and Potdevin, J.-L.: Geochemistry of cold seepage-impacted sediments: Per-ascensum or per-descensum trace metal enrichment?, Chem. Geol., 340, 1–12, 2013.
Turner, D. R. and Hunter, K. A.: The biogeochemistry of iron in seawater, Wiley, Chichester, 2001.
Ünüsan, N.: The Importance of Iron on Preschool Children and Effect on Cognitive Development, Eğitim Bilimleri Dergisi, 17, 87–98, 2013.
Van Bodegom, P. M., Scholten, J. C., and Stams, A. J.: Direct inhibition of methanogenesis by ferric iron, FEMS Microbiol. Ecol., 49, 261–268, 2004.
van Helmond, N. A. G. M., Sluijs, A., Sinninghe Damsté, J. S., Reichart, G.-J., Voigt, S., Erbacher, J., Pross, J., and Brinkhuis, H.: Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany), Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, 2015.
van Kessel, M. A., Speth, D. R., Albertsen, M., Nielsen, P. H., den Camp, H. J. O., Kartal, B., Jetten, M. S., and Lücker, S.: Complete nitrification by a single microorganism, Nature, 528, 555–559, https://doi.org/10.1038/nature16459, 2015.
van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law, K. L.: A global inventory of small floating plastic debris, Environ. Res. Lett., 10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015.
Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: The atmospheric chemistry of hydrogen peroxide: A review, Annali di Chimica-Roma, 93, 477–486, 2003.
von Glasow, R.: Modeling the gas and aqueous phase chemistry of the marine boundary layer, Universität Mainz, Mainz, Germany, available at: http://archimed.uni-mainz.de/pub/2001/0018/diss.pdf (last access: 8 January 2017), 2000.
von Glasow, R. and Sander, R.: Variation of sea salt aerosol pH with relative humidity, Geophys. Res. Lett., 28, 247–250, 2001.
Vorhies, J. S. and Gaines, R. R.: Microbial dissolution of clay minerals as a source of iron and silica in marine sediments, Nat. Geosci., 2, 221–225, https://doi.org/10.1038/ngeo441, 2009.
Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., and Ward, B.: The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change, Philos. T. Roy. Soc. B, 368, 20130121, https://doi.org/10.1098/rstb.2013.0121, 2013.
Vu, A. T., Nguyen, N. C., and Leadbetter, J. R.: Iron reduction in the metal-rich guts of wood-feeding termites, Geobiology, 2, 239–247, 2004.
Wagner Mackenzie, B., Waite, D. W., and Taylor, M. W.: Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences, Front. Microbiol., 6, 1–11, https://doi.org/10.3389/fmicb.2015.00130, 2015.
Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G., Greinert, J., Kutterolf, S., and Eisenhauer, A.: Silicate weathering in anoxic marine sediments, Geochim. Cosmochim. Ac., 72, 2895–2918, 2008.
Wang, B., O'Brien, R. E., Kelly, S. T., Shilling, J. E., Moffet, R. C., Gilles, M. K., and Laskin, A.: Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols, J. Phys. Chem. A, 119, 4498–4508, 2014a.
Wang, L., Yao, Y., Zhang, Z., Sun, L., Lu, W., Chen, W., and Chen, H.: Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation, Chem. Eng. J., 251, 348–354, 2014b.
Wang, P., Grover, S., and Pruppacher, H.: On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops, J. Atmos. Sci., 35, 1735–1743, 1978.
Wang, R., Balkanski, Y., Bopp, L., Aumont, O., Boucher, O., Ciais, P., Gehlen, M., Peñuelas, J., Ethé, C., and Hauglustaine, D.: Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming, Geophys. Res. Lett., 42, 10745–10754, https://doi.org/10.1002/2015GL066753, 2015a.
Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., and Tao, S.: Sources, transport and deposition of iron in the global atmosphere, Atmos. Chem. Phys., 15, 6247–6270, https://doi.org/10.5194/acp-15-6247-2015, 2015b.
Wang, S. H., Hsu, N. C., Tsay, S. C., Lin, N. H., Sayer, A. M., Huang, S. J., and Lau, W. K.: Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea?, Geophys. Res. Lett., 39, L05811, https://doi.org/10.1029/2011GL050415, 2012.
Wang, W., Lai, D. Y., Li, S., Kim, P. J., Zeng, C., Li, P., and Liang, Y.: Steel slag amendment reduces methane emission and increases rice productivity in subtropical paddy fields in China, Wetlands Ecol. Manage., 22, 683–691, 2014.
Wang, X., Ouyang, Z., Zhuo, S., Zhang, M., Zheng, G., and Wang, Y.: Serpentinization, abiogenic organic compounds, and deep life, Sci. China Earth Sci., 57, 878–887, 2014.
Wang, Y., Lee, K.-H., Lin, Y., Levy, M., and Zhang, R.: Distinct effects of anthropogenic aerosols on tropical cyclones, Nat. Clim. Change, 4, 368–373, 2014.
Watson, A. and Nedwell, D. B.: Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain, Atmos. Environ., 32, 3239–3245, 1998.
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci., 8, 861–864, https://doi.org/10.1038/ngeo2538, 2015.
Wayne, R. P., Poulet, G., Biggs, P., Burrows, J., Cox, R., Crutzen, P., Hayman, G., Jenkin, M., Le Bras, G., and Moortgat, G.: Halogen oxides: Radicals, sources and reservoirs in the laboratory and in the atmosphere, Atmos. Environ., 29, 2677–2881, 1995.
Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.: Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency, P. Natl. Acad. Sci. USA, 113, 8606–8611, https://doi.org/10.1073/pnas.1604414113, 2016.
Wei, Y., Shohag, M., Yang, X., and Yibin, Z.: Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability, J. Agr. Food Chem., 60, 11433–11439, 2012.
Weiser, V., Eisenreich, N., Roth, E., and Pfeil, A.: Mechanisms of Soot Reduction in Diesel Pool Fire by Ferrocene, 3rd european combustion meeting, ECM 2007, 11–13 April 2007, Crete, Greece, http://www.stfinechem.com/wp-content/uploads/2015/10/1316500124.pdf (last access: 8 January 2017), 2007.
Weller, C., Tilgner, A., Bräuer, P., and Herrmann, H.: Modeling the Impact of Iron–Carboxylate Photochemistry on Radical Budget and Carboxylate Degradation in Cloud Droplets and Particles, Environ. Sci. Technol., 48, 5652–5659, 2014.
WHO: Micronutrient deficiencies: iron deficiency anemia, WHO, Geneva, available at: http://www.who.int/nutrition/topics/ida/en/, see also http://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf (last access; 8 January 2017), 2013.
WHO, FAO, and UNICEF: Recommendations on wheat and maize flour fortification meeting report: Interim consensus statement, Interim Consensus Statement, Genova, available at: http://www.who.int/nutrition/publications/micronutrients/wheat_maize_fort.pdf (last access; 8 January 2017), 2009.
Willey, J. D., Kieber, R. J., Seaton, P. J., and Miller, C.: Rainwater as a source of Fe (II)-stabilizing ligands to seawater, Limnol. Oceanogr., 53, 1678–1684, 2008.
Williams, J., de Reus, M., Krejci, R., Fischer, H., and Ström, J.: Application of the variability–size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages, Atmos. Chem. Phys., 2, 133–145, https://doi.org/10.5194/acp-2-133-2002, 2002.
Williamson, P., Wallace, D. W., Law, C. S., Boyd, P. W., Collos, Y., Croot, P., Denman, K., Riebesell, U., Takeda, S., and Vivian, C.: Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance, Proc. Saf. Environ. Protect., 90, 475–488, 2012.
Wittmer, J. and Zetzsch, C.: Photochemical activation of chlorine by iron-oxide aerosol, J. Atmos. Chem., https://doi.org/10.1007/s10874-016-9336-6, in press, 2016.
Wittmer, J., Bleicher, S., Ofner, J., and Zetzsch, C.: Iron (III)-induced activation of chloride from artificial sea-salt aerosol, Environ. Chem., 12, 461–475, 2015a.
Wittmer, J., Bleicher, S., and Zetzsch, C.: Iron (III)-Induced Activation of Chloride and Bromide from Modeled Salt Pans, J. Phys. Chem. A, 119, 4373–4385, 2015b.
Wittmer, J., Bleicher, S., and Zetzsch, C.: Report on the Photochemical Induced Halogen Activation of Fe-containing Aerosols, J. Climatol. Weather Forecast., 4, 1000169, https://doi.org/10.4172/2332-2594.1000169, 2016.
Worman, S. L., Pratson, L. F., Karson, J., and Klein, E.: Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere, Geophys. Res. Lett., 43, 6435–6443, https://doi.org/10.1002/2016GL069066, 2016.
Wren, S. N. and Donaldson, D. J.: How does deposition of gas phase species affect pH at frozen salty interfaces?, Atmos. Chem. Phys., 12, 10065–10073, https://doi.org/10.5194/acp-12-10065-2012, 2012.
Wu, Y.-H., Liao, L., Wang, C.-S., Ma, W.-L., Meng, F.-X., Wu, M., and Xu, X.-W.: A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean, Deep-Sea Res. Pt. I, 79, 40–49, 2013.
Xu, H.-Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., Yu, S.-H., and Jiang, H.-L.: Visible-Light Photoreduction of CO2 in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States, J. Am. Chem. Soc., 137, 13440–13443, 2015.
Yamamoto, A., Yamanaka, Y., Oka, A., and Abe-Ouchi, A.: Ocean oxygen depletion due to decomposition of submarine methane hydrate, Geophys. Res. Lett., 41, 5075–5083, 2014.
Yehuda, S., Rabinovitz, S., Carasso, R. L., and Mostofsky, D. I.: Long-lasting cognitive, physiological and hematological effects in rehabilitated, early dietary iron-deficiency adult rats, and improvement by treatment with a mixture of essential fatty acids, Nutr. Neurosci., 11, 167–171, https://doi.org/10.1179/147683008X301568, 2008.
Yokouchi, Y., Noijiri, Y., Barrie, L., Toom-Sauntry, D., Machida, T., Inuzuka, Y., Akimoto, H., Li, H.-J., Fujinuma, Y., and Aoki, S.: A strong source of methyl chloride to the atmosphere from tropical coastal land, Nature, 403, 295–298, 2000.
Yoshizawa, K., Shiota, Y., Yumura, T., and Yamabe, T.: Direct methane-methanol and benzene-phenol conversions on Fe-ZSM-5 zeolite: Theoretical predictions on the reaction pathways and energetics, J. Phys. Chem. B, 104, 734–740, 2000.
Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M., Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles, Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, 2014.
Yu, H., Chin, M., Bian, H., Yuan, T., Prospero, J. M., Omar, A. H., Remer, L. A., Winker, D. M., Yang, Y., and Zhang, Y.: Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements, Remote Sens. Environ., 159, 232–249, 2015a.
Yu, H., Chin, M., Yuan, T., Bian, H., Remer, L. A., Prospero, J. M., Omar, A., Winker, D., Yang, Y., and Zhang, Y.: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984–1991, 2015b.
Zamaraev, K. I.: Catalytic science and technology for environmental issues, Catalys. Today, 35, 3–13, 1997.
Zamaraev, K. I., Khramov, M. I., and Parmon, V. N.: Possible impact of heterogeneous photocatalysis on the global chemistry of the Earth's atmosphere, Catalys. Rev., 36, 617–644, 1994.
Zhang, H., McFarquhar, G. M., Cotton, W. R., and Deng, Y.: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development, Geophys. Res. Lett., 36, L06802, https://doi.org/10.1029/2009GL037276, 2009.
Zhang, L., Keller, J., and Yuan, Z.: Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing, Water Res., 43, 4123–4132, 2009.
Zhang, L., Derlon, N., Keller, J., and Yuan, Z.: Dynamic response of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms to ferric dosing, J. Environ. Eng., 138, 510–517, 2012.
Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., and Zhou, Q. Q.: What is the real role of iron oxides in the optical properties of dust aerosols?, Atmos. Chem. Phys., 15, 12159–12177, https://doi.org/10.5194/acp-15-12159-2015, 2015.
Zhang, Y., Shi, R., Rezaul, K. M., Zhang, F., and Zou, C.: Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application, J. Agr. Food Chem., 58, 12268–12274, 2010.
Zhang, Z., Moore, J. C., Huisingh, D., and Zhao, Y.: Review of geoengineering approaches to mitigating climate change, J. Clean. Product., 103, 898–907, https://doi.org/10.1016/j.jclepro.2014.09.076, 2015.
Zhao, M.-Y., Zheng, Y.-F., and Zhao, Y.-Y.: Seeking a geochemical identifier for authigenic carbonate, Nat. Commun., 7, 10885, https://doi.org/10.1038/ncomms10885, 2016.
Zhou, S., Xu, J., Yang, G., and Zhuang, L.: Methanogenesis affected by the co-occurrence of iron (III) oxides and humic substances, FEMS Microbiol. Ecol., 88, 107–120, 2014.
Zhou, X., Zhang, Y., Wang, C., Wu, X., Yang, Y., Zheng, B., Wu, H., Guo, S., and Zhang, J.: Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage, Acs Nano, 6, 6592–6599, 2012.
Zhu, X., Prospero, J. M., Savoie, D. L., Millero, F. J., Zika, R. G., and Saltzman, E. S.: Photoreduction of iron (III) in marine mineral aerosol solutions, J. Geophys. Res.-Atmos., 98, 9039–9046, 1993.
Ziegler, M., Diz, P., Hall, I. R., and Zahn, R.: Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux, Nat. Geosci., 6, 457–461, 2013.
Zijlstra, H.: 3. Early diagenesis of chalk, in: The sedimentology of chalk, Springer-Verlag, Berlin, https://doi.org/10.1007/978-3-540-49153-8, 1995.
Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., Molina, M. J., and Laskin, A.: Hydrophilic properties of aged soot, Geophys. Res. Lett., 32, L01807, https://doi.org/10.1029/2004GL021496, 2005.
Zuo, Y. and Zhang, F.:Soil and crop management strategies to prevent iron deficiency in crops, Plant Soil, 339, 83–95, 2011.
Altmetrics
Final-revised paper
Preprint