Articles | Volume 7, issue 3
https://doi.org/10.5194/esd-7-659-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-7-659-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
Department of Geography, King's College London, London, WC2R 2LS, UK
Bruce D. Malamud
Department of Geography, King's College London, London, WC2R 2LS, UK
Related authors
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-178, https://doi.org/10.5194/nhess-2024-178, 2024
Preprint under review for NHESS
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose 12 recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
Hedieh Soltanpour, Kamal Serrhini, Joel C. Gill, Sven Fuchs, and Solmaz Mohadjer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1779, https://doi.org/10.5194/egusphere-2024-1779, 2024
Short summary
Short summary
We applied the Maximum Entropy model to characterize multi-hazard scenarios in karst environments, focusing on flood-triggered sinkholes in Val d'Orléans, France. Karst terrains as multi-hazard forming areas, have received little attention in multi-hazard literature. Our study developed a multi-hazard susceptibility map to forecast the spatial distribution of these hazards. The findings improve understanding of hazard interactions and demonstrate the model's utility in multi-hazard analysis.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101, https://doi.org/10.5194/nhess-2024-101, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We describe a methodology to systematically gather evidence of the breadth of single natural hazards and their multi-hazard interrelationships in data-scarce urban settings. We apply this methodology to Kathmandu Valley, Nepal, where we find evidence of 21 single hazard types, and 83 multi-hazard interrelationships. This evidence is supplemented with multi-hazard scenarios developed by practitioner stakeholders engaged in disaster risk reduction research and practice in Kathmandu Valley.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
Joel C. Gill, Bruce D. Malamud, Edy Manolo Barillas, and Alex Guerra Noriega
Nat. Hazards Earth Syst. Sci., 20, 149–180, https://doi.org/10.5194/nhess-20-149-2020, https://doi.org/10.5194/nhess-20-149-2020, 2020
Short summary
Short summary
This paper describes a replicable approach for characterising interactions between natural hazards. Guatemala is exposed to multiple natural hazards, which do not always occur independently. There can be interactions between natural hazards. For example, one hazard may trigger multiple secondary hazards, which can subsequently trigger further hazards. Here we use diverse evidence of such interactions to construct matrices of hazard interactions in Guatemala at national and sub-national scales.
Uldis Zandovskis, Davide Pigoli, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-2733, https://doi.org/10.5194/egusphere-2024-2733, 2024
Short summary
Short summary
This study looks at how lightning strikes happen over time and space, focusing on six storms in the UK during 2012 and 2015. By using real data, the research examines how often lightning strikes occur, how fast the storms move, and how far the strikes spread. The storms had different speeds (47–111 km/h) and times between strikes (0.01 to 100 seconds), with strikes spreading up to 80 km. The study’s findings help create models to better characterise severe storms.
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-178, https://doi.org/10.5194/nhess-2024-178, 2024
Preprint under review for NHESS
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose 12 recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
Hedieh Soltanpour, Kamal Serrhini, Joel C. Gill, Sven Fuchs, and Solmaz Mohadjer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1779, https://doi.org/10.5194/egusphere-2024-1779, 2024
Short summary
Short summary
We applied the Maximum Entropy model to characterize multi-hazard scenarios in karst environments, focusing on flood-triggered sinkholes in Val d'Orléans, France. Karst terrains as multi-hazard forming areas, have received little attention in multi-hazard literature. Our study developed a multi-hazard susceptibility map to forecast the spatial distribution of these hazards. The findings improve understanding of hazard interactions and demonstrate the model's utility in multi-hazard analysis.
Lakshmi S. Gopal, Rekha Prabha, Hemalatha Thirugnanam, Maneesha Vinodini Ramesh, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1536, https://doi.org/10.5194/egusphere-2024-1536, 2024
Short summary
Short summary
We critically reviewed 250 articles from 2010 to 2023, analysed how social media is used to manage disasters, and developed the Social Media Literature Database. We summarise the methods used for data collection and filtering. Key findings include the widespread use of the latest technologies to handle data, proficiency in spatiotemporal analysis, and gaps in community interaction and resource identification. We also propose best practices for using social media to enhance disaster management.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101, https://doi.org/10.5194/nhess-2024-101, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We describe a methodology to systematically gather evidence of the breadth of single natural hazards and their multi-hazard interrelationships in data-scarce urban settings. We apply this methodology to Kathmandu Valley, Nepal, where we find evidence of 21 single hazard types, and 83 multi-hazard interrelationships. This evidence is supplemented with multi-hazard scenarios developed by practitioner stakeholders engaged in disaster risk reduction research and practice in Kathmandu Valley.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
Aloïs Tilloy, Bruce D. Malamud, Hugo Winter, and Amélie Joly-Laugel
Nat. Hazards Earth Syst. Sci., 20, 2091–2117, https://doi.org/10.5194/nhess-20-2091-2020, https://doi.org/10.5194/nhess-20-2091-2020, 2020
Short summary
Short summary
Estimating risks induced by interacting natural hazards remains a challenge for practitioners. An approach to tackle this challenge is to use multivariate statistical models. Here we evaluate the efficacy of six models. The models are compared against synthetic data which are comparable to time series of environmental variables. We find which models are more appropriate to estimate relations between hazards in a range of cases. We highlight the benefits of this approach with two examples.
Joel C. Gill, Bruce D. Malamud, Edy Manolo Barillas, and Alex Guerra Noriega
Nat. Hazards Earth Syst. Sci., 20, 149–180, https://doi.org/10.5194/nhess-20-149-2020, https://doi.org/10.5194/nhess-20-149-2020, 2020
Short summary
Short summary
This paper describes a replicable approach for characterising interactions between natural hazards. Guatemala is exposed to multiple natural hazards, which do not always occur independently. There can be interactions between natural hazards. For example, one hazard may trigger multiple secondary hazards, which can subsequently trigger further hazards. Here we use diverse evidence of such interactions to construct matrices of hazard interactions in Guatemala at national and sub-national scales.
Annette Witt, Bruce D. Malamud, Clara Mangili, and Achim Brauer
Hydrol. Earth Syst. Sci., 21, 5547–5581, https://doi.org/10.5194/hess-21-5547-2017, https://doi.org/10.5194/hess-21-5547-2017, 2017
Short summary
Short summary
Here we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period of 10 000 years in the Piànico–Sèllere basin (southern Alps) during an interglacial period in the Pleistocene (sometime between 400 000 and 800 000 years ago). We analyse the palaeoflood series correlation, clustering, and cyclicity properties, finding a long-range cyclicity with a period of about 2030 years superimposed onto a fractional noise.
Bruce D. Malamud, Donald L. Turcotte, and Harold E. Brooks
Nat. Hazards Earth Syst. Sci., 16, 2823–2834, https://doi.org/10.5194/nhess-16-2823-2016, https://doi.org/10.5194/nhess-16-2823-2016, 2016
Short summary
Short summary
We introduce a novel method for the spatial–temporal cluster analysis of severe tornado touchdowns that are part of tornado outbreaks. Tornado outbreaks, groups of tornadoes occurring close to each other in time and space, constitute a severe hazard that has few quantitative measures. Our new approach, which we illustrate using three USA severe tornado outbreaks and models, differentiates between types of tornado outbreaks and, within outbreaks, identifies clusters in both time and space.
Related subject area
Management of the Earth system: integrated assessment
How can solar geoengineering and mitigation be combined under climate targets?
On the future role of the most parsimonious climate module in integrated assessment
A quantitative approach to evaluating the GWP timescale through implicit discount rates
The impact of uncertainty on optimal emission policies
Future supply and demand of net primary production in the Sahel
Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector
Uncertainty in temperature response of current consumption-based emissions estimates
Variation in emission metrics due to variation in CO2 and temperature impulse response functions
Simple emission metrics for climate impacts
Climate change impact on available water resources obtained using multiple global climate and hydrology models
The support of multidimensional approaches in integrate monitoring for SEA: a case of study
On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP
Comparison of physically- and economically-based CO2-equivalences for methane
Mohammad M. Khabbazan, Marius Stankoweit, Elnaz Roshan, Hauke Schmidt, and Hermann Held
Earth Syst. Dynam., 12, 1529–1542, https://doi.org/10.5194/esd-12-1529-2021, https://doi.org/10.5194/esd-12-1529-2021, 2021
Short summary
Short summary
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation if global warming is limited to 2 °C and regional precipitation anomalies are confined to an amount ethically compatible with the 2 °C target. Then, compared to a scenario without regional targets, most of the SRM usage is eliminated from the portfolio even if transgressing regional targets are tolerated in terms of 1/10 of the standard deviation of natural variability.
Mohammad M. Khabbazan and Hermann Held
Earth Syst. Dynam., 10, 135–155, https://doi.org/10.5194/esd-10-135-2019, https://doi.org/10.5194/esd-10-135-2019, 2019
Short summary
Short summary
We find that for mitigation scenarios, prescribing atmosphere–ocean general circulation models' (AOGCMs') respective equilibrium climate sensitivities (ECSs) and transient climate responses (TCRs) to the one-box model results in too high global mean temperature projections due to the information loss resulting from the reduction of complexity. The one-box model offers a good emulator of these AOGCMs, provided the AOGCM's ECS and TCR values are mapped onto effective one-box counterparts.
Marcus C. Sarofim and Michael R. Giordano
Earth Syst. Dynam., 9, 1013–1024, https://doi.org/10.5194/esd-9-1013-2018, https://doi.org/10.5194/esd-9-1013-2018, 2018
Short summary
Short summary
The 100-year GWP is the most widely used metric for comparing the climate impact of different gases such as methane and carbon dioxide. However, there have been recent arguments for the use of different timescales. This paper uses straightforward estimates of future damages to quantitatively determine the appropriate timescale as a function of how society discounts the future and finds that the 100-year timescale is consistent with commonly used discount rates.
Nicola Botta, Patrik Jansson, and Cezar Ionescu
Earth Syst. Dynam., 9, 525–542, https://doi.org/10.5194/esd-9-525-2018, https://doi.org/10.5194/esd-9-525-2018, 2018
Short summary
Short summary
We study the impact of uncertainty on optimal greenhouse gas (GHG) emission policies for a stylized emission problem. The results suggest that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.
Florian Sallaba, Stefan Olin, Kerstin Engström, Abdulhakim M. Abdi, Niklas Boke-Olén, Veiko Lehsten, Jonas Ardö, and Jonathan W. Seaquist
Earth Syst. Dynam., 8, 1191–1221, https://doi.org/10.5194/esd-8-1191-2017, https://doi.org/10.5194/esd-8-1191-2017, 2017
Short summary
Short summary
The UN sustainable development goals for eradicating hunger are at high risk for failure in the Sahel. We show that the demand for food and feed biomass will begin to outstrip its supply in the 2040s if current trends continue. Though supply continues to increase it is outpaced by a greater increase in demand due to a combination of population growth and a shift to diets rich in animal proteins. This underscores the importance of policy interventions that would act to mitigate such developments.
Kerstin Engström, Mats Lindeskog, Stefan Olin, John Hassler, and Benjamin Smith
Earth Syst. Dynam., 8, 773–799, https://doi.org/10.5194/esd-8-773-2017, https://doi.org/10.5194/esd-8-773-2017, 2017
Short summary
Short summary
Applying a global carbon tax on fossil was shown to lead to increased bioenergy production in four out of five scenarios. Increased bioenergy production led to global cropland changes that were up to 50 % larger by 2100 compared to the reference case (without global carbon tax). For scenarios with strong cropland expansion due to high population growth coupled with low technological change or bioenergy production, the biosphere was simulated to switch from a carbon sink into a carbon source.
A. M. Foley, P. B. Holden, N. R. Edwards, J.-F. Mercure, P. Salas, H. Pollitt, and U. Chewpreecha
Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, https://doi.org/10.5194/esd-7-119-2016, 2016
Short summary
Short summary
We introduce GENIEem-PLASIM-ENTSem (GPem), a climate-carbon cycle emulator, showing how model emulation can be used in integrated assessment modelling to resolve regional climate impacts and systematically capture uncertainty. In a case study, we couple GPem to FTT:Power-E3MG, a non-equilibrium economic model with technology diffusion. We find that when the electricity sector is decarbonised by 90 %, further emissions reductions must be achieved in other sectors to avoid dangerous climate change.
J. Karstensen, G. P. Peters, and R. M. Andrew
Earth Syst. Dynam., 6, 287–309, https://doi.org/10.5194/esd-6-287-2015, https://doi.org/10.5194/esd-6-287-2015, 2015
Short summary
Short summary
We quantify uncertainties in estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants, the metric used and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are dominated by metric parameters and emission uncertainties, while the economic data appear to have small uncertainties at the national level.
D. J. L. Olivié and G. P. Peters
Earth Syst. Dynam., 4, 267–286, https://doi.org/10.5194/esd-4-267-2013, https://doi.org/10.5194/esd-4-267-2013, 2013
B. Aamaas, G. P. Peters, and J. S. Fuglestvedt
Earth Syst. Dynam., 4, 145–170, https://doi.org/10.5194/esd-4-145-2013, https://doi.org/10.5194/esd-4-145-2013, 2013
S. Hagemann, C. Chen, D. B. Clark, S. Folwell, S. N. Gosling, I. Haddeland, N. Hanasaki, J. Heinke, F. Ludwig, F. Voss, and A. J. Wiltshire
Earth Syst. Dynam., 4, 129–144, https://doi.org/10.5194/esd-4-129-2013, https://doi.org/10.5194/esd-4-129-2013, 2013
C. M. Torre and M. Selicato
Earth Syst. Dynam., 4, 51–61, https://doi.org/10.5194/esd-4-51-2013, https://doi.org/10.5194/esd-4-51-2013, 2013
C. Azar and D. J. A. Johansson
Earth Syst. Dynam., 3, 139–147, https://doi.org/10.5194/esd-3-139-2012, https://doi.org/10.5194/esd-3-139-2012, 2012
O. Boucher
Earth Syst. Dynam., 3, 49–61, https://doi.org/10.5194/esd-3-49-2012, https://doi.org/10.5194/esd-3-49-2012, 2012
Cited articles
Adhikari, L. B., Gautam, U. P., Koirala, B. P., Bhattarai, M., Kandel, T., Gupta, R. M., Timsina, C., Maharjan, N., Maharjan, K., Dahal, T., and Hoste-Colomer, R.: The aftershock sequence of the 2015 April 25 Gorkha–Nepal earthquake, Geophys. J. Int., 203, 2119–2124, 2015.
Alexander, D. E.: Natural Disasters, UCL Press, London, 1993.
ARMONIA.: Assessing and Mapping Multiple Risks for Spatial Planning. European Union 6th Framework Programme Reports, European Union, available at: http://forum.eionet.europa.eu/eionet-air-climate/library/public/, last access: 13 July 2016 2007.
Bell, F. G., Stacey, T. R., and Genske, D. D.: Mining subsidence and its effect on the environment: some differing examples, Environ. Geol., 40, 135–152, 2000.
Bickerstaff, K. and Simmons, P.: Absencing/presencing risk: Rethinking proximity and the experience of living with major technological hazards, Geoforum, 40, 864–872, 2009.
Bilham, R.: Seismology: Raising Kathmandu, Nat. Geosci., 8, 582–584, 2015.
Bluth, G. J. and Rose, W. I.: Observations of eruptive activity at Santiaguito volcano, Guatemala, J. Volcanol. Geoth. Res., 136, 297–302, 2004.
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015.
Bucknam, R. C., Coe, J. A., Chavarría, M. M., Godt, J. W., Tarr, A. C., Bradley, L. A., Rafferty, S., Hancock, D., Dart, R. L., and Johnson, M. L.: Landslides triggered by hurricane Mitch in Guatemala: Inventory and discussion, US Department of the Interior, US Geological Survey Open File Report 01–443, 2001.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: Earthquake-and-landslide events are associated with more fatalities than earthquakes alone, Nat. Hazards, 72, 895–914, 2014.
Choine, M. N., O'Connor, A., Gehl, P., D'Ayala, D., García-Fernández, M., Jiménez, M. J., Gavin, K., Van Gelder, P., Salceda, T., and Power, R.: A multi hazard risk assessment methodology accounting for cascading hazard events, 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 Vancouver, Canada, 12–15 July 2015, available at: https://open.library.ubc.ca/cIRcle/collections/53032/items/1.0076192, last access: 13 July 2016, 2015.
Collins, B. D. and Jibson, R. W.: Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence, US Department of the Interior, US Geological Survey Open File Report 2015-1142, 2015.
Daniell, J.: CATDAT Damaging Volcanoes Database 2010 – The Year in Review, CEDIM (Centre for Disaster Management and Risk Reduction Technology), available at: https://www.cedim.de/2852.php, last access: 13 July 2016, 2011.
Delmonaco, G., Margottini, C., and Spizzichino, D.: ARMONIA methodology for multi-risk assessment and the harmonisation of different natural risk maps. Deliverable 3.1.1, ARMONIA, available at: http://forum.eionet.europa.eu/eionet-air-climate/library/public/2010_citiesproject/interchange/armonia_project, last access: 13 July 2016, 2007.
De Pippo, T., Donadio, C., Pennetta, M., Petrosino, C., Terlizzi, F., and Valente, A.: Coastal hazard assessment and mapping in Northern Campania, Italy, Geomorphology, 97, 451–466, https://doi.org/10.1016/j.geomorph.2007.08.015, 2008.
Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R. and Althuwaynee, O. F.: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya, Nat. Hazards, 65, 135–165, 2013
EGU: European Geosciences Union (EGU) Information Briefing: Continued risks of natural disasters in Nepal, available at: http://www.egu.eu/news/172/egu-information, last access: 13 July 2016, 2015.
Ellsworth, W. L.: Injection-induced earthquakes. Science, 341, 142–149, https://doi.org/10.1126/science.1225942, 2013.
Espinosa, A. F. (Ed.): The Guatemalan earthquake of February 4, 1976: A preliminary report, US Government Printing Office, 1US Geological Survey Professional Paper 1002, 1976.
Fleischhauer, M.: Spatial relevance of natural and technological hazards, in: Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions, edited by: Schmidt-Thomé, P., Geological Survey of Finland, Espoo, Special Paper 42, 7–15, 2006.
Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions of natural hazards, Rev. Geophys., 52, 680–722, 2014.
Glade, T.: Landslide occurrence as a response to land use change: a review of evidence from New Zealand, Catena, 51, 297–314, 2003.
González, P. J., Tiampo, K. F., Palano, M., Cannavó, F., and Fernández, J.: The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading, Nat. Geosci., 5, 821–825, 2012.
Government Office for Science: Foresight Reducing Risks of Future Disasters: Priorities for Decision Makers, Final Project Report, Government Office for Science, London, UK, 2012.
Granger, K., Jones, T., Leiba, M., and Scott, G.: Community risk in Cairns: A multi-hazard risk assessment, Australian Journal of Emergency Management, 14, 29–30, 1999.
Greiving, S., Fleischhauer, M., and Lückenkötter, J.: A methodology for an integrated risk assessment of spatially relevant hazards, J. Environ. Plann. Man., 49, 1–19, 2006.
Grünthal, G., Thieken, A., Schwarz, J., Radtke, K., Smolka, A., and Merz, B.: Comparative risk assessment for the city of cologne—storms, floods, earthquakes, Nat. Hazards, 38, 21–44, https://doi.org/10.1007/s11069-005-8598-0, 2006.
Gunn, S. W. A.: The language of disasters, Prehospital and Disaster Medicine, 5, 373–376, 1990.
Han, J., Wu, S., and Wang, H.: Preliminary study on geological hazard chains, Earth Science Frontiers, 14, 11–20, https://doi.org/10.1016/S1872-5791(08)60001-9, 2007.
Harp, E. L., Wilson, R. C., and Wieczorek, G. F.: Landslides from the February 4, 1976, Guatemala earthquake, US Government Printing Office, US Geological Survey Professional Paper 1204-A, 1981.
Harris, A. J., Vallance, J. W., Kimberly, P., Rose, W. I., Matías, O., Bunzendahl, E., Flynn, L. P., and Garbeil, H.: Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcan Santiaguito, Guatemala, Geological Society of America Special Papers, 412, 85–104, 2006.
Havenith, H. B.: Hazard and risk related to earthquake-triggered landslide events, in: Landslide Science for a Safer Geoenvironment, edited by: Sassa, K., Canuti, P., and Yin, Y., Springer International Publishing, 3, 197–203, 2014.
Hewitt, K. and Burton, I.: The hazardousness of a place: a regional ecology of damaging events, University of Toronto Press, Toronto, 1971.
Hough, S. E. and Page, M.: A century of induced earthquakes in Oklahoma?, B. Seismol. Soc. Am., 105, 2863–2870, 2015.
Kappes, M. S., Keiler, M., and Glade, T.: From Single- to Multi-Hazard Risk Analyses: a concept addressing emerging challenges, in: Mountain Risks: Bringing Science to Society, edited by: Malet, J. P., Glade, T., and Casagli, N., CERG Editions, Strasbourg, France, 351–356, 2010.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of analyzing multi-hazard risk: a review, Nat. Hazards, 64, 1925–1958, https://doi.org/10.1007/s11069-012-0294-2, 2012.
Kasperson, R. E. and Pijawka, K. D.: Societal response to hazards and major hazard events: Comparing natural and technological hazards, Public Admin. Rev., 45, 7–18, 1985.
Kirschbaum, D., Adler, R., Adler, D., Peters-Lidard, C., and Huffman, G.: Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years, J. Hydrometeorol., 13, 1536–1551, 2012.
Knapen, A., Kitutu, M. G., Poesen, J., Breugelmans, W., Deckers, J., and Muwanga, A.: Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors, Geomorphology, 73, 149–165, 2006.
Liu, B., Siu, Y. L., and Mitchell, G.: Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment, Nat. Hazards Earth Syst. Sci., 16, 629–642, https://doi.org/10.5194/nhess-16-629-2016, 2016.
Marzocchi, W., Mastellone, M., Di Ruocco, A., Novelli, P., Romeo, E., and Gasparini, P.: Principles of multi-risk assessment: interactions amongst natural and man-induced risks, European Commission, Directorate-General for Research, Environment Directorate, available at: cordis.europa.eu/documents/documentlibrary/106097581EN6.pdf, 2009.
Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L., and Di Ruocco, A.: Basic principles of multi-risk assessment: a case study in Italy, Nat. Hazards, 62, 551–573, 2012.
Mignan, A., Wiemer, S., and Giardini, D.: The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach, Nat. Hazards., 73, 1999–2022, 2014.
Montgomery, D. R.: Road surface drainage, channel initiation, and slope instability, Water Resour. Res., 30, 1925–1932, 1994.
Neri, A., Aspinall, W. P., Cioni, R., Bertagnini, A., Baxter, P. J., Zuccaro, G., Andronico, D., Barsotti, S., Cole, P. D., Espoti-Ongaro, T., Hincks, T. K., Macedonio, G., Papale, P., Rosi, M., Santacroce, R., and Woo, G.: Developing an event tree for probabilistic hazard and risk assessment at Vesuvius, J. Volcanol. Geoth. Res., 178, 397–415, 2008.
Neri, M., Le Cozannet, G., Thierry, P., Bignami, C., and Ruch, J.: A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines), Nat. Hazards Earth Syst. Sci., 13, 1929–1943, https://doi.org/10.5194/nhess-13-1929-2013, 2013.
OED: Oxford English Dictionary Definition "Process", available at: http://www.oed.com/viewdictionaryentry/Entry/151794, last access: 1 April 2016.
Owen, L. A., Kamp, U., Khattak, G. A., Harp, E. L., Keefer, D. K., and Bauer, M. A.: Landslides triggered by the 8 October 2005 Kashmir earthquake, Geomorphology, 94, 1–9, 2008.
Perry, R. W. and Lindell, M. K.: Volcanic risk perception and adjustment in a multi-hazard environment, J. Volcanol. Geoth. Res., 172, 170–178, 2008.
Pescaroli, G. and Alexander, D.: A definition of cascading disasters and cascading effects: Going beyond the "toppling dominos" metaphor, Planet@Risk, 2, 58–67, 2015.
Plafker, G., Bonilla, M. G., and Bonis, S. B.: Geologic Effects, in: The Guatemalan earthquake of February 4, 1976: A preliminary report, edited by: Espinosa, A. F., US Geological Survey Professional Paper 1002, US Government Printing Office, 38–51, 1976.
Selva, J.: Long-term multi-risk assessment: statistical treatment of interaction among risks, Nat. Hazards, 67, 701–722, 2013.
Shepherd, T. G.: A common framework for approaches to extreme event attribution, Current Climate Change Reports, 2, 28–38, 2016.
Shi, P., Yang, X., Liu, F., Li, M., Pan, H., Yang, W., Fang, J., Sun, S., Tan, C., Tang, H., Yin, Y., Zhang, X., Lu, L., Li, M., Cao, X., and Meng, Y.: Mapping multi-hazard risk of the world, in: World Atlas of Natural Disaster Risk, edited by: Shi, P. and Kasperson, R., Springer Berlin Heidelberg, 287–306, 2015.
Simpson, D. W.: Seismicity changes associated with reservoir loading, Eng. Geol., 10, 123–150, 1976.
Smith, K.: Environmental Hazards: Assessing risk and reducing disaster, 6th Edn., Routledge, New York, 2013.
Stewart, S. R.: Eastern North Pacific Hurricanes 2010: Flooding in a Slow Season, Weatherwise, 64, 38–45, 2011.
Stewart, S. R. and Cangialosi, J. P.: Eastern North Pacific Hurricane Season of 2010, Mon. Weather Rev., 140, 2769–2781, https://doi.org/10.1175/MWR-D-11-00152.1, 2012.
Stott, P. A., Allen, M., Christidis, N., Dole, R. M., Hoerling, M., Huntingford, C., Pall, P., Perlwitz, J., and Stone, D.: Attribution of weather and climate-related events, in: Climate Science for Serving Society, edited by: Asrar, G. R. and Hurrell, J. W., Springer Netherlands, 307–337, 2013.
Tarvainen, T., Jarva, J., and Greiving, S.: Spatial pattern of hazards and hazard interactions in Europe, in: Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions, edited by: Schmidt-Thomé, P., Geological Survey of Finland, Special Paper 42, 83–91, 2006.
Tobin, G. A. and Montz, B. E.: Natural hazards: Explanation and integration, Guilford Press, New York, 1997.
UK Cabinet Office: National Risk Register of Civil Emergencies, Cabinet Office, available at: https://www.gov.uk/guidance/risk-assessment-how-the-risk-of-emergencies-in-the-uk-is-assessed, last access: 13 July 2016, 2013.
United Nations: Draft Plan of Implementation of the World Summit on Sustainable Development. (A/CONF.199/L.1), Johannesburg, South Africa, 26 August–4 September 2002, available at: https://sustainabledevelopment.un.org/milesstones/wssd, last access: 13 July 2016, 2002.
United Nations: Guatemala – Floods, Landslides, Pacaya Eruption and Tropical Storm Agatha, Situation Report No. 6, Office of the Resident Coordinator, United Nations Country Team in Guatemala, available at: http://reliefweb.int/organization/unct-guatemala, last access: 13 July 2016, 2010.
UNISDR: Hyogo Framework for Action 2005–2015: Building the resilience of nations and communities to disasters, in: Final Report of the World Conference on Disaster Reduction (A/CONF.206/6), Kobe, Hyogo, Japan, available at: https://www.unisdr.org/we/inform/publications/1037, last access: 13 July 2016, 2005.
UNISDR: 2009 UNISDR Terminology on Disaster Risk Reduction, United Nations International Strategy for Disaster Reduction (UNISDR), Geneva, Switzerland, available at: http://www.unisdr.org/we/inform/terminology, last access: 13 July 2016, 2009.
UNISDR: Sendai Framework for Disaster Risk Reduction 2015–30, United Nations International Strategy for Disaster Reduction (UNISDR), Geneva, Switzerland, available at: http://www.unisdr.org/we/coordinate/sendai-framework, last access: 13 July 2016, 2015.
Van Westen, C. J., Montoya, L., Boerboom, L., and Badilla Coto, E.: Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica, in: Regional Workshop on Best Practices in Disaster Mitigation, 24–26 September 2002, Bali, Indonesia, Asian Disaster Preparedness Center, 120–136, 2002.
Van Westen, C. J., Kappes, M. S., Luna, B. Q., Frigerio, S., Glade, T., and Malet, J.-P.: Medium-scale multi-hazard risk assessment of gravitational processes, in: Mountain risks: from prediction to management and governance, van Asch, T., Corominas, J., Greiving, S., Malet, J.-P., and Sterlacchini, S., Springer, Netherlands, 201–231, 2014.
Wardman, J., Sword-Daniels, V., Stewart, C., and Wilson, T..: Impact assessment of May 2010 eruption of Pacaya volcano, Guatemala, Institute of Geological and Nuclear Sciences Limited, GNS Science Report 2012/09, 90 pp., 2012.
Xu, L., Meng, X., and Xu, X.: Natural hazard chain research in China: A review, Nat. Hazards, 70, 1631–1659, 2014.
Short summary
Understanding interactions between hazards and other processes can help us to better understand the complex environment in which disasters occur. This enhanced understanding may help us to better manage hazards and reduce the risk of disasters occurring. Interactions (e.g. one hazard triggering another hazard) are noted between (i) natural hazards, such as earthquakes; (ii) human activity, such as groundwater abstraction; and (iii) technological hazards/disasters, such as building collapse.
Understanding interactions between hazards and other processes can help us to better understand...
Altmetrics
Final-revised paper
Preprint