Articles | Volume 16, issue 1
https://doi.org/10.5194/esd-16-75-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-75-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chaotic oceanic excitation of low-frequency polar motion variability
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Michael Schindelegger
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Mengnan Zhao
Atmospheric and Environmental Research (AER), Lexington, MA, USA
Rui M. Ponte
Atmospheric and Environmental Research (AER), Lexington, MA, USA
Anno Löcher
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Bernd Uebbing
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Jean-Marc Molines
Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, Institut des Géosciences de l'Environnement (IGE), Grenoble, France
Thierry Penduff
Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, Institut des Géosciences de l'Environnement (IGE), Grenoble, France
Related authors
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Linus Shihora, Torge Martin, Anna Christina Hans, Rebecca Hummels, Michael Schindelegger, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3660, https://doi.org/10.5194/egusphere-2024-3660, 2024
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a major part of the ocean circulation. Satellite gravimetry missions, like GRACE, which measure changes in Earth's mass distribution, could help monitor changes in the AMOC by detecting variations in ocean bottom pressure. To help asses if future satellite missions could detect these changes, we use ocean model simulation data to assess their connection. Additionally, we create a synthetic dataset future satellite mission simulations.
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024, https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Short summary
This study examines how the ocean's chaotic variability and atmospheric fluctuations affect yearly changes in North Atlantic Subtropical Mode Water (STMW) properties, using an ensemble of realistic ocean simulations. Results show that while yearly changes in STMW properties are mostly paced by the atmosphere, a notable part of these changes are random in phase. This study also illustrates the value of ensemble simulations over single runs in understanding oceanic fluctuations and their causes.
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Matthias O. Willen, Martin Horwath, Eric Buchta, Mirko Scheinert, Veit Helm, Bernd Uebbing, and Jürgen Kusche
The Cryosphere, 18, 775–790, https://doi.org/10.5194/tc-18-775-2024, https://doi.org/10.5194/tc-18-775-2024, 2024
Short summary
Short summary
Shrinkage of the Antarctic ice sheet (AIS) leads to sea level rise. Satellite gravimetry measures AIS mass changes. We apply a new method that overcomes two limitations: low spatial resolution and large uncertainties due to the Earth's interior mass changes. To do so, we additionally include data from satellite altimetry and climate and firn modelling, which are evaluated in a globally consistent way with thoroughly characterized errors. The results are in better agreement with independent data.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Sophie Cravatte, Guillaume Serazin, Thierry Penduff, and Christophe Menkes
Ocean Sci., 17, 487–507, https://doi.org/10.5194/os-17-487-2021, https://doi.org/10.5194/os-17-487-2021, 2021
Short summary
Short summary
The various currents in the southwestern Pacific Ocean contribute to the redistribution of waters from the subtropical gyre equatorward and poleward. The drivers of their interannual variability are not completely understood but are usually thought to be related to well-known climate modes of variability. Here, we suggest that oceanic chaotic variability alone, which is by definition unpredictable, explains the majority of this interannual variability south of 20° S.
Sylvain Watelet, Jean-Marie Beckers, Jean-Marc Molines, and Charles Troupin
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-79, https://doi.org/10.5194/os-2020-79, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, we use a numerical hindcast at high resolution (1/12°) to examine the occurrence and properties of Rossby waves in the North Atlantic between 1970–2015. We show evidence of Rossby waves travelling at 39° N at a speed of 4.17 cm s−1. These results are consistent with baroclinic Rossby waves generated by the North Atlantic Oscillation in the central North Atlantic and travelling westward before interacting with the Gulf Stream transport with a time lag of about 2 years.
Pedro Colombo, Bernard Barnier, Thierry Penduff, Jérôme Chanut, Julie Deshayes, Jean-Marc Molines, Julien Le Sommer, Polina Verezemskaya, Sergey Gulev, and Anne-Marie Treguier
Geosci. Model Dev., 13, 3347–3371, https://doi.org/10.5194/gmd-13-3347-2020, https://doi.org/10.5194/gmd-13-3347-2020, 2020
Short summary
Short summary
In the ocean circulation model NEMO, the representation of the overflow of dense Arctic waters through the Denmark Strait is investigated. In this
z-coordinate context, sensitivity tests show that the mixing parameterizations preferably act along the model grid slope. Thus, the representation of the overflow is more sensitive to resolution than to parameterization and is best when the numerical grid matches the local topographic slope.
Ivan Zavialov, Alexander Osadchiev, Roman Sedakov, Bernard Barnier, Jean-Marc Molines, and Vladimir Belokopytov
Ocean Sci., 16, 15–30, https://doi.org/10.5194/os-16-15-2020, https://doi.org/10.5194/os-16-15-2020, 2020
Short summary
Short summary
This study is focused on water exchange between the Sea of Azov and the Black Sea. The Sea of Azov is a small freshened sea that receives a large freshwater discharge and, therefore, can be regarded as a large river estuary connected by narrow Kerch Strait with the Black Sea. In this work we show that water transport through the Kerch Strait is governed by wind forcing and does not depend on the river discharge rate to the Sea of Azov on an intra-annual timescale.
Stefan Schröder, Anne Springer, Jürgen Kusche, Bernd Uebbing, Luciana Fenoglio-Marc, Bernd Diekkrüger, and Thomas Poméon
Hydrol. Earth Syst. Sci., 23, 4113–4128, https://doi.org/10.5194/hess-23-4113-2019, https://doi.org/10.5194/hess-23-4113-2019, 2019
Short summary
Short summary
We propose deriving altimetric rating curves by
bridginggaps between time series from gauge and altimeter measurements using hydrological model simulations. We investigate several stations at the Niger River, which is a challenging region. We show that altimetry reproduces discharge well and enables continuing the gauge time series, albeit at a lower temporal resolution.
Alexander Harker, J. A. Mattias Green, Michael Schindelegger, and Sophie-Berenice Wilmes
Ocean Sci., 15, 147–159, https://doi.org/10.5194/os-15-147-2019, https://doi.org/10.5194/os-15-147-2019, 2019
Short summary
Short summary
We used a computer model to help predict how changing sea levels around Australia will affect the ebb and flow of the tide. We found that sea-level rise and coastal flooding affect where energy from the tide is dissipated and how the tide flows around the coastline. We found that we must consider how sea-level rise will affect tides across the rest of the world, as that will have an impact on Australia too. This sort of investigation can help direct coastal management and protection efforts.
Kristin Vielberg, Ehsan Forootan, Christina Lück, Anno Löcher, Jürgen Kusche, and Klaus Börger
Ann. Geophys., 36, 761–779, https://doi.org/10.5194/angeo-36-761-2018, https://doi.org/10.5194/angeo-36-761-2018, 2018
Short summary
Short summary
To predict the satellite's motion or its re-entry, the density surrounding the satellite needs to be known as precisely as possible. Usually empirical models are used to estimate the neutral density of the thermosphere, which is the region of the neutrally charged atmosphere. Here, based on calibrated accelerations measured by instruments on board satellites, we compute daily global maps to correct modeled densities. During times of high solar activity, corrections of up to 28 % are necessary.
Christina Lück, Jürgen Kusche, Roelof Rietbroek, and Anno Löcher
Solid Earth, 9, 323–339, https://doi.org/10.5194/se-9-323-2018, https://doi.org/10.5194/se-9-323-2018, 2018
Short summary
Short summary
Since 2002, the GRACE mission provides estimates of the Earth's time-variable gravity field, from which one can derive ocean mass variability. Now that the GRACE mission has come to an end, it is especially important to find alternative ways for deriving ocean mass changes. For the first time, we use kinematic orbits of Swarm for computing ocean mass time series. We compute monthly solutions, but also show an alternative way of directly estimating time-variable spherical harmonic coefficients.
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
Related subject area
Topics: Earth system | Interactions: Other interactions | Methods: Model and data diagnostics
Uncertainty-informed selection of CMIP6 Earth system model subsets for use in multisectoral and impact models
Abigail Snyder, Noah Prime, Claudia Tebaldi, and Kalyn Dorheim
Earth Syst. Dynam., 15, 1301–1318, https://doi.org/10.5194/esd-15-1301-2024, https://doi.org/10.5194/esd-15-1301-2024, 2024
Short summary
Short summary
From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models.
Cited articles
A, G., Wahr, J., and Zhong, S.: Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013. a, b
Adhikari, S. and Ivins, E. R.: Climate-Driven Polar Motion: 2003–2015, Sci. Adv., 2, e1501693, https://doi.org/10.1126/sciadv.1501693, 2016. a, b, c, d
Afroosa, M., Rohith, B., Paul, A., Durand, F., Bourdallé-Badie, R., Sreedevi, P. V., de Viron, O., Ballu, V., and Shenoi, S. S. C.: Madden-Julian Oscillation Winds Excite an Intraseasonal See-Saw of Ocean Mass That Affects Earth's Polar Motion, Communications Earth & Environment, 2, 139, https://doi.org/10.1038/s43247-021-00210-x, 2021. a, b
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2016. a
Arbic, B. K., Müller, M., Richman, J. G., Shriver, J. F., Morten, A. J., Scott, R. B., Sérazin, G., and Penduff, T.: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability, J. Phys. Oceanogr., 44, 2050–2069, https://doi.org/10.1175/JPO-D-13-054.1, 2014. a, b
Barnes, R., Hide, R., White, A., and Wilson, C.: Atmospheric Angular Momentum Fluctuations, Length-of-Day Changes and Polar Motion, P. Roy. Soc. Lond. A Mat., 387, 31–73, https://doi.org/10.1098/rspa.1983.0050, 1983. a, b, c
Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G.: Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, 2017. a
Bizouard, C. and Seoane, L.: Atmospheric and Oceanic Forcing of the Rapid Polar Motion, J. Geodesy, 84, 19–30, https://doi.org/10.1007/s00190-009-0341-2, 2010. a
Börger, L., Schindelegger, M., Dobslaw, H., and Salstein, D.: Are ocean reanalyses useful for Earth rotation research?, Earth and Space Science, 10, e2022EA002700, https://doi.org/10.1029/2022EA002700, 2023. a, b, c
Börger, L., Schindelegger, M., Zhao, M., Ponte, R. M., Löcher, A., Uebbing, B., Molines, J.-M., and Penduff, T.: Angular momentum estimates for global geophysical fluids, 1995–2015, Zenodo [data set], https://doi.org/10.5281/zenodo.12664036, 2024. a
Brankart, J.-M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.-A., Brasseur, P., and Verron, J.: A generic approach to explicit simulation of uncertainty in the NEMO ocean model, Geosci. Model Dev., 8, 1285–1297, https://doi.org/10.5194/gmd-8-1285-2015, 2015. a
Brzeziński, A.: Polar motion excitation by variations of the effective angular momentum function: Considerations concerning deconvolution problem, Manuscr. Geodaet., 17, 3–20, 1992. a
Carret, A., Llovel, W., Penduff, T., and Molines, J.-M.: Atmospherically Forced and Chaotic Interannual Variability of Regional Sea Level and Its Components Over 1993–2015, J. Geophys. Res.-Oceans, 126, e2020JC017123, https://doi.org/10.1029/2020JC017123, 2021. a, b, c
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a
Chen, J., Wilson, C. R., Kuang, W., and Chao, B. F.: Interannual Oscillations in Earth Rotation, J. Geophys. Res.-Sol. Ea., 124, 13404–13414, https://doi.org/10.1029/2019JB018541, 2019. a, b
Chen, J. L., Wilson, C. R., Ries, J. C., and Tapley, B. D.: Rapid Ice Melting Drives Earth's Pole to the East, Geophys. Res. Lett., 40, 2625–2630, https://doi.org/10.1002/grl.50552, 2013. a, b
Chen, J. L., Wilson, C. R., Li, J., and Zhang, Z.: Reducing Leakage Error in GRACE-observed Long-Term Ice Mass Change: A Case Study in West Antarctica, J. Geodesy, 89, 925–940, https://doi.org/10.1007/s00190-015-0824-2, 2015. a, b
Clarke, P. J., Lavallée, D. A., Blewitt, G., van Dam, T. M., and Wahr, J. M.: Effect of gravitational consistency and mass conservation on seasonal surface mass loading models, Geophys. Res. Lett., 32, L08306, https://doi.org/10.1029/2005GL022441, 2005. a
Cravatte, S., Serazin, G., Penduff, T., and Menkes, C.: Imprint of chaotic ocean variability on transports in the southwestern Pacific at interannual timescales, Ocean Sci., 17, 487–507, https://doi.org/10.5194/os-17-487-2021, 2021. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Deng, S., Liu, S., Mo, X., Jiang, L., and Bauer-Gottwein, P.: Polar Drift in the 1990s Explained by Terrestrial Water Storage Changes, Geophys. Res. Lett., 48, e2020GL092114, https://doi.org/10.1029/2020GL092114, 2021. a
Desai, S. D.: Observing the pole tide with satellite altimetry, J. Geophys. Res.-Oceans, 107, 3186, https://doi.org/10.1029/2001JC001224, 2002. a
Dickman, S. R.: Evaluation of “effective angular momentum function” formulations with respect to core-mantle coupling, J. Geophys. Res.-Sol. Ea., 108, 2150, https://doi.org/10.1029/2001JB001603, 2003. a, b
Ding, H., Pan, Y., Xu, X. Y., Shen, W., and Li, M.: Application of the AR-z spectrum to polar motion: A possible first detection of the Inner Core Wobble and its implications for the density of Earth's core, Geophys. Res. Lett., 46, 13765–13774, https://doi.org/10.1029/2019GL085268, 2019. a, b, c
Dobslaw, H. and Dill, R.: Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics, Adv. Space Res., 61, 1047–1054, https://doi.org/10.1016/j.asr.2017.11.044, 2018. a, b
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., and Flechtner, F.: Product Description Document for AOD1B Release 06, Rev. 6.1, GFZ Potsdam, Potsdam, Germany, 2017. a
Dussin, R., Barnier, B., Brodeau, L., and Molines, J.-M.: Drakkar Forcing Set DFS5, Tech. rep., DRAKKAR/MyOcean Report 01-04-16, 2016. a
Farrell, W. E. and Clark, J. A.: On Postglacial Sea Level, Geophys. J. Int., 46, 647–667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976. a, b
Göttl, F., Groh, A., Schmidt, M., Schröder, L., and Seitz, F.: The Influence of Antarctic Ice Loss on Polar Motion: An Assessment Based on GRACE and Multi-Mission Satellite Altimetry, Earth Planets Space, 73, 99, https://doi.org/10.1186/s40623-021-01403-6, 2021. a
Gross, R. S.: Correspondence between theory and observations of polar motion, Geophys. J. Int., 109, 162–170, https://doi.org/10.1111/j.1365-246X.1992.tb00086.x, 1992. a
Gross, R. S.: The Excitation of the Chandler Wobble, Geophys. Res. Lett., 27, 2329–2332, https://doi.org/10.1029/2000GL011450, 2000. a
Harker, A. A., Schindelegger, M., Ponte, R. M., and Salstein, D. A.: Modeling ocean-induced rapid Earth rotation variations: An update, J. Geodesy, 95, 110, https://doi.org/10.1007/s00190-021-01555-z, 2021. a, b, c
Kiani Shahvandi, M., Schartner, M., and Soja, B.: Neural ODE differential learning and its application in polar motion prediction, J. Geophys. Res.-Sol. Ea., 127, e2022JB024775, https://doi.org/10.1029/2022JB024775, 2022. a
Kuang, W., Chao, B. F., and Chen, J.: Reassessment of electromagnetic core-mantle coupling and its implications to the Earth's decadal polar motion, Geodesy and Geodynamics, 10, 356–362, https://doi.org/10.1016/j.geog.2019.06.003, 2019. a, b
Kuhlmann, J., Dobslaw, H., and Thomas, M.: Improved modeling of sea level patterns by incorporating self-attraction and loading, J. Geophys. Res.-Oceans, 116, C11036, https://doi.org/10.1029/2011JC007399, 2011. a
Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE Time-Variable Gravity Solutions by GFZ, and Their Validation Using a Hydrological Model, J. Geodesy, 83, 903–913, https://doi.org/10.1007/s00190-009-0308-3, 2009. a
Leroux, S., Penduff, T., Bessières, L., Molines, J.-M., Brankart, J.-M., Sérazin, G., Barnier, B., and Terray, L.: Intrinsic and Atmospherically Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean Hindcast, J. Climate, 31, 1183–1203, https://doi.org/10.1175/JCLI-D-17-0168.1, 2018. a, b
Llovel, W., Penduff, T., Meyssignac, B., Molines, J.-M., Terray, L., Bessières, L., and Barnier, B.: Contributions of Atmospheric Forcing and Chaotic Ocean Variability to Regional Sea Level Trends Over 1993–2015, Geophys. Res. Lett., 45, 13405–13413, https://doi.org/10.1029/2018GL080838, 2018. a
Löcher, A. and Kusche, J.: A Hybrid Approach for Recovering High-Resolution Temporal Gravity Fields from Satellite Laser Ranging, J. Geodesy, 95, 6, https://doi.org/10.1007/s00190-020-01460-x, 2021. a, b, c
Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, 2021. a
Meyrath, T. and Van Dam, T.: A Comparison of Interannual Hydrological Polar Motion Excitation from GRACE and Geodetic Observations, J. Geodyn., 99, 1–9, https://doi.org/10.1016/j.jog.2016.03.011, 2016. a
Munk, W. H. and MacDonald, G. J. F.: The Rotation of the Earth: A Geophysical Discussion, Cambridge University Press, New York, https://doi.org/10.1017/S0016756800060726, 1960. a
Nakiboglu, S. M. and Lambeck, K.: Deglaciation effects on the rotation of the Earth, Geophys. J. Int., 62, 49–58, https://doi.org/10.1111/j.1365-246X.1980.tb04843.x, 1980. a
Nastula, J. and Salstein, D.: Regional atmospheric angular momentum contributions to polar motion excitation, J. Geophys. Res.-Sol. Ea., 104, 7347–7358, https://doi.org/10.1029/1998JB900077, 1999. a
Nastula, J., Wińska, M., Śliwińska, J., and Salstein, D.: Hydrological Signals in Polar Motion Excitation – Evidence after Fifteen Years of the GRACE Mission, J. Geodyn., 124, 119–132, https://doi.org/10.1016/j.jog.2019.01.014, 2019. a
O'Rourke, A. K., Arbic, B. K., and Griffies, S. M.: Frequency-domain analysis of atmospherically forced versus intrinsic ocean surface kinetic energy variability in GFDL's CM2-O model hierarchy, J. Climate, 31, 1789–1810, https://doi.org/10.1175/JCLI-D-17-0024.1, 2018. a
Ponte, R. M. and Piecuch, C. G.: Interannual bottom pressure signals in the Australian–Antarctic and Bellingshausen Basins, J. Phys. Oceanogr., 44, 1456–1465, https://doi.org/10.1175/JPO-D-13-0223.1, 2014. a
Ponte, R. M., Stammer, D., and Marshall, J.: Oceanic Signals in Observed Motions of the Earth's Pole of Rotation, Nature, 391, 476–479, https://doi.org/10.1038/35126, 1998. a
Provost, C., Renault, A., Barré, N., Sennéchael, N., Garçon, V., Sudre, J., and Huhn, O.: Two repeat crossings of Drake Passage in austral summer 2006: Short-term variations and evidence for considerable ventilation of intermediate and deep waters, Deep-Sea Res. Pt. II, 58, 2555–2571, https://doi.org/10.1016/j.dsr2.2011.06.009, 2011. a
Quinn, K. J., Ponte, R. M., and Tamisiea, M. E.: Impact of self-attraction and loading on Earth rotation, J. Geophys. Res.-Sol. Ea., 120, 4510–4521, https://doi.org/10.1002/2015JB011980, 2015. a, b, c
Ratcliff, T. and Gross, R. S.: Combinations of Earth Orientation Measurements: SPACE2018, COMB2018, and POLE2018, Jet Propulsion Laboratory, California Institute of Technology, Publication 19-7, https://hdl.handle.net/2014/46964 (last access: 18 December 2024), 2019. a
Rekier, J., Chao, B. F., Chen, J., Dehant, V., Rosat, S., and Zhu, P.: Earth's rotation: Observations and relation to deep interior, Surv. Geophys., 43, 149–175, https://doi.org/10.1007/s10712-021-09669-x, 2022. a
Rhines, P. B.: Mesoscale Eddies, in: Encyclopedia of Ocean Sciences, 3rd edn., edited by: Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L., Academic Press, Oxford, 115–127, https://doi.org/10.1016/B978-0-12-409548-9.11642-2, 2019. a
Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J., and Dahle, C.: Revisiting the Contemporary Sea-Level Budget on Global and Regional Scales, P. Natl. Acad. Sci. USA, 113, 1504–1509, https://doi.org/10.1073/pnas.1519132113, 2016. a
Rochester, M. and Crossley, D.: Earth's long-period wobbles: A Lagrangean description of the Liouville equations, Geophys. J. Int., 176, 40–62, https://doi.org/10.1111/j.1365-246X.2008.03991.x, 2009. a
Schindelegger, M., Salstein, D., and Böhm, J.: Recent Estimates of Earth-atmosphere Interaction Torques and Their Use in Studying Polar Motion Variability, J. Geophys. Res.-Sol. Ea., 118, 4586–4598, https://doi.org/10.1002/jgrb.50322, 2013. a
Schindelegger, M., Green, J. A. M., Wilmes, S.-B., and Haigh, I. D.: Can We Model the Effect of Observed Sea Level Rise on Tides?, J. Geophys. Res.-Oceans, 123, 4593–4609, https://doi.org/10.1029/2018JC013959, 2018. a
Sérazin, G., Penduff, T., Grégorio, S., Barnier, B., Molines, J.-M., and Terray, L.: Intrinsic variability of sea level from global ocean simulations: Spatiotemporal scales, J. Climate, 28, 4279–4292, https://doi.org/10.1175/JCLI-D-14-00554.1, 2015. a
Sérazin, G., Penduff, T., Barnier, B., Molines, J.-M., Arbic, B. K., Müller, M., and Terray, L.: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study, J. Phys. Oceanogr., 48, 1385–1408, https://doi.org/10.1175/JPO-D-17-0136.1, 2018. a, b, c
Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res.-Sol. Ea., 113, B08410, https://doi.org/10.1029/2007JB005338, 2008. a
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, Erik R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of GRACE to understanding climate change, Nat. Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019. a
Uebbing, B., Kusche, J., Rietbroek, R., and Landerer, F. W.: Processing Choices Affect Ocean Mass Estimates From GRACE, J. Geophys. Res.-Oceans, 124, 1029–1044, https://doi.org/10.1029/2018JC014341, 2019. a
Venaille, A., Vallis, G. K., and Smith, K. S.: Baroclinic turbulence in the ocean: Analysis with primitive equation and quasigeostrophic simulations, J. Phys. Oceanogr., 41, 1605–1623, https://doi.org/10.1175/JPO-D-10-05021.1, 2011. a
Vinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.-M., and Davis, J. L.: Dynamic adjustment of the ocean circulation to self-attraction and loading effects, J. Phys. Oceanogr., 45, 678–689, https://doi.org/10.1175/JPO-D-14-0150.1, 2015. a, b
Wahr, J. M.: The effects of the atmosphere and oceans on the Earth's wobble – I. Theory, Geophys. J. Int., 70, 349–372, https://doi.org/10.1111/j.1365-246X.1982.tb04972.x, 1982. a
Welch, P.: The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms, IEEE T. Audio Electroacoust., 15, 70–73, https://doi.org/10.1109/TAU.1967.1161901, 1967. a
Wińska, M.: A comparative study of interannual oscillation models for determining geophysical polar motion excitations, Remote Sens., 14, 147, https://doi.org/10.3390/rs14010147, 2022. a
Woodward, R. S.: On the form and position of the sea level with special references to its dependence on superficial masses symmetrically disposed about a normal to the Earth's surface, Tech. rep., Govt. Print. Off., Bulletin 48, 88 pp., https://doi.org/10.3133/b48, 1888. a
Zhao, M., Ponte, R. M., Penduff, T., Close, S., Llovel, W., and Molines, J.-M.: Imprints of Ocean Chaotic Intrinsic Variability on Bottom Pressure and Implications for Data and Model Analyses, Geophys. Res. Lett., 48, e2021GL096341, https://doi.org/10.1029/2021GL096341, 2021. a, b, c
Short summary
Flows in the ocean are driven either by atmospheric forces or by small-scale internal disturbances that are inherently chaotic. We use computer simulation results to show that these chaotic oceanic disturbances can attain spatial scales large enough to alter the motion of Earth's pole of rotation. Given their size and unpredictable nature, the chaotic signals are a source of uncertainty when interpreting observed year-to-year polar motion changes in terms of other processes in the Earth system.
Flows in the ocean are driven either by atmospheric forces or by small-scale internal...
Altmetrics
Final-revised paper
Preprint