Articles | Volume 16, issue 2
https://doi.org/10.5194/esd-16-585-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-585-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleogeographic numerical modeling of marginal seas for the Holocene – an exemplary study of the Baltic Sea
Jakub Miluch
CORRESPONDING AUTHOR
Department of Sediment Transport and Morphodynamics, Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Polish Geological Institute – National Research Institute, Marine Geology Branch, Gdańsk, 80328, Poland
Department of Sediment Transport and Morphodynamics, Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Jan Harff
Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, 70-453, Poland
Andreas Groh
Institute of Planetary Geodesy, Technical University Dresden, 01062 Dresden, Germany
Peter Arlinghaus
Department of Sediment Transport and Morphodynamics, Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Celine Denker
Department of Sediment Transport and Morphodynamics, Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Related authors
No articles found.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data, 17, 611–631, https://doi.org/10.5194/essd-17-611-2025, https://doi.org/10.5194/essd-17-611-2025, 2025
Short summary
Short summary
GRACE and GRACE-FO are unique observing systems to quantify mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS (Gravity Information Service) provides easy access to user-friendly, regularly updated mass anomaly products. The portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024, https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary
Short summary
The transformation of dissolved organic carbon (DOC) in estuaries is vital for coastal carbon cycling. We studied source-to-sink pathways of DOC in the Changjiang Estuary using a physics–biogeochemistry model. Results showed a transition of DOC from a sink to a source in the plume area during summer, with a transition from terrestrial-dominant to marine-dominant DOC. Terrigenous and marine DOC exports account for about 31 % and 69 %, respectively.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Peter Arlinghaus, Corinna Schrum, Ingrid Kröncke, and Wenyan Zhang
Earth Surf. Dynam., 12, 537–558, https://doi.org/10.5194/esurf-12-537-2024, https://doi.org/10.5194/esurf-12-537-2024, 2024
Short summary
Short summary
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is well studied on small scales, but large-scale impact on morphological change is largely unknown. We quantify the large-scale impact of benthos by modeling the evolution of a tidal basin. Results indicate a profound impact of benthos by redistributing sediments on large scales. As confirmed by measurements, including benthos significantly improves model results compared to an abiotic scenario.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cited articles
Andrén, E., Andrén, T., and Sohlenius, G.: The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin, Boreas, 29, 233–250, https://doi.org/10.1111/j.1502-3885.2000.tb00981.x, 2000.
Andrén, T., Lindeberg, G., and Andrén, E.: Evidence of the final drainage of the Baltic Ice Lake and the brackish phase of the Yoldia Sea in glacialvarves from the Baltic Sea, Boreas, 31, 226–238, https://doi.org/10.1111/j.1502-3885.2002.tb01069.x, 2002.
Andrén, T., Björck, S., Andrén, E., Conley, D., Zillén, L., and Anjar, J.: The Development of the Baltic Sea Basin During the Last 130 ka, in: The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES), edited by: Harff, J., Björck, S., and Hoth, P., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-17220-5_4, 2011.
Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C.: Handbook of Mineralogy III (Halides, Hydroxides, Oxides), Mineralogical Society of America, Chantilly, VA, United States, ISBN 0 9622097 2 4, 2009.
Allen, P. A. and Allen, J. R.: Basin Analysis – Priciples and Applications, Blackwell Publishing, Oxford, 1–549, ISBN: 1118685490, 9781118685495, 2008.
Atkinson, K. E.: An Introduction to Numerical Analysis, 2nd edn., John Wiley Sons, New York, ISBN: 0471624896, 9780471624899, 0471500232, 9780471500230, 1989.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2009.
Belkhiri, L., Tiri, A., and Mouni, L.: Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations, Groundwater for Sustainable Development, 11, 100473, https://doi.org/10.1016/j.gsd.2020.100473, 2020.
Berglund, M.: Early Holocene in Gästrikland, east central Sweden: shore displacement and isostatic recovery, Boreas, 41, 263–276, https://doi.org/10.1111/j.1502-3885.2011.00228.x, 2012.
Berra, F., Jadoul, F., and Anelli, A.: Environmental control on the end of the Dolomia Principale/Hauptdolomit depositional system in the central Alps: coupling sea-level and climate changes, Palaeogeogr. Palaeocl., 290, 138–150, https://doi.org/10.1016/j.palaeo.2009.06.037 , 2010.
Bērziņš, V., Lübke, H., Berga, L., Ceriņa, A., Kalniņa, L., Meadows, J., Muižniece, S., Paegle, S., Rudzīte, M., and Zagorska, I.: Recurrent Mesolithic–Neolithic occupation at Sise (western Latvia) and shoreline displacement in the Baltic Sea Basin, Holocene, 26, 1319–1325, https://doi.org/10.1177/0959683616638434, 2016.
Björck, S.: A review of the history of the Baltic Sea, 13.0–8.0 ka BP, Quatern. Int., 27, 19–40, https://doi.org/10.1016/1040-6182(94)00057-C, 1995.
Björck, S.: The late Quaternary development of the Baltic Sea basin, in: Assessment of climate change for the Baltic Sea Basin, Springer, 398–407, ISBN: 978-3-540-72785-9, 2008.
Bobertz, B., Harff, J., and Bohling, B.: Parameterisation of clastic sediments including benthic structures, J. Marine Syst., 75, 371–381, https://doi.org/10.1016/j.jmarsys.2007.06.010, 2009.
Bola, A. and Kayode, J. S.: An evaluation of digital elevation modeling in GIS and Cartography, Geo-Spatial Information Science, 17, 139–144, https://doi.org/10.1080/10095020.2013.772808, 2014.
Boston, T., Van Dijk, A., Larraondo, P. R., and Thackway, R.: Comparing CNNs and Random Forests for Landsat Image Segmentation Trained on a Large Proxy Land Cover Dataset, Remote Sens.-Basel, 14, 3396, https://doi.org/10.3390/rs14143396, 2022.
Christiansen, C., Kunzendorf, H., Emeis, K.-C., Endler, R., Struck, U., Neumann, T., and Sivkov, V.: Temporal and spatial sedimentation rate variabilities in the eastern Gotland Basin, the Baltic Sea, Boreas, 31, 65–74, https://doi.org/10.1111/j.1502-3885.2002.tb01056.x, 2002.
Covington, J. H. and Kenelly, P.: Paleotopographic influences of the Cretaceous/Tertiary angular unconformity on uranium mineralization in the Shirley Basin, Wyoming, J. Maps, 14, 589–596, https://doi.org/10.1080/17445647.2018.1512014, 2018.
Damušytė, A.: Post-glacial geological history of the Lithuanian coastal area, Doctoral Dissertation, Physical Sciences, Geology, Vilnus, https://epublications.vu.lt/object/elaba:2045985/index.html (last access: 5 June 2024), 2011.
Dudzińska-Nowak, J.: Morphodynamic processes of the Swina Gate coastal zone development (southern Baltic Sea), in: Coastline Changes of the Baltic Sea from South to East: Past and Future Projection, 219–255, https://doi.org/10.1007/978-3-319-49894-2_11, 2017.
Einsele, G.: Event deposits: the role of sediment supply and relative sea-level changes – overview, Sediment. Geol., 104, 11–37, https://doi.org/10.1016/0037-0738(95)00118-2, 1996.
Emelyanov, E.: Geology of the Gdańsk Basin, Russian Academy of Sciences, Atlantic Branch of P. P. Shirshov Institute of Oceanology, Yantarny skaz, Russian Federation, 2002.
Endler, M., Endler, R., Bobertz, B., Leipe, T., and Arz, H. W.: Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea, Geo-Mar. Lett., 35, 145–160, https://doi.org/10.1007/s00367-015-0397-3, 2015.
Farrell, W. and Clark, J.: On Postglacial Sea Level, Geophys. J. Int., 46, 647–667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976.
Feng, B., He, Y., Li, H., Li, T., Du, X., Huang, X., and Zhou, X.: Paleogeographic reconstruction of an ancient source-to-sink system in a lacustrine basin from the Paleogene Shahejie formation in the Miaoxibei area (Bohai Bay basin, east China), Front. Earth Sci., 11, 1247723, https://doi.org/10.3389/feart.2023.1247723, 2023.
Gale, A. S., Hardenbol, J., Hathway, B., Kennedy, W. J., Young, J. R., and Phansalkar, V.: Global correlation of Cenomanian (Upper Cretaceous) sequences: Evidence for Milankovitch control on sea level, Geology, 30, 291–294, https://doi.org/10.1130/0091-7613(2002)030%3C0291:GCOCUC%3E2.0.CO;2, 2002.
GEBCO Bathymetric Compilation Group: The GEBCO_2023 Grid – a continuous terrain model of the global oceans and land, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b, 2023.
GEBCO Compilation Group: GEBCO 2023 Grid, https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b, 2023.
Gelumbauskaitė, L. Ž.: Character of sea level changes in the subsiding south-eastern Baltic Sea during Late Quaternary, Baltica, 22, 23–36, 2009.
Glückert, G.: Post-glacial shore-level displacement of the Baltic in SW Finland, Ann. Acad. Sci. Fenn. Ser. A III, 118, ISBN: 951-41-0268-1, 1976.
Gonet, T. and Gonet, K.: Alternative Approach to Evaluating Interpolation Methods of Small and Imbalanced Data Sets, Geomatics and Environmental Engineering, 11, 49–65, https://doi.org/10.7494/geom.2017.11.3.49, 2017.
Goovaerts, P.: Ordinary cokriging revisited, Math. Geol., 30, 21–42, 1998.
Groh, A. and Harff, J.: Relative sea-level changes induced by glacial isostatic adjustment and sediment loads in the Beibu Gulf, South China Sea, Oceanologia, 65, 249–259, https://doi.org/10.1016/j.oceano.2022.09.001, 2023.
Groh, A., Richter, A., and Dietrich, R.: Recent Baltic Sea Level Changes Induced by Past and Present Ice Masses, in: Coastline Changes of the Baltic Sea from South to East. Coastal Research Library, Vol. 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer, Cham, https://doi.org/10.1007/978-3-319-49894-2_4, 2017.
Grudzinska, I., Saarse, L., Vassiljev, J., and Heinsalu, A.: Mid-and late-Holocene shoreline changes along the southern coast of the Gulf of Finland, B. Geol. Soc. Finland, 85, 19–34, https://doi.org/10.17741/bgsf/85.1.002, 2013.
Grudzinska, I., Saarse, L., Vassiljev, J., and Heinsalu, A.: Biostratigraphy, shoreline changes and origin of the Limnea Sea lagoons in northern Estonia: the case study of Lake Harku, Baltica, 27, 59481411, https://doi.org/10.5200/baltica.2014.27.02, 2014.
Grund, S. and Geiger, J.: Sedimentologic modelling of the Ap-13 hydrocarbon reservoir, Central European Geology, 54, 327–344, https://doi.org/10.1556/CEuGeol.54.2011.4.2, 2011.
Gudelis, V. and Emelyanov, E. (Eds.): Geology of the Baltic Sea, Mokslas Publishers, 1976.
Habicht, H. L., Rosentau, A., Jõeleht, A., Heinsalu, A., Kriiska, A., Kohv, M., Hang, T., and Aunap, R.: GIS-based multiproxy coastline reconstruction of the eastern Gulf of Riga, Baltic Sea, during the Stone Age, Boreas, 46, 83–99, https://doi.org/10.1111/bor.12157, 2017.
Hall, A. and van Boeckel, M.: Origin of the Baltic Sea basin by Pleistocene glacial erosion, GFF, 142, 237–252, https://doi.org/10.1080/11035897.2020.1781246, 2020.
Hansson, A., Nilsson, B., Sjöström, A., Björck, S., Holmgren, S., Linderson, H., Magnell, O., Rundgren, M., and Hammarlund, D.: A submerged Mesolithic lagoonal landscape in the Baltic Sea, south-eastern Sweden–Early Holocene environmental reconstruction and shore-level displacement based on a multiproxy approach, Quatern. Int., 463, 110–123, https://doi.org/10.1016/j.quaint.2016.07.059, 2018.
Harff, J., Lemke, W., Lampe, R., Lüth, F., Lübke, R., Meyer, M., Tauber, F., and Schmölcke, U.: The Baltic Sea Coast – a Model of Interrelations between Geosphere, Climate and Anthroposphere, in: Coastline Change – Interrelation of Climate and Geological Processes, Spec. Pap. 426, edited by: Harff, J., Hay, W. W., and Tetzlaff, D., The Geological Society of America, 133–142, https://doi.org/10.1130/2007.2426(09), 2007.
Harff, J., Endler, R., Emelyanov, E., Kotov, S., Leipe, T., Moros, M., Olea, R. A., Tomczak, M., and Witkowski, A.: Late Quaternary Climate Variations reflected in Baltic Sea Sediments, in: The Baltic Sea Basin, edited by: Harff, J., Björck, S., and Hoth, P., Springer, Berlin et al., 99–132, https://doi.org/10.1007/978-3-642-17220-5_5, 2011.
Harff, J., Deng, J., Dudzinska-Nowak, J., Fröhle, P., Groh, A., Hünicke, B., Soomere, T., and Zhang, W.: What Determines the Change of Coastlines in the Baltic Sea?, in: Coastline Changes of the Baltic Sea from South to East – Past and Future Projection Coastal Research Library, Vol. 19, edited by: Harff, J., Furmanczyk, K., and von Storch, H., Springer, Heidelberg, 15–35, https://doi.org/10.1007/978-3-319-49894-2_4, 2017.
Hay, W. W., Shaw, C. A., and Wold, C. N.: Mass-balanced paleogeographic reconstructions, Geol. Rundsch., 78, 207–242, https://doi.org/10.1007/BF01988362, 1989.
Heinsalu, A. and Veski, S.: The history of the Yoldia Sea in Northern Estonia: palaeoenvironmental conditions and climatic oscillations, Geol. Q., 51, 295–306, 2007.
Hulskamp, R., Luijendijk, A., van Maren, B., Moreno-Rodenas, A., Calkoen, F., Kras, E., Lhemitte, S., and Aarninkhof, S.: Global distribution and dynamics of muddy coasts, Nat. Commun., 14, 8259, https://doi.org/10.1038/s41467-023-43819-6, 2023.
Jakobsson, M., Björck, S., Alm, G., Andrén, T., Lindeberg, G., and Svensson, N. O.: Reconstructing the Younger Dryas ice dammed lake in the Baltic Basin: Bathymetry, area and volume, Global Planet. Change, 57, 355–370, https://doi.org/10.1016/j.gloplacha.2007.01.006, 2007.
Jakobsson, M., Stranne, C., O'Regan, M., Greenwood, S. L., Gustafsson, B., Humborg, C., and Weidner, E.: Bathymetric properties of the Baltic Sea, Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, 2019.
Karle, M., Bungenstock, F., and Wehrmann, A.: Holocene coastal landscape development in response to rising sea level in the Central Wadden Sea coastal region, Neth. J. Geosci., 100, e12, https://doi.org/10.1017/njg.2021.10, 2021.
Kaskela, A. M., Kotilainen, A. T., Al-Hamdani, Z., Leth, J. O., and Reker, J.: Seabed geomorphic features in a glaciated shelf of the Baltic Sea, Estuar. Coast. Shelf S., 100, 150–161., https://doi.org/10.1016/j.ecss.2012.01.008 , 2012.
Konomi, B. A., Kang, E. L., Almomani, A., and Hobbs, J.: Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations, J. Agr. Biol. Envir. St., 28, 1–19, https://doi.org/10.48550/arXiv.2208.08494, 2023.
Lajczak, A. and Jansson, M. B.: Suspended Sediment Yield in the Baltic Drainage Basin, Hydrol. Res., 24, 31–52, https://doi.org/10.2166/nh.1993.0003, 1993.
Lambeck, K., Purcell, A., Zhao, J., and Svensson, N. O.: The Scandinavian ice sheet: from MIS 4 to the end of the last glacial maximum, Boreas, 39, 410–435, https://doi.org/10.1111/j.1502-3885.2010.00140.x, 2010.
Lampe, R. and Janke, W.: The Holocene sea level rise in the Southern Baltic as reflected in coastal peat sequences, Special papers 11, Polish Geological Institute, 19–29, 2004.
Lampe, R., Endtmann, E., Janke, W., and Meyer, H.: Relative sea-level development and isostasy along the NE German Baltic Sea coast during the past 9 ka, E&G Quaternary Science Journal, 59, 3–20, https://doi.org/10.3285/eg.59.1-2.01, 2011.
Leenaers, H., Burrough, P. A., and Okx, J. P.: Efficient mapping of heavy metal pollution on floodplains by co-kriging from elevation data, in: Three Dimensional Applications in GIS, CRC Press, 37–50, https://doi.org/10.1201/9781003069454-4, 2020.
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S., Kowalski, N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate organic carbon (POC) in surface sediments of the Baltic Sea, Geo-Mar. Lett., 31, 175–188, https://doi.org/10.1007/s00367-010-0223-x, 2011.
Lemke, W.: Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression, Institut für Ostseeforschung Warnemünde, ISSN 0939-396X, 1998.
Lemke, W., Jensen, J. B., Bennike, O., Endler, R., Witkowski, A., and Kuijpers, A.: Hydrographic thresholds in the western Baltic Sea: Late Quaternary geology and the Dana River concept, Mar. Geol., 176, 191–201, https://doi.org/10.1016/S0025-3227(01)00152-9, 2001.
Libina, N. V. and Nikiforov, S. L.: Digital Elevation Models of the Bottom in the Operational Oceanography System, Oceanology, 60, 854–860, https://doi.org/10.1134/S0001437020050124, 2020.
Lindén, M., Möller, P. E. R., Björck, S., and Sandgren, P. E. R.: Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden, Boreas, 35, 1–22, https://doi.org/10.1111/j.1502-3885.2006.tb01109.x, 2006.
Liu, L., Xing, F., Li, Y., Han, Y., Wang, Z., Zhi, X., Wang, G., Feng, L., Yang., B., Lei., Y., Fan, Z., and Du., W.: Study of the geostatistical grid maths operation method of quantifying water movement in soil layers of a cotton field, Irrig. Drain., 69, 1146–1156, https://doi.org/10.1002/ird.2513, 2020a.
Liu, N., He, T., Tian, Y., Wu, B., Gao, J., and Xu, Z.: Common azimuth seismic data fault analysis using residual U-Net, Interpretation, 8, 1–41, https://doi.org/10.1190/int-2019-0173.1, 2020b.
Liu, Y., Huang, H., Qi, Y., Liu, X., and Yang, X.: Holocene coastal morphologies and shoreline reconstruction for the southwestern coast of the Bohai Sea, China, Quaternary Res., 86, 144–161, https://doi.org/10.1016/j.yqres.2016.06.002, 2016.
Lõugas, L. and Tomek, T.: Marginal effect at the coastal area of Tallinn Bay: The marine, terrestrial and avian fauna as a source of subsistence during the Late Neolithic. Man, his time, artefacts, and paces, Collection of articles dedicated to Richard Indreko, Muinasaja teadus, 19, 463–485, 2013.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The State of the World's Beaches, Sci. Rep.-UK, 8, 6641, https://doi.org/10.1038/s41598-018-24630-6, 2018.
Matthäus, W. and Franck, H.: Characteristics of major Baltic inflows – a statistical analysis, Cont. Shelf Res., 12, 1375–1400, https://doi.org/10.1016/0278-4343(92)90060-W, 1992.
Maystrenko, Y., Bayer, U., Brink, H. J., and Littke, R.: The Central European Basin System – an Overview, in: Dynamics of Complex Intracontinental Basins, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-85085-4_2, 2008.
Mentaschi, L., Vousdoukas, M. I., Pekel, J. F., Voukouvalas, E., and Feyen, L.: Global long-term observations of coastal erosion and accretion, Sci. Rep.-UK, 8, 12876, https://doi.org/10.1038/s41598-018-30904-w, 2018.
Miettinen, A.: Relative sea level changes in the eastern part of the Gulf of Finland during the last 8000 years, Ann. Acad. Sci. Fenn., Ser. A III 162, 5–91, ISBN: 951-41-0915-5, 2002.
Miluch, J., Osadczuk, A., Feldens, P., Harff, J., Maciąg, Ł., and Chen, H.: Seismic profiling-based investigation of geometry and sedimentary architecture of the late Pleistocene delta in the Beibu Gulf, SW of Hainan Island, J. Asian Earth Sci., 205, 104611, https://doi.org/10.1016/j.jseaes.2020.104611, 2021.
Miluch, J., Maciąg, Ł., Osadczuk, A., Harff, J., Jiang, T., Chen, H., Borówka R. K., and McCartney, K.: Multivariate geostatistical modeling of seismic data: Case study of the Late Pleistocene paleodelta architecture (SW off-shore Hainan Island, South China Sea), Mar. Petrol. Geol., 136, 105467, https://doi.org/10.1016/j.marpetgeo.2021.105467, 2022.
Myers, D. E.: Matrix formulation of co-kriging, J. Int. Ass. Math. Geol., 14, 249–257, 1982.
Myers, D. E.: Co-kriging – new developments, in: Geostatistics for Natural Resources Characterization: Part 1, Springer, Dordrecht, 295–305, https://doi.org/10.1007/978-94-009-3699-7, 1984.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding – A Global Assessment, PLoS One, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Kileen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. in: Advances in Neural Information Processing Systems 32, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., Curran Associates, Inc. Publisher's Version, 8024–8035, https://doi.org/10.48550/arXiv.1912.01703, 2019.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.: Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev., 169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017.
Peltier, W.: Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36, 603–689, https://doi.org/10.1029/98RG02638, 1998.
Peltier, W.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Peltier, W. R.: Global sea level rise and glacial isostatic adjustment, Global Planet. Change, 20, 93–123, https://doi.org/10.1016/S0921-8181(98)00066-6, 1999.
Peltier, W. R.: Postglacial coastal evolution: Ice–ocean–solid Earth interactions in a period of rapid climate change, in: Coastline Changes: Interrelation of Climate and Geological Processes: Geological Society of America Special Paper, edited by: Harff, J., Hay, W. W., and Tetzlaff, D. M., 426, 5–28, https://doi.org/10.1130/2007.2426(02), 2007.
Ponomarenko, E.: Holocene palaeoenvironment of the central Baltic Sea based on sediment records from the Gotland Basin, Regional Studies in Marine Science, 63, 102992, https://doi.org/10.1016/j.rsma.2023.102992, 2023.
Porz, L., Zhang, W., and Schrum, C.: Density-driven bottom currents control development of muddy basins in the southwestern Baltic Sea, Mar. Geol., 438, 106523, https://doi.org/10.1016/j.margeo.2021.106523, 2021.
Pruszak, Z., van Ninh, P., Szmytkiewicz, M., Manh Hung, N., and Ostrowski, R.: Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta), Oceanologia, 47, 365–385, 2005.
Razas, M. A., Hassan, A., Khan, M. U., Emach, M. Z., and Saki, S. A.: A critical comparison of interpolation techniques for digital terrain modelling in mining, J. S. Afr. I. Min. Metall., 123, 53–62, https://doi.org/10.17159/2411-9717/2271/2023, 2023.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention (MICCAI), LNCS, vol. 9351, Springer, 234–241, https://doi.org/10.48550/arXiv.1505.04597, 2015.
Root, B. C., van der Wal, W., Novák, P., Ebbing, J., and Vermeersen, L. L. A.: Glacial isostatic adjustment in the static gravity field of Fennoscandia, J. Geophys. Res.-Sol. Ea., 120, 503–518, https://doi.org/10.1002/2014JB011508, 2015.
Rosentau, A., Harff, J., Oja, T., and Meyer, M.: Postglacial rebound and relative sea level changes in the Baltic Sea since the Litorina transgression, Baltica, 25, 113–120, https://doi.org/10.5200/baltica.2012.25.11, 2012.
Rosentau, A., Muru, M., Kriiska, A., Subetto, D. A., Vassiljev, J., Hang, T., Gerasimov, D., Nordqvist, K., Ludikova, A., Lõugas, L., Raig, H., Kihno, K., Aunap, R., and Letyka, N.: Stone Age settlement and Holocene shore displacement in the Narva-Luga Klint Bay area, eastern Gulf of Finland, Boreas, 42, 912–931, https://doi.org/10.1111/bor.12004, 2013.
Rosentau, A., Bennike, O., Uścinowicz, S., and Miotk-Szpiganowicz, G.: The Baltic Sea Basin, in: Submerged landscapes of the European continental shelf: quaternary paleoenvironments, John Wiley & Sons, 103–133, https://doi.org/10.1002/9781118927823.ch5, 2017.
Rosentau, A., Klemann, V., Bennike, O., Steffen, H., Wehr, J., Latinović, M., Bagge, M., Ojala, A., Berglund, M., Becher, G. P., Schoning, K., Hansson, A., Nielsen, L., Clemmensen, L. B., Hede, M. U., Kroon, A., Pejrup, M., Sander, L., Stattegger, K., Schwarzer, K., Lampe, R., Lampe, M., Uścinowicz, S., Bitinas, A., Grudzinska, I., Vassiljev, J., Nirgi, T., Kublitskiy, Y., and Subetto, D.: A Holocene relative sea-level database for the Baltic Sea, Quaternary Sci. Rev., 266, 107071, https://doi.org/10.1016/j.quascirev.2021.107071, 2021.
Ryabchuk, D. V., Sergeev, A. Y., Prishchepenko, D. V., Zhamoida, V. A., Elkina, D. V., Piskarev, A. L., Bashirova, L. D., Ponomarenko, E. P., Budanov, L. M., Grigoriev, A. G., and Evdokimenko, A. V.: Impact of climate change on sedimentation processes in the eastern Gulf of Finland during the Middle to Late Holocene, Boreas, 50, 381–403, https://doi.org/10.1111/bor.12500, 2020.
Saarnisto, M.: Holocene emergence history and stratigraphy in the area north of the Gulf of Bothnia, Suomalainen tiedeakatemia, ISBN: 951-41-0409-9, 1981.
Sandwell, D. T., Gille, S. T., and Smith, W. H. F. (Eds.): Bathymetry from Space: Oceanography, Geophysics, and Climate, Geoscience Professional Services, Bethesda, Maryland, 24, https://topex.ucsd.edu/marine_grav/bathy_from_space_workshop.pdf (last access: 25 May 2024), 2002.
Schmedemann, N., Schafmeister, M. T., and Hoffmann, G.: Numeric de-compaction of Holocene sediments, Polish Geological Institute Special Papers 23, 87–94, 2008.
Shaw, J., Piper, D. J. W., Fader, G. B. J., King, E. L., Todd, B. J., Bell, T., Batterson, M. J., and Liverman, D. G. E.: A conceptual model of the deglaciation of Atlantic Canada, Quaternary Sci. Rev., 25, 2059–2081, https://doi.org/10.1016/j.quascirev.2006.03.002, 2006.
Sohlenius, G., Emeis, K. C., Andrén, E., Andrén, T., and Kohly, A.: Development of anoxia during the Holocene fresh–brackish water transition in the Baltic Sea, Mar. Geol., 177, 221–242, https://doi.org/10.1016/S0025-3227(01)00174-8, 2001.
Spada, G. and Stocchi, P.: SELEN: A Fortran 90 program for solving the “sea-level equation”, Comput. Geosci., 33, 538–562, https://doi.org/10.1016/j.cageo.2006.08.006, 2007.
Spada, G., Melini, D., Galassi, G., and Colleoni, F.: Modeling sea level changes and geodetic variations by glacial isostasy: the improved SELEN code, arXiv [preprint], https://doi.org/10.48550/arXiv.1212.5061, 2012.
Statteger, K. and Leszczyńska, K.: Rapid sea-level rise during the first phase of the Littorina transgression in the western Baltic Sea, Oceanologia, 65, 202–210, https://doi.org/10.1016/j.oceano.2022.05.001, 2023.
Steffen, H. and Wu, P.: Glacial isostatic adjustment in Fennoscandia – a review of data and modeling, J. Geodyn., 52, 169–204, https://doi.org/10.1016/j.jog.2011.03.002, 2011.
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hätterstand, C., Heyman, J., Hindmarsh, R. C. A., Hughes, A. L. C., Jakobsson, M., Kirchner, N., Livingstonen, S. J., Margold, M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J. W., Preusser, F., Renssen, H., Roberts, D. H., Rocher, D. M., Saint-Ange, F., Stroven, A. P., and Teller, J. T.: On the reconstruction of palaeo-ice sheets: recent advances and future challenges, Quaternary Sci. Rev., 125, 15–49, https://doi.org/10.1016/j.quascirev.2015.07.016, 2015.
Sturt, F., Garrow, D., and Bradley, S.: New models of North West European Holocene paleogeography and inundation, J. Archaeol. Sci., 40, 3963–3976, https://doi.org/10.1016/j.jas.2013.05.023, 2013.
Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K., and Purcell, A. P.: Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present, J. Geophys. Res., 111, C09025, https://doi.org/10.1029/2006JC003531, 2006.
Uścinowicz, S.: Geological Atlas of the Southern Baltic – Holocene thickness, Polish Geological Institute, 1998.
Uścinowicz, S.: A relative sea-level curve for the Polish Southern Baltic Sea, Quatern. Int., 145–146, 86–105, https://doi.org/10.1016/j.quaint.2005.07.007, 2006.
Uścinowicz, S.: The Baltic Sea continental shelf, in: Continental Shelves of the World: Their Evolution During the Last Glacio-Eustatic Cycle, edited by: Chiocci, F. L. and Chivas, A. R., Vol. 41, Geological Society Memoir, 69–89, https://doi.org/10.1144/m41.7, 2014.
Uścinowicz, S.: Hel Peninsula–geological structure and history. Assessing the Baltic Sea Earth System, in: 4th Baltic Earth Conference, Jastarnia, Poland, 30 May–3 June 2022.
Uścinowicz, S., Miotk-Szpiganowicz, G., Krąpiec, M., Witak, M., Harff, J., Lübke, H., and Tauber, F.: Drowned forests in the Gulf of Gdańsk (Southern Baltic) as an indicator of the Holocene shoreline changes, in: The Baltic Sea Basin, Springer-Verlag, Berlin-Heidelberg, 219–231, https://doi.org/10.1007/978-3-642-17220-5_11, 2011.
Van der Molen, J. and Van Dijck, B.: The evolution of the Dutch and Belgian coasts and the role of sand supply from the North Sea, Global Planet. Change, 27, 223–244, 2000.
Varela, A. N.: Tectonic control of accommodation space and sediment supply within the Mata Amarilla Formation (lower Upper Cretaceous) Patagonia, Argentina, Sedimentology, 62, 867–896, https://doi.org/10.1111/sed.12164, 2015.
Vink, A., Steffen, H., Reinhardt, L., and Kaufmann, G.: Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea), Quaternary Sci. Rev., 26, 3249–3275, https://doi.org/10.1016/j.quascirev.2007.07.014, 2007.
Vött, A.: Relative sea level changes and regional tectonic evolution of seven coastal areas in NW Greece since the mid-Holocene, Quaternary Sci. Rev., 26, 894–919, https://doi.org/10.1016/j.quascirev.2007.01.004, 2007.
Wackernagel, H.: Multivariate geostatistics: an introduction with applications, Springer Science & Business Media, https://doi.org/10.1007/978-3-662-05294-5, 2003.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Wallmann, K., Diesing, M., Scholz, F., Rehder, G., Dale, A. W., Fuhr, M., and Suess, E.: Erosion of carbonate-bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and support atmospheric CO2 uptake in coastal seas, Front. Mar. Sci., 9, 968069, https://doi.org/10.3389/fmars.2022.968069, 2022.
Wang, X., Zhang, W., Xie, X., Chen, H., and Chen, B.: Holocene sedimentary distribution and morphological characteristics reworked by East Asian monsoon dynamics in the Mekong River shelf, South Vietnam, Estuar. Coast. Shelf S., 302, 108784, https://doi.org/10.1016/j.ecss.2024.108784, 2024.
Watts, A. B.: Tectonic subsidence, flexure and global changes of sea level, Nature, 297, 469–474, 1982.
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., and Zorita, E.: Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, 2021.
Winterhalter, B.: On the geology of the Bothnian Sea, an epeiric sea that has undergone Pleistocene glaciation, Geological Survey of Finland, Bulletin 258, Geologinen Tutkimuslaitos, Otaniemi, Finland, ISBN: 9516900038, 1972.
Wu, C. Y., Wei, X., Ren, J., Bao, Y., He, Z. G., Lei, Y. P., Shi, H. Y., and Zhang, W.: Morphodynamics of the rock-bound outlets of the Pearl River estuary, South China – A preliminary study, J. Marine Syst., 82, 17–27, https://doi.org/10.1016/j.jmarsys.2010.02.002, 2010.
Wulff, F., Stigebrandt, A., and Rahm, L.: Nutrient dynamics of the Baltic Sea, Ambio, 148, 126–133, https://doi.org/10.1007/978-3-662-04453-7_13, 1990.
Xiong, P., Dudzińska-Nowak, J., Harff, J., Xie, X., Zhang, W., Chen, H., Jiang, T., Chen, H., Miluch, J., Feldens, P., Maciąg, Ł., Osadczuk, A., Meng, Q., and Zorita, E.: Modeling paleogeographic scenarios of the last glacial cycle as a base for source-to-sink studies: an example from the northwestern shelf of the South China Sea, J. Asian Earth Sci., 203, 104542, https://doi.org/10.1016/j.jseaes.2020.104542, 2020.
Yao, Y., Harff, J., Meyer, M., and Zhan, W.: Reconstruction of paleocoastlines for the northwestern south China sea since the last glacial maximum, Sci. China Earth Sci., 52, 1127–1136, https://doi.org/10.1007/s11430-009-0098-8, 2009.
Yilmaz, H. M.: The effect of interpolation methods in surface definition: an experimental study, Earth Surf. Proc. Land., 32, 1346–1361, https://doi.org/10.1002/esp.1473, 2007.
Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P., and Zhang, S.: Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery, Sensors, 18, 3717, https://doi.org/10.3390/s18113717, 2018.
Zhang, W.: Holocene sediment thickness map for the Baltic Sea, Mendeley Data [data set], https://doi.org/10.17632/k45mff2ccy.1, 2024.
Zhang, W. and Arlinghaus, P.: Climate, Coast, and Morphology, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.814, 2022.
Zhang, W., Harff, J., Schneider, R., Meyer, M., and Wu, C. Y.: A multi-scale centennial morphodynamic model for the southern Baltic coast, J. Coastal Res., 27, 890–917, https://doi.org/10.2112/JCOASTRES-D-10-00055.1, 2011a.
Zhang, W., Harff, J., and Schneider, R.: Analysis of 50 year wind data of the southern Baltic Sea for modelling coastal morphological evolution – a case study from the Darss-Zingst Peninsula, Oceanologia, 53, 489–518, https://doi.org/10.5697/oc.53-1-TI.489, 2011b.
Zhang, W., Harff, J., Schneider, R., Meyer, M., Zorita, E., and Hünicke, B.: Holocene morphogenesis at the southern Baltic Sea: simulation of multiscale processes and their interactions for the Darss-Zingst peninsula, J. Marine Syst., 129, 4–18, https://doi.org/10.1016/j.jmarsys.2013.06.003, 2014.
Zhang, W., Xiong, P., Meng, Q., Dudzińska-Nowak, J., Chen, H., Zhang, H., Zhou, F., Miluch, J., and Harff, J.: Morphogenesis of a late Pleistocene delta off the southwestern Hainan Island unraveled by numerical modeling, J. Asian Earth Sci., 195, 104351, https://doi.org/10.1016/j.jseaes.2020.104351, 2020.
Short summary
We present a high-resolution paleogeographic reconstruction of the Baltic Sea for the Holocene period by combining eustatic sea-level change, glacio-isostatic movement, and sediment dynamics. In the northeastern part, morphological change is dominated by regression caused by post-glacial rebound that outpaces the eustatic sea level rise, whereas a transgression, together with active sediment erosion/deposition, constantly shapes the coastal morphology in the southeastern part.
We present a high-resolution paleogeographic reconstruction of the Baltic Sea for the Holocene...
Altmetrics
Final-revised paper
Preprint